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Slope stability analysis : a kinematical approach 

R. L. MICHALOWSKI* 

A stability analysis of slopes based on a trans- 

lational mechanism of failure is presented. The col- 

lapse mechanism is assumed to be in the form of 

rigid blocks analogous to slices in traditional slice 

methods. The proposed analysis, although based on 

the kinematical approach of limit analysis, always 

satisfies the equilibrium of forces acting on all 

blocks in the selected mechanism. All slope stabil- 

ity analyses based on the limit equilibrium of slices 

can be interpreted in the context of their implicitly 

assumed collapse mechanisms. The static assump- 

tions made are equivalent to assuming an arbitrary 

strength of the soil on interfaces between slices. 

Solutions to stability factor yH/c from all analyses 

based on the limit equilibrium of slices fall into a 

relatively narrow range bounded by the solutions 

using the proposed analysis for two extreme 

assumptions of soil strength between the blocks. 

Solutions beyond this range obtained by any 

method of slices indicate unreasonable conse- 

quences when interpreted in the context of the 

failure mechanism. A convenient way to include 

pore pressure effects is also presented and imple- 

mented in the analysis of both translational and 

rotational slope collapse. 

KEYWORDS: embankments; failure; limit state 
analysis; plasticity; pore pressures; slopes. 

L’article prbente une analyse de la stabilitb des 

pentes fond&e sur des m6canismes de rupture par 

translation. Le m&a&me de l’effondrement est 

g&b par des blocs rigides, 6quivalents aux tranches 

des mCthodes traditionnelles. Cette analyse, bien 

que fond& sur une approche cinitmatique des 

analyses aux Btats limites, v&Se toujours 

Kquilibre des forces agissant sur I’ensemble des 

blocs. Toute analyse de la stabiliti! des pentes 

fond& sur un 6quilibre limite des tranches peut 

&tre interprCtb suivant lea m6canismes 

d’elfrondrement qui lui sent implicitement affect&. 

Les hypoth&es statiques po&es lors de ces 

analyses reviennent B supposer l’existence d’une rC- 

sistance arbitraire du sol au niveau des contacts 

entre tranches. Les facteurs de stabi& yH/c, cal- 

culb P l’aide des differentes analyses par +uilibre 

limite des tranches, sent compris dans un intervalle 

relativement Ctroit dont lea bornes sent les valeurs 

obtenues i l’aide de l’analyse propo&e pour deux 

hypothbes extrgmes de r&sistance du sol entre les 

blocs. Les valeurs, calc&es par n’importe queue 

m&hode des tranches, situ&es hors de cet intervalle 

donnent des rbultats aberrants en terme de m&a- 

nismes de rupture. Une m&hode simple de prise en 

compte des effets de la pression interstitielle est 

Cgalement p&en& puis implementee dans 

I’analyse de I’effondrement des pen&s par tram- 

lation et par rotation. 

INTRODUCTION 

Despite the development of numerical methods 

for the analysis of slopes, traditional techniques 

based on the division of the soil mass into slices 

are still routinely used to evaluate the safety of 

slopes. The first method of slices for slope stabil- 

ity analysis (Fellenius, 1927) was based more on 

engineering intuition than on a rigorous mecha- 

nics approach. Development of slice methods in 

the 1950s and 1960s focused on interslice forces 

and satisfying three equations of equilibrium for 

each slice (Bishop, 1955; Janbu, 1957, 1973; Mor- 
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genstern & Price, 1965; Spencer, 1967). As the 

original problem was statically indeterminate, 

some static assumptions had to be made. 

Satisfying three equations of equilibrium for each 

slice (two-dimensional deformation problem) did 

not remove the approximate character of the slice 

method. Still, no proof was required that a stati- 

cally admissible stress field exists within the slices 

and beyond, or that assumed mechanisms of 

failure are kinematically admissible. The issue of 

the kinematical admissibility of the failure pat- 

terns selected was not even raised, as slice 

methods do not make use of the stress-strain rate 

relation. The term ‘rigorous’ as applied to slice 

methods needs to be interpreted as the method 

satisfying the global equilibrium of each slice 

without violating the yield condition of the soil, 

and not one that leads to the true stress and 
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strain (or strain-rate) fields. Due to arbitrary 

static assumptions the rigorous slice techniques 

do not yield a unique solution to the factor of 

safety. 

mass. A proposal for including the pore pressure 

effect is presented, and results of calculations are 

given. 

None of the slice techniques can be considered 

exact, and it is only a hypothesis based on intu- 

ition that the methods satisfying three equations 

of global equilibrium are more accurate than 

those that satisfy only one or two. As neither the 

static admissibility of the stress field nor the kine- 

matic admissibility of the collapse mechanism can 

be proved for any of the slice methods, such a 

hypothesis is rather arbitrary. Evaluating which 

of the slice techniques is more appropriate than 

the others is not possible without resort to a tech- 

nique that would at least yield a strict bound to 

the true solution. The upper bound technique of 

limit analysis is used in this Paper. This technique 

was used earlier in the two-dimensional analysis 

of rotational collapse of slopes (Chen, Giger & 

Fang, 1969), and it was suggested that it be used 

with translational mechanisms (Karal, 1977; 

Izbicki, 1981). More recently this technique was 

applied in the three-dimensional analysis of 

locally loaded slopes (Michalowski, 1989). In its 

theoretical aspect, this analysis is similar to the 

analyses by Chen et al. (1969), Karal (1977) and 

Izbicki (1981). However, these analyses differ in 

collapse mechanisms and analytical formulation. 

In addition, the method presented here explicitly 

includes the effect of the pore pressure through 

energy terms. 

UPPER BOUND APPROACH 

It is assumed that the soil is perfectly plastic, its 

yield condition is convex in the stress space, and 

it obeys the associative flow rule 

i, = x f3f(a,i’)/&Q,‘, ;z 2 0 (1) 

where iii is the strain rate tensor of the soil 

skeleton, u..’ is the tensor of effective stress, 

f(aij’) = 0 il the yield condition, and 1 is a non- 

negative multiplier. The approach is based on 

using the upper bound theorem, which states that 

the rate of work done by the external forces 

(surface tractions and material weight) is less than 

or equal to the rate of the energy dissipation in 

any kinematically admissible velocity field. This 

can be written as 

The object of this Paper is twofold: to present 

a kinematical limit analysis for assessing the 

safety of slopes or their critical heights, and to 

interpret traditional slice methods in terms of 

their implicitly assumed kinematics in order to 

indicate the significance of arbitrary static 

assumptions. 

Criticism of traditional slice techniques does 

not affect their usefulness in practical calcu- 

lations. It is believed that pointing to the weak- 

nesses of these techniques will lead to a better 

understanding of the existing methods, and 

perhaps new methods will emerge. Slice tech- 

niques are used successfully in other branches of 

engineering. A differential slice approach was 

used in calculations of pressure on silo walls as 

early as 1895 (Janssen, 1895; Drescher, 1991). 

Similar techniques are used in metal mechanics, 

and also appear to be useful in geotechnical 

analyses in problems other than those of slopes 

(Janbu, 1957; Michalowski, 1984). 

s ” 
s,*~.ij*da~JII~Sds+dX’V;*dli (2) 

where E,* is the strain rate in the kinematically 

admissible velocity field, E,* = (vi, j* + 5, i*)/2, 

q* = K on boundary s (given boundary 

condition), uij* is the effective stress tensor associ- 

ated with eij*, Xi is the vector of distributed forces 

(weight, buoyancy and seepage forces), and s and 

v are the loaded boundary (surface) and the 

volume respectively. Thus, equating the energy 

dissipation rate to the work of the external forces 

in any admissible failure mechanism will lead to a 

limit load that is not lower than the true limit 

load. This is true when the unknown load ‘& is 

active (z q > 0 on boundary s), and such calcu- 

lation is possible when F is constant on s. Alter- 

natively, as in the case of slopes where the 

tractions are given, the factor of safety defined as 

F=C=- 
tan 4 

tan & c d 

(3) 

can be calculated using the kinematical approach 

of limit analysis. Introducing the factor of safety 

as in equation (3) implies that the slope material 

obeys the Mohr-Coulomb yield condition. 

Parameters c and q5 are the cohesion and internal 

friction angle, and cd and 4d are their values 

necessary to maintain energy balance in an 

admissible failure mechanism. 

The upper bound technique is reviewed briefly The flow rule in equation (1) associated with 

and an admissible slope collapse mechanism the Mohr-Coulomb yield condition imposes 

associated with traditional slice analyses is pre- certain constraints on the kinematics of the col- 

sented. A factor of safety for slopes is then lapse mechanism. In particular, the soil becomes 

derived, based on the upper bound approach dilatant, i.e. its volume increases (density 

used with the failure mechanism of a sliced soil decreases) during deformation. In cases where 
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velocity discontinuities occur (e.g. in rigid-block 

mechanisms), the velocity jump vector must be 

inclined to the discontinuity at the angle of inter- 

nal friction. The rate of energy dissipation per 

unit of area of a velocity discontinuity surface 

(often also called a rupture or a failure surface) 

for the Coulomb material can be written as 

d = aij’nj[V]i = c[V] cos 4 (4) 

where nj is the unit vector perpendicular to the 

rupture surface, [V], is the velocity jump vector 

and [V] is its magnitude. Subscripts i and j in 

equation (4) denote the Cartesian co-ordinates. 

The non-associative flow rule for soils can be 

accounted for in the stability analysis using a 

technique proposed by Drescher & Detournay 

(1993). 

It should be emphasized that an upper bound 

solution to a limit load (or a factor of safety) 

based on a rigid-block translational mechanism 

yields a solution identical to that of the limit 

equilibrium method based on the same discrete 

failure pattern (Mrbz & Drescher, 1969). By the 

principle of virtual work a system of blocks is in 

equilibrium provided the virtual work done by all 

external forces and couples is equal to the energy 

dissipated for each and every virtual displacement 

of the system consistent with the constraints. 

Equating the energy dissipation rate to work rate 

by external forces in a translational mechanism 

must therefore lead to a solution where the equi- 

librium of forces is satisfied. 

ADMISSIBLE FAILURE MODES 

ASSOCIATED WITH SLICE ANALYSES 

Such a mechanism is translational and not 

rotational. The rigid rotation mechanism is 

admissible only if the failure surface is a log-spiral 

(cylindrical surface for frictionless soil). In a 

mechanism based on blocks as in Fig. l(a), the 

energy is dissipated not only along the failure line 

ABCD, but also within the sliding mass, along 

the vertical interfaces. 
To select a kinematically admissible failure The hodograph for the failure mechanism from 

pattern, the flow rule of the soil must be known Fig. l(a) is shown in Fig. 2(a). The velocity of the 

first. Although the location of the failure surface first block is Vi = V,/sin (c~i - 4i), where V, is 

must be selected in slice techniques (arbitrarily or the vertical component of the velocity of the first 

through a process of minimization of the factor of block (boundary condition). The respective 

safety), the entire failure mechanism is not velocities of other blocks V, and the interfacial 

Block 1 

\ A 
Block k 

assumed explicitly. Slice techniques make no use 

of the flow rule, as the considerations are 

restricted to the equilibrium of forces. To inter- 

pret the slice approach in terms of the implicit 

kinematics it is assumed, as in limit analysis, that 

the soil obeys the flow rule associated with the 

Mohr-Coulomb yield condition. Fig. l(a) shows a 

typical division of the soil mass into blocks 

(slices). The failure surface ABCD may be of arbi- 

trary shape. 

The division into blocks in the failure mecha- 

nism is purposely assumed so that the blocks 

coincide with the slices considered in traditional 

analyses. The geometry of each block is charac- 

terized by the length of the base I, the inclination 

angle of the base a, and the lengths of interfaces t 

(Fig. l(b)). Block 1 can slide only up or down 

along base AB. AB, BC, and so on are approx- 

imated with plane surfaces. The reasonable direc- 

tion of movement during failure is down. The 

associative flow rule requires that the velocity of 

block 1 be inclined to AB at angle 4. For the 

same reason, the adjacent block must move with 

a velocity inclined at 4 to BC. The two blocks 

then move with different velocities, [V] being the 

velocity difference (jump) between the two (Fig. 

l(c)). If the velocity of the first block is given, the 

velocities of all blocks can be found by using the 

hodograph in Fig. l(d) repeatedly. 

(4 (b) (d 

Fig. 1. (a) Translational failure mechanism; (b) single block; (c) velocity vectors; (d) bodograpb 

03 
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(4 (b) 

Fig. 2. (a) Hodograph for a homogeneous slope; (b) 

hodograph when the internal friction on ioterfaces 

between blocks is neglected 

velocity jumps [VI, for a convex slip surface are 

v,=v,-, 
cos (ak- 1 - 4k- 1 - 8,) 

cos (4k + 8, - at) 1 
(5) 

rn = h 
sin (4, - h-l - ak + ak-l) 

cos cak- 1 - bkm 1 - 6,) 

where the subscript k denotes the block number, 

txk is the angle of inclination of the block base to 

the horizontal, $k is the internal friction angle at 

the base of the block and 4k is the internal fric- 

tion angle on the right interface of the kth block 

(the interface between blocks k and k - 1). For a 

uniform value of 4 within the soil mass the end 

points of block velocity vectors are located on 

one straight line (Fig. 2(a)). When the internal 

friction angle is different on different surfaces 

between blocks, these vector end points are not 

located on a straight line, but equations (5) are 

still valid. 

FACTOR OF SAFETY FOR TRANSLATIONAL 

COLLAPSE MECHANISMS IN THE ABSENCE 

OF PORE PRESSURE 

Denoting the weight of block k as G,, and any 

additional vertical load on the block as Qk, the 

rate of work of all forces G, and Qk can be written 

as 

@? = i (Gk + Qk)& sin bk -  4k) (6) 

k=l 

where n is the number of blocks. In a rigid-block 

mechanism as in Fig. l(a) the energy is dissipated 

along the failure surface ABCD and on vertical 

block interfaces. With reference to equation (4) 

the energy dissipation rate in the entire mecha- 

nism becomes 

d = i [I,c, v, cos 4k + tkEk[VIk cos J,] (7) 
k=l 

where 1, is the length of the block base, t, is the 

length of the interface between blocks k and 

k - 1, bars denote material parameters on that 

interface, and velocities V, and [V], are as-given 

in equations (5). Introducing c,, , 4d, if4 and &d (see 

equation (3)) into equation (6) and (7), and 

putting d = I$? so that a fictitious slope with 

parameters cd, c#J~, &, and 4, is on the verge of 

collapse (limit state), gives the factor of safety for 

the slope with non-zero cohesion 

i {I, ck v, cos bdk + tk Ek[:Vlk cos &k) 

F=k=’ 
II (8) 

kzl I/,(Gk + Qk) sin bk -  +dk) 

where_ 4dk = tan-’ (tan 4 JF) and $,, = tan - ’ 

(tan 4,/F); angles 6ak and 4dk also need to be 

used in place of 4k and 6, when velocities are 

calculated from equation (5). The factor of safety 

F is applied to the strength of the soil along both 

the failure surface ABCD and the sliding surfaces 

between the blocks. The solution to the factor of 

safety is independent of the (arbitrarily assumed) 

velocity boundary condition V,, as all the veloci- 

ties are homogeneous first-order functions of V, 
When c, = Ek = 0 and the associative flow rule 

holds, the dissipation rate fi = 0, and the energy 

balance during failure requires that I$ = 0. F in 

equation (8) then becomes indeterminate. The 

factor of safety can be calculated iteratively in 

such a case by requiring that @y in equation (6) 

(or the denominator in equation (8)) be equal to 

zero, where internal friction angle 4 is replaced 

by I#J,, = tan- ’ (tan 4/F). For a slope with a single 

inclination (and c = 0), the trivial solution to the 

safety factor is obtained when the rupture surface 

approaches the slope face: F = tan &tan /3, 

where B is the slope angle. 

Consider a simple case where the soil strength 

on vertical block interfaces is neglected (Ek = 0, 

$k = 0). The velocities of the blocks assume a 

simple form (Fig. 2(b)) 

v, = v, cot 6% - 41) 

cos tak -  bk) 

Velocities [Vlk are irrelevant, as no energy is dis- 

sipated on vertical interfaces. Substituting equa- 

tion (9) into equation (8) gives an expression for 

the factor of safety where the velocities are elimi- 

nated 

F= n 
,el cos ak + sin al, (tan 4k)/F 

tan ak - (tan 4,)/F 
(10) 

k& (Gk + Qk) 
1 + tan ak (tan 4k)/F 

The procedure of calculating the safety factor 

when c = 0 is the same as that already described. 
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PORE PRESSURE EFFECTS 

The effect of the pore pressure can be included 

in the energy balance through terms due to 

seepage and buoyancy forces. It is now shown 

that the work of pore pressure on the expansion 

of the skeleton in a fully drained process is equiv- 

alent to the effect of buoyancy and seepage forces. 

The rate of work of pore water pressure on skele- 

ton expansion is 

where u is the pore pressure, iii is the volumetric 

deformation rate of the skeleton structure, [VI, is 

the velocity jump vector at velocity discontin- 

uities, u is the volume of the submerged soil mass, 

and ni is the unit vector normal to velocity dis- 

continuity surfaces L. Velocity discontinuities L 

are included in volume v, and region R includes 

all the continually deforming subvolumes separat- 

ed by discontinuities L. The first term in equation 

(11) represents the work of the pore pressure on 

the skeleton expansion in the continually deform- 

ing field only; the second term represents the 

work along discontinuities L. 

Using the Gauss theorem, the work rate of the 

pore water pressure for the entire domain 

(submerged volume) o can be written as 

The work rate expressed in equation (11) is 

positive work analogous to the work performed 

by a compressed fluid contained in a balloon, on 

virtual expansion of the balloon shell. Miller & 

Hamilton (1989) used a similar term to account 

for pore pressure effects in the analysis of a slope 

failure. While the technique they suggested gives 

correct numerical results, their interpretation of 

the pore pressure work as negative energy dissi- 

pation is disputable (Miller & Hamilton, 1990). 

where S is a surface bounding volume v and n, is 

a unit vector normal to that surface. The hydrau- 

lic head h (with the omission of the kinetic part) is 

h = WY,) + z (13) 

where yw is the unit weight of water and Z is the 

elevation head. Substituting u from equation (13) 

into equation (12) gives 

(14) 

The first term on the right-hand side of equation 

(14) represents the work of the pore pressure on 

contour S of the submerged volume u. For a slope 

with a phreatic surface contained within the soil, 

this term is equal to zero. The second term 

denotes the work of the seepage force, and the 

third term is due to the force of buoyancy 

((aZ/axJ~ = V,). To account for the effects of 

pore water pressure in a slope, one can explicitly 

include the seepage and buoyancy forces in the 

energy balance equation, or include the term on 

the left-hand side of equation (14) (see also equa- 

tion (11)). The latter is done in the following 

analysis. In the present kinematic analysis the 

blocks are considered rigid, thus only the integral 

over discontinuities L in equation (11) contributes 

to the pore water pressure effect. 

For an incompressible material such as clay 

(iii = 0) the net work of the pore pressure from 

equation (14) (or equation (11)) is zero, which 

indicates no influence 

the stability analysis. 

of pore water pressure on 

IN THE 

PRESSURE 

pressure in the slope is 

included in the analysis using the pore water 

pressure work expressed in equation (11). The 

FACTOR OF SAFETY 

rate of energy due to the presence of pore water 

pressure in the slope collapsing according to the 

PRESENCE OF PORE 

rigid-block mechanism as in Fig. l(a) becomes 

The effect of pore 

n 

w” = 1 {V,I,u, sin & + CV],t,ti, sin 6,) (15) 
L=1 

where uk is the pore water pressure at the base of 

F= n t=1 

Fig. 3. Equation (16) 
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1 + tan a, (tan &J/F + sin ak + cos a,(F/tan 43 

Fig. 4. Equation (17) 

block k, and ii, is the average pore pressure on 

interface t,. Introducing c,,, 4d, E, and 4,, into 

equations (6), (7) and (15), and putting d = WY 

+ ri” gives equation (16) shown in Fig. 3. 

Velocities V, and [VI, are_ given in equation (5) 

and again angles_4,, and 4dL need to be used in 

place of & and & when velocities from equation 

(5) are calculated. The procedure for calculating 

the safety factor when c = C = 0 is the same as 

that described for the case where u = 0. For the 

special case where 4 = 0 and E = 0, equation (16) 

can be transformed into equation (17) shown in 

Fig. 4. 

ROTATIONAL FAILURE MODE 

Stability of slopes based on a rotational failure 

mechanism was considered by Chen et al. (1969) 

and Chen & Giger (1971) using the upper bound 

approach of limit analysis. The rotational mecha- 

nism is the most efficient in the kinematical 

approach (Chen, 1975) and it leads to lower criti- 

cal heights than translational mechanisms do. 

The solution from the analysis of the rotational 

mechanism is used here as a reference. Kine- 

matical admissibility requires that the failure 

surface for a rigid rotation collapse be a log-spiral 

,i 

c--- 

Fig. 5. Rotational failure mechanism for a homogeneous 

dope 

expressed by the equation 

r = r. exp [(e - 0,) tan 41 (18) 

where r is the radius of the spiral related to angle 

0, and r,, and B,, are the initial values (Fig. 5). 

Chen and his co-workers found the critical height 

of slopes and their solution can be presented as a 

dimensionless stability factor 

yH H exp [2(0, - 0,) tan +] - 1 
-=_ 

r0 2 tan $(f, - fi - f3 - f4) 
(19) 

C 

where HJr, and functions f, to f4 depend on the 

variables 8,) t$, and /I’ (see Fig. 5), and are given 

by Chen (1975). H denotes the height of the slope, 

y is the unit weight of the soil and c is the cohe- 

sion. An optimization scheme can be used to find 

the minimum of yH/c, with 8,, 0,, and p being 

the variables. For a slope of a known height the 

rotational failure analysis can be alternatively for- 

mulated in terms of the factor of safety to yield 

F= 
2(e, - e,) tan 4 

In [l + 2 F $ tan d( f, - f, - f, - f4)] 

(20) 

. Spe nc e r (1967) 

. Bi*hop 8 Morg e nste rn (1960) -  Che n (1975) 

2 
I I I I 

15 30 45 

p: 

de g re e S60 75 90 

Fig. 6. Stability factor for homogeneous slopes with zero 

pore pressure: the shaded area represents the range of 

solutions for the translational mechanism (r. = 0) 
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where yHJc is known, and H/r, and functions f, 

to f4 need to be calculated using the same formu- 

lae as those in equation (19), but with tan 4 

replaced with tan 4/F. In the case where 4 = 0, 

the rule of de l’Hospita1 applied to equation (20) 

gives 

F2 4 - e. 
r. yH(f, - fi - f3 - f4Yc 

(21) 

It is often stated that an analysis based on the 

rotational mechanism has two disadvantages: it 

becomes cumbersome when the soil is non- 

homogeneous, and no influence of the pore pres- 

sure is included (although an attempt for a 

specific case is presented by Miller & Hamilton, 

1989). The influence of the pore pressure on the 

stability factor yH/c was obtained here by includ- 

ing work due to pore water pressure (equation 

(11)) on the right-hand side of equation (2) (not 

through seepage and buoyancy terms). The pore 

30 
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Fig. 7. Stability factor for homogeneous slopes and rw = Fig. 8. Stability factor for homogeneous slopes and ru = 

O-25 05 

pressure is given here by coefficient r, as 

described by Bishop & Morgenstern (1960). The 

stability coefficient takes a form very similar to 

that in equation (19) 

yH H exp [2(0, - 0,) tan $1 - 1 
_=- (22) 

C r,2tan#-f,-f,-f,+r,f,) 

where f5 is a function of geometrical parameters 

and the internal friction angle (Appendix 1). The 

factor of safety now becomes 

F= 
2(e, - e,) tan 4 

l+2~~tan~(f1-f2-f3-f~+rUfi) 1 
(23) 

When C$ = 0, pore pressure has no influence on 

the result of the analysis as the work expressed in 

equation (11) (or equation (14)) is equal to zero. 

30 

20 - 

10 - 

o- 
15 

m Translational mechanism 

- Rotatonal mechanism 

. Spencer (1967) 

. Bishop 8 Morgensiern (1960) 
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COMPUTATIONAL RESULTS 

It is convenient to represent the results of cal- 

culations in terms of stability factor yH/c rather 

than the factor of safety for specific slopes. This 

factor, calculated for homogeneous slopes and 

using the translational and rotational collapse 

mechanisms, is shown in Figs 6-8. The pore pres- 

sure is expressed in terms of the coefficient r, , and 

Figs. 6-8 represent results for r, equal to 0, 0.25 

and 0.5. Calculations were performed for /? 

changing in 5” intervals. In addition, the results 

using the simplified Bishop method (Bishop & 

Morgenstern, 1960) are shown, as are the results 

given by Spencer (1967). All the results shown 

were calculated here except for those of Spencer 

(1967) and those for the rotational mechanism for 

r, = 0 (Chen, 1975). In the presence of pore water 

pressure, there is a limit to the critical height of 

slopes with inclination angle slightly below the 

internal friction angle. 

Calculations for the translational mechanism 

were performed assuming that the failure surface 

ABCD (Fig. l(a)) follows the shape of a circular 

arc. The location of the circular arc is a function 

of three parameters that were considered variable 

in the minimization scheme where the minimum 

of yH/c was sought. The three variable param- 

eters used in the analysis were the radius and the 

horizontal co-ordinates of points A and D (Fig. 

l(a)). In the absence of pore-water pressure, sta- 

bility factors increase rapidly with a drop in the 

slope angle; the results are shown in the semi-log 

plot (Fig. 6). The results for rU > 0 are presented 

in a linear plot (Figs 7 and 8). The results for 

4 = 10” and 30” and for 4 = 20” and 40” are pre- 

sented on two separate diagrams for each r, > 0. 

The shaded areas are bounded by the results from 

analyses of translational mechanisms for which 

the strengths on surfaces between the blocks were 

assumed to be equal to the actual strengths of the 

soil (upper curves), and for which the interslice 

strengths were neglected (lower curve). Increasing 

the strength of the soil anywhere in the slope 

cannot weaken the structure, and a drop in the 

soil strength cannot strengthen it. Hence, results 

for all combinations of 6 and C at interslice sur- 

faces, which do not exceed the true values of 4 

and c for the soil, must be contained within the 

shaded areas. The upper curve for each internal 

friction angle is the strict upper bound to the sta- 

bility factor yH/c; the lower curve is an approx- 

imate solution. The two solutions become 

identical when the slope angle reaches 90”. This is 

because the most effective translational collapse 

mechanism for a 90” slope is one rigid block 

sliding over a planar failure surface; thus, the 

analysis becomes independent of interslice 

strength assumptions. 

It can be argued that slice method solutions 

based on cylindrical failure surfaces, which fall 

above the range presented, either are non- 

minimal solutions to yH/c or imply that the 

strength on surfaces between blocks is larger than 

the actual strength of the soil. The solutions that 

fall below the range presented lead to the pro- 

duction of energy (thermodynamically 

inadmissible) when failure is interpreted as a 

translational collapse. This is true whether the 

technique uses one equation of slice equilibrium 

or three equations. It is evident from Figs 668 

that the simplified Bishop analysis for steep 

slopes leads to an inadmissible production of 

energy when it is interpreted in the context of 

translational collapse. 

The rigorous upper bound solution based on 

the rotational mechanism falls into the shaded 

region for slopes with an inclination angle less 

than about 50” (or greater, depending on 4 and 

r,). For very shallow slopes (small inclination 

angles) the rigorous upper bounds based on the 

two mechanisms (rotational and translational) 

become very close to each other. The solution 

based on the rotational mechanism, however, 

becomes significantly lower with an increase in 

the slope angle. For very steep slopes, this rigor- 

ous upper bound to yHJc drops below the shaded 

region which bounds all reasonable slice method 

solutions. 

The results from the analysis using the simpli- 

fied Bishop method follow the upper bound for 

the rotational collapse very closely, and drop 

below it only for very steep slopes. This is sur- 

prising, as the Bishop solution can be associated 

only with a translational mechanism (frictional 

soils with the normality rule), yet the results indi- 

cate good agreement with the upper bound solu- 

tion based on the rotational mechanism. The 

solution by Spencer (1967) appears to follow this 

upper bound as closely as the Bishop analysis (for 

the range given by Spencer). 

The influence of pore pressure is manifest by a 

reduction in stability factor yH/c with an increase 

in r, (Figs 7 and 8). The adverse effect of the pore 

pressure depends on the magnitude of internal 

friction angle 4. When 4 drops to zero, no 

adverse effect due to pore pressure is present. For 

a large pore pressure and steep slopes, yH/c does 

not increase with an increase in internal friction 

angle, as the increase in the adverse effect of the 

pore pressure exceeds the stabilizing effect due to 

an increase in 4. This is seen, for instance, in Fig. 

8(b)), where the solutions for translational mecha- 

nisms (for 4 = 20” and 4 = 40”) intersect. The 

same effect was noticed in the upper bound 

analysis based on the rotational mechanism, and 

in Bishop’s simplified analysis. 

Tables with stability factors for a wide range of 

parameters are presented by Michalowski (1995). 
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CONCLUSIONS 

A stability analysis of slopes based on a trans- 

lational mechanism of failure has been presented. 

A collapse mechanism was selected in the form of 

rigid blocks analogous to slices in traditional slice 

methods. This allows one to relate the proposed 

analysis to the traditional ones, and to assess the 

consequences of the static assumptions made in 

them. A convenient way to include pore pressure 

effects was presented and implemented. This 

technique for including pore pressure effects was 

also used here in analysis of rotational failures. 

It was pointed out that an analysis based on 

the translational mechanism presented always 

satisfies the equations of equilibrium of forces. In 

this sense the result is equivalent to one that 

could be obtained from a limit equilibrium 

approach. All traditional slice methods are based 

on utilizing the latter. However, with the excep- 

tion of Sarma (1979), the traditional slice tech- 

niques do not make an explicit assumption as to 

the yield condition on the interslice surfaces. 

Instead, to render the problem statically determi- 

nate, assumptions as to the location of the result- 

ant force between the slices (thrust line) are made, 

or the inclination of these forces is assumed, and, 

in other cases, the interslice interactions are 

ignored. Assessment of these assumptions is not 

possible without reference to a more rigorous 

approach where at least a bound to the true limit 

load (critical height or safety factor) can be found. 

After particular static assumptions are made in 

the traditional techniques of stability analyses 

(e.g. the location of the thrust line and the inclina- 

tion of forces), the forces between the blocks 

(slices) can be calculated. When discussing these 

traditional analyses in view of the kinematically 

admissible failure mechanism, the interslice forces 

must be interpreted as the yield strength of the 

soil integrated over the surfaces between slices. 

This strength must be reached at the onset of 

failure in order to allow a relative movement of 

blocks. Rigid rotation without sliding within the 

moving soil mass is admissible only for log-spiral 

failure surfaces (cylindrical surfaces when 4 = 0). 

Differences among traditional analyses thus can 

be interpreted as making different assumptions 

for the soil strength between the slices. 

In the kinematics-based method presented here, 

the strength of the soil between the blocks is 

assumed explicitly. This strength was taken here 

as zero, or as its maximum value set by the 

MohrrCoulomb yield condition, and the results 

for all possible intermediate combinations of 4 

and E are shown by the shaded areas in Figs 6-8. 

The assumptions made in the traditional slice 

methods can all be, in essence, reduced to postu- 

lating soil strength implicitly between the slices. 

For instance, the (constant) inclination of the 

interslice forces in the Spencer (1967) analysis for 

cohesionless soils can be interpreted as assuming 

a constant internal friction angle of the soil on 

these interfaces. Only if the strength of the soil on 

interfaces were assumed larger than the actual 

strength of the soil could a slice method solution 

give a stability factor yH/c higher than the 

upper limit of the shaded range in Figs 6-8. The 

solution below the lower limit of the shaded 

range would be possible (for a cylindrical failure 

surface) if a negative strength were assumed on 

some interfaces (physically inadmissible). In a 

kinematics-based solution such an assumption is 

equivalent to allowing negative dissipation, or the 

production of energy, on interfaces (thermo- 

dynamically inadmissible). 

If traditional slice analyses are associated with 

kinematically admissible collapse mechanisms, 

then their solutions must fall in the shaded 

regions in Figs 6-8, irrespective of whether the 

method requires one, two or three equations of 

equilibrium to be satisfied for each slice. This is 

because the shaded areas include solutions for the 

interslice strength varied from zero to its 

maximum (the actual soil strength), which is 

equivalent to solutions by slice methods for all 

admissible combinations of interslice forces. Figs 

6-8 show that the simplified Bishop analysis 

yields stability factors yH/c below the shaded 

range for very steep slopes. This indicates that 

forces associated with this solution would lead to 

the production of energy in at least some parts of 

the translational mechanism considered here. 

This theoretical inconsistency does not diminish 

the practical effectiveness of Bishop’s method. 

Of the two rigorous upper bounds to the criti- 

cal height yH/c, the one based on the rotational 

mechanism is better (lower). This is in accordance 

with the suggestion of Chen (1975) that the rota- 

tional one is the most effective of all admissible 

mechanisms. The simplified Bishop analysis based 

on the cylindrical failure surface follows this 

upper bound very closely (for all pore pressures), 

and becomes more conservative only for very 

steep slopes. 

The solutions based on translational mecha- 

nisms satisfy the equilibrium equations of forces. 

As the failure mechanism does not include rota- 

tion, couples do no work during the failure 

process; consequently, moments become irrele- 

vant in the analysis. The resultant forces on all 

block interfaces are uniquely determined from 

kinematical analysis, and can be calculated after 

the factor of safety (or critical height) is found. 

The location of the resultants on interslice sur- 

faces can then be calculated from the moment 

equilibrium equations. If the thrust line is speci- 

fied, as it is in some traditional slice methods, 

then the calculated interslice limit forces 
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(interpreted as integrated strength) indicate varia- 

tion of strength on different interfaces. These 

forces and the force back-calculated from the 

method presented here are then different. None of 

the methods assures a statically admissible stress 

field and all must be considered approximate. The 

method presented here, however, makes it pos- 

sible to bound the results (safety factors) from 

other slice techniques by performing calculations 

for two external assumptions (full strength or no 

strength on interfaces between slices). 

A translational rigid-block mechanism can be 

associated with traditional slice techniques for 

slope stability analysis. Static assumptions made 

in these slice methods have the same conse- 

quences as postulating an arbitrary strength on 

surfaces between slices. All slice method solutions 

that can be associated with an admissible failure 

mechanism then fall into the range determined by 

two kinematics-based solutions: one where the 

interfacial strength is neglected, and the other 

where this strength is assumed equal to the actual 

strength of the soil. The latter is the rigorous 

upper bound to the factor of safety or the critical 

height of the slope. Traditional solutions that fall 

beyond the range indicated lead to unreasonable 

consequences when interpreted in view of the col- 

lapse mechanism. 

Stability factors yH/c have been calculated 

using the method suggested based on the kine- 

matical approach of limit analysis. Solutions for 

cylindrical failure surfaces are shown, but the 

analysis is valid for any shape. The analysis can 

be extended easily to non-homogeneous 

soils, with the conservative assumption that 

the internal friction angle of soil on surfaces be- 

tween blocks does not exceed the internal friction 

angle of the weakest soil in the block. 

In conservative analysis the strength of the soil 

is neglected on the interblock surfaces, but for 

steep slopes the analysis based on the rotational 

mechanism should be used, which yields even 

lower results despite being the strict upper bound 

to the true solution. The simplified Bishop (1955) 

method was found to be a very good approx- 

imation of the upper bound solution based on the 

rotational mechanism of failure both with and 

without pore pressure effects. 
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APPENDIX 1. ROTATIONAL FAILURE 

MECHANISM: PORE PRESSURE EFFECTS 

The influence of pore pressure in the analysis based 

on the rotational failure mechanism is accounted for by 

including work of the pore pressure on the skeleton 

expansion during failure on the right-hand side of equa- 

tion (2) (fully drained process). In a rigid rotation 

mechanism this work is performed along the log-spiral 

surface ABCD (Fig. 5). Pore pressure is represented here 

as 

I( = ‘“YZ (24) 

where ru is the pore pressure coefficient, y is the unit 

weight of the soil and z is the vertical distance from the 

point on the slip surface to the slope surface (Bishop & 

Morgenstem, 1960). Distance z associated with section 

AB of the slip surface (Fig. 5) is denoted here by zi , and 

z2 and z3 are related to sections BC and CD respec- 

tively. Angles 0i and 19~ were found from 

cos 8, exp [(0, - t&J] tan 4 

L 
= cos B. - - cos a 

r. 
L 

cos e2 exp[(B, - e,) tan 41 = cos e, - - cos a 
r. 

- !f cot /? 
r o 

(25) 

where L/r,, and H/r, are given by Chen (1975) and all 

symbols are shown in Fig. 5. For toe failures ti2 is equal 

to 0,. Expressions for zi , z2 and z3 can be written as 

z1 r _=_ sin 0 - sin 8, - 
( 

cos B0 - I_ cos 0 
> 

tan a 
r0 r. ro 

$ = k sin e - sin eh exp [e, - e,) tan 41 

+ 
( 

k cos e - cos e2 exp [(e, - e,) tan +] 
> 

tan p 

: = t sin e - sin e, exp [(e, - e,) tan 41 (26) 

where r is as described in equation (18). The work due 

to pore pressure along failure surface ABCD in the 

incipient failure with the rotation rate 6.1 about point 0 

is 

s 6% 

W” = uv,n, - r de 
80 cos I$ 

(27) 

where II is the pore pressure, Vi is the velocity jump 

vector along the failure surface, rri is the unit vector 

normal to this surface and r is the radius of the spiral 

(equation (18)). A velocity jump vector along the log- 

soiral discontinuity in a kinematically admissible rigid 

rotation mechanism must propagate according to 

V = V, exp [(e - 8,) tan 41 

= r0 b exp [(e - e,) tan d] (28) 
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Equation (27) can now be written as 

(1 
91 

wX = yro2 f&r, tan 4 z, exp [2(0 - 0,) tan $1 dtI 
80 

+ 
s 

“rz exp [2(0 - 0,) tan I#J] de . 
0, 

s 

Bb 
+ ~a exp [2(e - e,) tan 41 dfI 

81 > 
(29) 

where zi , z2 and z3 are as given in equations (26). The 

third integral in equation (29) is equal to zero for toe 

failures. Analytical solutions were found for integrals in 

equation (29). Equation (29) can be rewritten as 

wU = yro3 &r, f, (30) 

where fs is the coefficient dependent on the geometrical 

parameters and 4. Coefficient f, is used in equation (22) 

for calculations of the stability factor yH/c. 

NOTATION 

cohesion 

cohesion at surfaces between blocks 

energy dissipation rate per unit surface 

total energy dissipation rate in the collapse 

mechanism during incipient failure 

geometric functions (i = l-5) 

factor of safety 

hydraulic head 

height of slope 

length of the block base 

number of blocks in collapse mechanism 

unit vector 

radius of log-spiral 

pore pressure coefficient 

height of interface between blocks k and k - 1 

pore pressure 

velocity vector 

magnitude of velocity of kth block 

magnitude of velocity jump between blocks k 

and k - 1 

work rate due to pore water pressure 

work rate of gravity forces and tractions 

elevation head 

inclination of the block base 

slope angle 

unit weight of soil 

unit weight of water 

skeleton strain rate tensor 

angle (variable) 

effective stress tensor 

internal friction angle 

internal friction angle at surfaces between blocks 
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