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Slopes of overconvergent 2-adic modular forms

Kevin Buzzard and Frank Calegari

Abstract

We explicitly compute all the slopes of the Hecke operator U2 acting on overconvergent
2-adic level 1 cusp forms of weight 0: the nth slope is 1 + 2v((3n)!/n!), where v denotes
the 2-adic valuation. We formulate an explicit conjecture about what these slopes should
be for weight k forms.

1. Introduction

Let p be a prime, and let N be a positive integer coprime to p. Let Mk(Γ1(N); Qp) denote the
weight k modular forms of level Γ1(N) defined over Qp. In recent years, work of Coleman and
others (for example [Col97a, Col96, Col97b, CST98, CM98]) has shown that a very profitable
way of studying this finite-dimensional Qp-vector space is to choose a small positive rational
number r and then to embed Mk(Γ1(N); Qp) into a (typically infinite-dimensional) p-adic Banach
space Mk(Γ1(N); Qp; p−r) of p−r-overconvergent p-adic modular forms, that is, sections of ω⊗k on
the affinoid subdomain of X1(N) obtained by removing certain open discs of radius p−r above each
supersingular point in characteristic p (at least if N � 5; see the Appendix for how to deal with the
cases N � 4). The space Mk(Γ1(N); Qp; p−r), for 0 < r < p/(p+1), comes equipped with canonical
continuous Hecke operators, and one of them, namely the operator U := Up, has the property of
being compact; in particular U has a spectral theory. Coleman exploited this theory in [Col97a] to
prove weak versions of conjectures of Gouvêa and Mazur on families of modular forms.

One of us (KB) has made, in many cases, considerably more precise conjectures [Buz04] than
those of Gouvêa and Mazur, predicting the slopes of U , that is, the valuations of all the non-zero
eigenvalues of U . These conjectures are very explicit, and display a hitherto unexpected regularity.
However, they have the disadvantage of being rather inelegant. See also the forthcoming
PhD thesis of Graham Herrick (Northwestern University), who has, perhaps, more conceptual con-
jectures about these slopes.

We present here a very concrete conjecture in the case N = 1 and p = 2, which presumably agrees
with the conjectures in [Buz04] but which has the advantage of being much easier to understand and
compute. Let Sk := Sk(Γ0(1), Q) denote the level 1 cusp forms of weight k. If F (X) is a polynomial
with rational coefficients, then by its 2-adic Newton polygon we mean its Newton polygon when
considered as a polynomial with 2-adic coefficients.

Conjecture 1. Let k � 12 be even, and let m = dimSk. Then the 2-adic Newton polygon of
det(1 − XT2) on Sk equals the 2-adic Newton polygon of

1 +
m∑

n=1

Xn
n∏

j=1

22j(k − 8j)!(k − 8j − 3)!(k − 12j − 2)
(k − 12j)!(k − 6j − 1)!

.
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This conjecture can be verified numerically, and we have verified it for all k � 2048. Control
theorems of Coleman [Col96] imply that complete knowledge of all slopes of classical cusp forms
at level 2 for all weights is equivalent to complete knowledge of all slopes of finite overconvergent
tame level 1 cusp forms for all integer weights. In fact, it is a little tedious but completely elementary
to show that we may reformulate Conjecture 1 as follows. Let Sk := Sk(Γ0(1); Q2; 2−1/2) denote the
2−1/2-overconvergent forms of weight k and tame level 1.

Conjecture 2. Let k � 0 be an integer. Then the Newton polygon of det(1 − XU) on Sk is the
Newton polygon of

1 +
∞∑

n=1

Xn
n∏

j=1

22j(−k + 2 + 12j)!(−k + 6j)!
(−k + 2 + 8j)!(−k − 2 + 8j)!(−k − 12j)

.

One can also find a form of this conjecture that makes sense if k > 0, for example if one
reformulates the factorials as Gamma-functions and then is careful to make precise what is happen-
ing at poles. We leave this reformulation to the reader.

As evidence for this conjecture, we have the following theorem.

Theorem 1. Conjecture 2 is true when k = 0.

If x is a non-zero rational number, then by its slope we mean its 2-adic valuation v2(x). It is
easy to check that for n � 0 an integer we have v2 ((2n)!) = n+ v2(n!), and it follows from this that

v2

(
22j(12j + 2)!(6j)!

(8j + 2)!(8j − 2)!(12j)

)
= 1 + 2v2

(
(3j)!
j!

)
.

Similarly one can check that if D denotes the infinite diagonal matrix whose (j, j)th entry, j � 1,
is given by

dj,j =
24j+1(3j)!2j!2

3(2j)!4
,

then v2(dj,j) = 1 + 2v2((3j)!/j!). Hence Theorem 1 above is equivalent to the following theorem.

Theorem 2. The Newton polygons of det(1 − XU) on S0 and det(1 − XD) coincide.

This is the form of the theorem that we shall actually prove.
Note that the sequence v2((3j)!/j!) is strictly increasing; this follows from the fact that

(3j + 3)!/(j + 1)!
(3j)!/j!

= 3(3j + 2)(3j + 1)

is even for all j. We deduce the following corollary.

Corollary 1. Let |λ1| � |λ2| � |λ3| � · · · be the non-zero eigenvalues (with multiplicities) of U
on S0. Then the slope of λn is given by the following formula:

v2(λn) = 1 + 2v2

(
(3n)!
(n)!

)
.

In particular, the slopes are all distinct, and are all positive odd integers. We also have another
corollary.

Corollary 2. Let f = q + · · · ∈ S0 ⊗̂C2 be a normalised finite slope overconvergent eigenform.
Then the coefficients of f are all in Q2.
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Proof. We use only that the slopes of the non-zero eigenvalues of U are distinct. If λ denotes the
eigenvalue of U on f then 1−λ−1U is not invertible on S0 ⊗̂C2 and hence by Proposition 11 of [Ser62]
we see that λ−1 is a zero of the characteristic power series P (T ) of U acting on S0. Note that
P (T ) ∈ Q2[[T ]]. Choosing some big affinoid disc containing λ−1 and applying the Weierstrass
preparation theorem to P (T ) shows that λ−1 is a root of a polynomial with coefficients in Q2.
Hence λ ∈ Q2. Now all the Galois conjugates of λ have the same valuation and are also roots of the
characteristic power series of U ; hence, by Corollary 1, λ ∈ Q2. Finally by Proposition 12 of [Ser62]
the subspace of S0 where U acts as multiplication by λ is one-dimensional over Q2 and so all the
eigenvalues of all the other Hecke operators are also in Q2.

Remark. This corollary provides some evidence towards Question 4.3 of [Buz04]. See also Corol-
lary 1.2 of [Kil02].

Note that for p = 2 and N = 1, the map θ induces a bijection between overconvergent eigenforms
of weight 0 and weight 2. Thus, the slopes in weight 2 are precisely each of the slopes in weight 0,
plus one.

We have also proved Conjecture 2 for k = −12 using similar methods, although the combinatorics
are too painful to write here, and the arguments do not seem to generalise to all k.

Lawren Smithline was perhaps the first person to observe that there was some structure in
the slopes of overconvergent modular forms of small level; his results [Smi00] were primarily for the
prime p = 3 but some of the techniques used in this paper for studying the explicit matrix represent-
ing U were inspired by his ideas. As far as we know, the first people to get explicit results pinning
down all overconvergent slopes at a given weight were L. Kilford [Kil02] and D. Jacobs [Jac03],
but their results differ in two respects from ours: Firstly, they consider points nearer the boundary
of weight space. Secondly, the slopes at the weights they consider have a much simpler pattern;
they form an arithmetic progression.

2. Weight zero

The curve X0(2) has genus 0. A natural choice of uniformiser is given by the following function
(Hauptmodul):

f(τ) = ∆(2τ)/∆(τ).

In the sequel, we shall write this function simply as f . There is a product formula for f :

f = q

∞∏
n=1

(1 + qn)24 = q

∞∏
n=1

1
(1 − q2n−1)24

= q + 24q2 + 300q3 + 2624q4 + 18126q5 + 105504q6 + · · · ,

which follows immediately from the usual product formula for ∆. For p = 2, f is overconvergent of
weight 0 and level 1. Furthermore, if g = 26f then the set {1, g, g2 , g3, . . . } is a Banach basis for the
space M0 := M0(SL2(Z); Q2; 2−1/2). It seems a little difficult to extract these concrete statements
from the literature and so we sketch a proof of this in the Appendix, and note that these ideas
should easily be adaptable to cover other cases where one might want to do explicit computations.
The reader who is happy to accept that the formal Banach space with basis {1, g, g2, g3, . . . } is some
kind of p-adic space of modular forms might well want to avoid these technical details.

To determine the spectral theory of U on M0, we shall explicitly compute a matrix for U acting
on M0. These calculations are much in the spirit of classical congruences for coefficients of modular
functions such as j; see for example Watson [Wat38], or Atkin and O’Brien [AO67]. In this optic,
the a fortiori presence of a spectral theory greatly simplifies matters. Concretely then, our task is
to compute U(fk) as a power series in f , for all k � 0.
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Lemma 1. The following identities are satisfied:

U(f) = 24f + 211f2,

f

(
τ

2

)
f

(
τ + 1

2

)
= −f(τ).

Proof. The operator U preserves the space of functions on X0(2). Furthermore U(f), considered
as a map X0(2) → P1, has degree at most 2, and hence U(f) − 24f − 211f2, if non-zero, is a
function X0(2) → P1 of degree at most 4. Hence one can check that this function is identically zero
by computing the first few terms of its q-expansion and verifying that they are zero. The second
identity follows similarly, or directly from the product formulas:

f(τ)f(τ + 1
2) = q

∞∏
n=1

1
(1 − q2n−1)24

× (−q)
∞∏

n=1

(1 + (−q)n)24

= −q2
∞∏

n=1

(1 − q2n−1)24(1 + q2n)24

(1 − q2n−1)24
= −q2

∞∏
n=1

(1 + q2n)24 = −f(2τ).

Using Lemma 1, we may recursively determine U(fk) for all positive k. To do this, we observe
(by definition) that

2U(fk) = f

(
τ

2

)k

+ f

(
τ + 1

2

)k

.

Thus, if Xk := U(fk), then, multiplying out, one sees that the Xk satisfy the recurrence relation:

Xk+2 −
(

f

(
τ

2

)
+ f

(
τ + 1

2

))
Xk+1 + f

(
τ

2

)
f

(
τ + 1

2

)
Xk = 0 (k � 0).

Moreover, from Lemma 1, we may evaluate the coefficients of this recurrence to conclude that
X0 = 1, X1 = 24f + 211f2 and, for k � 2,

Xk = U(fk) = (48f + 212f2)U(fk−1) + fU(fk−2).

In particular, we note that U(fk) is a polynomial in f with integer coefficients and of degree
at most 2k. These results are in Emerton’s thesis [Eme98] and apparently are originally due to
Kolberg [Kol61].

Definition 1. Define integers si,j, i, j ∈ Z�0, by

U(f j) =
∞∑
i=0

si,jf
i.

Note that si,j = 0 for i > 2j. We also note that si,j = 0 for j > 2i, by comparing the coefficients
of qi in the definition of si,j. We have s0,0 = 1, s1,1 = 24, s2,1 = 211, s1,2 = 1, and si,j = 0 in all
other cases with 0 � i � 1 or 0 � j � 1.

Lemma 2. The integers si,j satisfy the recurrence relation:

si,j = 48si−1,j−1 + 212si−2,j−1 + si−1,j−2 (i, j � 2).

Moreover, for i, j � 1 and i � 2j, j � 2i we have an equality:

si,j =
3j(i + j − 1)! 28i−4j−1

(2i − j)!(2j − i)!
.

Proof. The recurrence for si,j follows directly from the recurrence for U(fk). The explicit formula
also satisfies this same recurrence and moreover equals si,j for si,1, si,2, s1,j and s2,j. This suffices
to prove the second equality.
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The constant function 1 is an eigenform for U with eigenvalue 1. Thus to determine the spectral
theory of U on M0 it suffices to work with the cuspidal subspace

S0 := S0(SL2(Z); Q2; 2−1/2)

of q-expansions with zero constant term. In the p-adic setting, cuspidal generalises the notion of
vanishing at the single cusp ∞; thus certain Eisenstein series (such as the twin form of the usual
Eisenstein series E2k) are considered cuspidal. Lemma 2 provides us with an explicit description of
the action of U on S0. This allows us to gain fine control over the spectrum of U on S0.

Before we begin the proof of Theorem 2, we recall some elementary facts about continuous
endomorphisms of Banach spaces. If M is a Banach space over Qp, and {e1, e2, e3, . . . } is a countable
subset of M , then we say that {e1, e2, e3, . . . } is an orthonormal Banach basis for M if

(a) |ei| = 1 for all i,

(b) every m ∈ M can be written uniquely as m =
∑

i�1 aiei for a sequence ai ∈ Qp such that
ai → 0 as i → ∞, and

(c) if m,ai are as above, then |m| = maxi |ai|.
If M is a Banach space and {e1, . . . } is an orthonormal Banach basis for M , and if φ : M → M is
a continuous Qp-linear map, then we define the matrix of φ to be the collection (ci,j)i,j�1 such that
φ(ej) =

∑
j ci,jei. The collection (ci,j) has the following two properties:

(i) for all j, limi→∞ ci,j = 0;

(ii) there exists some C ∈ R such that |ci,j | � C for all i, j.

Conversely, given a collection (ci,j)i,j�1 satisfying (i) and (ii) above, there is a unique continuous
linear map φ : M → M with matrix (ci,j). Composition of linear maps corresponds to multiplication
of matrices using the usual formula, which one easily checks to converge because of (i) and (ii) above.

Set r = 1/2, let M0 denote the 2-adic Banach space of 2−r-overconvergent 2-adic modular forms
of weight 0 and tame level 1, equipped with the supremum norm, and let S0 denote its cuspidal
subspace. We prove in the Appendix that a Banach basis for M0 is {1, g, g2, g3, . . . } with g = 26f ;
we consider M0 as being equipped with this basis once and for all. Moreover, S0 has a natural basis
given by {g, g2, g3, . . . }. We can write the matrix of the operator U on S0 as (ui,j)i,j�1, where

ui,j = 26j−6isi,j =
3j(i + j − 1)! 22i+2j−1

(2i − j)!(2j − i)!

(and where we interpret this as being zero if i > 2j or j > 2i). Let A = (ai,j), B = (bi,j) and
D = (di,j) (i, j � 1) be respectively the lower triangular, upper triangular and diagonal matrices
defined as follows:

ai,j =
22i−2j i!2(2j)!2(2j + i − 1)!

(2i)!(i − j)! j!(i + j)!(2j − i)!(3j − 1)!
, 2j � i � j, 0 otherwise;

bi,j =
j

i

22j−2ij!2(2i)!2(2i + j − 1)!
(2j)!(j − i)! i!(j + i)!(2i − j)!(3i − 1)!

, 2i � j � i; 0 otherwise;

and

di,i =
24i+1(3i)!2i!2

3(2i)!4
.

Note the symmetry in these formulas. One has ibi,j = jaj,i, and ai,i = bi,i = 1.

Lemma 3. The matrices defined by A, B and D satisfy (i) above, and all have coefficients in Z2 so
also satisfy (ii) above. Moreover A ≡ B ≡ Id mod 2.
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Proof. That A, B and D satisfy (i) is clear because if i > 2j then ai,j = bi,j = di,j = 0. Thus it
suffices to prove that A ≡ B ≡ Id mod 2 and that D has coefficients in Z2. Recall that v2((2n)!) =
n + v2(n!) and from this we see that v2(di,i) = 1 + 2v2((3i)!/i!) > 0, so D has entries in Z2.
Next we deal with A. Because ai,i = 1 for all i, it suffices to prove that the valuation of ai,j is
positive for 2j � i > j � 1. We write:

ai,j = 6ij
(

(2j)!
2jj!

)2 (
2ii!
(2i)!

)2 (
(2i − 1)!
(i + j)!

)(
(2j + i − 1)!

(3j)!

)(
j

i − j

)
.

Again using that v2((2n)!) = n + v2(n!), we see that for i > j the right-hand side is clearly 6 times
a product of terms in Z2, and so lies in 2Z2.

For B the argument is similar: Since bi,i = 1 for all i, it suffices to prove that the valuation of
bi,j is positive for 2i � j > i. We write:

bi,j =
j

i
aj,i = 6j2

(
(2i)!
2ii!

)2 (
2jj!
(2j)!

)2 (
(2j − 1)!
(i + j)!

)(
(2i + j − 1)!

(3i)!

)(
i

j − i

)
,

and again observe that the right-hand side is 6 multiplied by a product of terms all of which lie
in Z2.

Hence the matrices A, B and D all define continuous endomorphisms of S0, which we also call
A, B and D.

Lemma 4. We have ADB = U .

Proof. It suffices to show that

ui,j =
∑

k

ai,kdk,kbk,j.

The right-hand side of this equation becomes, after expanding out and simplifying,

ui,j
4i!2j!2(2i − j)!(2j − i)!
(2i)!(2j)!(i + j − 1)!

∑
k

(2k + i − 1)! k(2k + j − 1)!
(i − k)!(i + k)!(j − k)!(j + k)!(2k − i)!(2k − j)!

.

Hence it suffices to prove that

(2i)!(2j)!(i + j − 1)!
4i!2j!2(2i − j)!(2j − i)!

=
∑

k

(2k + i − 1)! k(2k + j − 1)!
(i − k)!(i + k)!(j − k)!(j + k)!(2k − i)!(2k − j)!

.

This identity, however, follows from classical results; for example, we derive it from a three-term
specialisation of Dougall’s 7F6 summation formula (see [Har40, (7.2.3)]). First note that,
by symmetry, we may assume that i � j. To force the summation to start at k = 0, we let
k = i − n. Let (a)n = (a)(a + 1) · · · (a + n − 1). After repeated application of the formal relations

(a)n :=
(a + n − 1)!

(a − 1)!
, (−a)n =

a!(−1)n

(a − n)!
, (−a)n(−a + 1/2)n =

(2a)!
22n(2a − 2n)!

to transform our sum into hypergeometric form, the required identity becomes the following:

7F6

(
(−i)/2, (1 − i)/2, (j − 2i)/2, (j − 2i + 1)/2, 1 − i,−2i,−i − j

(1 − 3i)/2, (2 − 3i)/2, (−2i + 1 − j)/2, (−2i + 2 − j)/2,−i, j − i + 1
; 1

)

=
3(2i)!2(2j)!(i + j − 1)!(j − i)!(j + i)!

4i! j!2(2j − i)!(3i)!(2i + j − 1)!
.

The smallest integer in the numerator is i/2 or (i − 1)/2, and we consider each case separately.
Dougall’s summation formula expresses this hypergeometric sum as a mélange of rising factorials
that eventually simplify to the required answer.
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An alternative method for proving our identity would be via the automated ‘creative telescoping’
of Zeilberger. See for example [ZE90], where Zeilberger proves Dougall’s summation formula in one
(rather long) line; the very short proof there specialises to a proof of the identity we require.
(Note, however, that the statement of the theorem in [ZE90] contains a typographical error: the
(−1− a− b− c− d)n term in the denominator should be (−1− a + b+ c + d)n and the proof should
be modified similarly.)

Lemma 5. The Newton polygon of U = ADB is the same as the Newton polygon of D.

Proof. We use only the fact that A and B are both congruent to the identity modulo 2, and
that D is integral, diagonal and compact. Because B is congruent to the identity mod 2, it has
an inverse. Note that, by § 5, Corollaire 2 of [Ser62], ADB has the same Newton polygon as
B(ADB )B−1 = BAD, so it suffices to prove that CD has the same Newton polygon as D, for any
matrix C congruent to the identity modulo 2.

If X = (xi,j)i,j�1 is a matrix, and r1, r2, . . . , rn are distinct positive integers, then by the n × n
principal minor of X associated to these integers we mean the determinant of the n × n matrix
formed from the rith rows and columns of X, 1 � i � n. If X is the matrix associated to a compact
morphism, then the Newton polygon of X is the lower convex hull of the points (n,Σn) ∈ R2, where
Σn is the valuation of the sum of all n × n principal minors of M .

Firstly, note that, if d is any n×n principal minor of the diagonal matrix D, then (n, v2(d)) lies
on or above the Newton polygon of D. Secondly, note that, for each (n,Σn) that lies at a vertex of
the Newton polygon of D, there is a unique n×n minor with maximal valuation. Both of these facts
are easily verifiable using the fact that D is diagonal. Next note that if r1, r2, . . . , rn are distinct
positive integers then the principal minors of D and CD associated with these integers have the
same valuation, because the n × n minor of CD associated to these integers is just the product
of the minor associated to C (which is a unit) and the minor associated to D. Hence all principal
minors of D and CD have the same valuation and now it is easy to check that this forces the Newton
polygons of C and D to be the same.

Theorem 2 follows immediately from the above lemma.

3. Extensions and generalisations

3.1 What is special about the function f?
There are many ways to parameterise a (p-adic) disc, but the choice of f that we made led to the
simple formulas which enabled us to prove results about slopes. One possible reason why this f was
a good choice is that the basis defined by powers of f behaves well with respect to a certain pairing,
which we define below. Recall our function g defining an isomorphism of X0(2) with the projective
line. Let w denote the Atkin–Lehner involution on X0(2).

Lemma 6. For n ∈ Z we have w∗gn = g−n.

Proof. It suffices to prove the lemma for n = 1. Since ∆(−1/τ) = τ12∆(τ), we see that

w∗g = g(−1/(2τ)) =
26∆(−1/τ)
∆(−1/(2τ))

=
26τ12∆(τ)

212τ12∆(2τ)
=

1
g
.

Let X denote the rigid affinoid annulus in X0(2) defined by X = {x ∈ X0(2) : |g(x)| = 1}.
This is the width-zero annulus ‘in the middle’ of the supersingular annulus in 2−6 < |g| < 26 in
X0(2), and the Atkin–Lehner involution w induces an involution X → X. If η is a holomorphic
one-form on X then we can write η = (

∑
n angn) dg and we define

∫
∞ η := a−1. Similarly we can

write η = (
∑

n bn(1/g)n) d(1/g) and we define
∫
0 η := b−1. An easy check shows that

∫
0 η+

∫
∞ η = 0.
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Definition 2. Let 〈 , 〉 denote the following bilinear form on M0:

〈α, β〉 =
∫
∞

w∗α · dβ.

Lemma 7. The bilinear form 〈 , 〉 is symmetric.

Proof. Since w∗ swaps the two cusps, we see that

〈α, β〉 =
∫

0
α · d(w∗β).

Since
∫
0 +

∫
∞ = 0 we see that

〈α, β〉 = −
∫
∞

α · d(w∗β).

In particular,

〈α, β〉 − 〈β, α〉 =
∫
∞

w∗α · dβ + β · d(w∗α) =
∫
∞

d((w∗α)β) = 0.

Lemma 8. The basis {gk}∞k=0 is an orthogonal basis for M0, with respect to 〈 , 〉.
Proof. By Lemma 6 we have w∗gk = g−k. Hence

〈gm, gn〉 =
∫
∞

g−m · ngn−1 dg =
∫
∞

ngn−m · dg

g
= n · δm,n.

Thus powers of g behave nicely with respect to this pairing. On the other hand, this pairing
behaves nicely with respect to U :

Theorem 3. U is self-adjoint with respect to 〈 , 〉.
Proof. It is enough to show this for any pair gj , gi. We see that

〈Ugj , gi〉 =
∞∑

k=0

uk,j〈gk, gi〉 = ui,j〈gi, gi〉.

Now from the above calculation and our explicit evaluation of ui,j, this is equal to

22i+2j−13ij(i + j − 1)!
(2i − j)!(2j − i)!

= 〈gj , Ugi〉,

since the penultimate expression is symmetric.

It is natural to ask whether this theorem is a special case of a more general phenomenon.

3.2 Weights other than zero
Our results in this section are unfortunately much more incomplete. We may relate the action of U
in weight 0 to the action of U in weight k by ‘Coleman’s trick’, namely, a judicious application of the
identity U(gV (h)) = hU(g). In our case we again obtain explicit formulas for matrix entries of U
acting on Sk. Take for example the case k = −12m with m � 0 an integer. Define

hk =
∆(2τ)m

∆(τ)2m
= ∆(2τ)−mf2m.

By Coleman’s trick we now observe that

U(hkf j) = U(∆(2τ)−mf j+2m) = ∆(τ)−mU(f j+2m) = hkf
−mU(f j+2m).

In particular, with respect to the basis {hkg, hkg2, hkg
3, . . . }, U in weight −12m can be given

explicitly by the matrix (2−6mui+m,j+2m)i,j�1. Since for m ∈ N, −12m is dense in 4Z2, if one could
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prove Conjecture 2 in the case k = −12m then by a continuity argument one could prove it for all k
congruent to 0 mod 4, and then by using the theta operator one should be able to deal with the case
k ≡ 2 mod 4 as well. However, although we have a factorisation of the form U = ADB, the matrices
A and B (and BA) are unfortunately not integral, and new methods seem to be required.

3.3 Primes other than p = 2
Our methods rely strongly on the fact that X0(p) has genus 0. Presumably our results can be
extended to other primes with this property, with perhaps a corresponding increase in combinatorial
difficulty. On the other hand, our techniques fail, or at least must be greatly modified, when the genus
of X0(p) is greater than 0, even though similar results seem to be true. For example, the following
conjecture appears to be compatible with the conjectures in [Buz04].

Conjecture 3. Let |λ1| � |λ2| � |λ3| � · · · be the non-zero eigenvalues (with multiplicities) of
U on S0(SL2(Z); Q11; 11−r) for some rational r with 11/12 > r > 0. Then the slope (that is, the
11-adic valuation) of λn is given by the following formula:

v11(λn) = v11

(
[(6n + 1)/5]![(6n + 4)/5]!

[n/5]![n/5]!

)
+

4∑
k=1

[
n + k

5

]
,

where [x] denotes the largest integer less than or equal to x.

4. Appendix. Overconvergent forms at small level

For this Appendix we work with a general level and a general prime p. For want of a reference, we
explain how to extend the theory of overconvergent p-adic modular forms to cases where the level
structure is too coarse for the resulting moduli problem to be rigid. The motivation is that there
is a growing theory of ‘explicit’ computations with p-adic modular forms, where typically both the
level and the prime are small (for example, this paper). On the other hand, at several points in
theoretical papers on the subject, the hypothesis is made that the level in which one is working is
at least 5, or that p � 3, for convenience (lifting the Hasse invariant, for example).

One problem at small level is that there is, as far as we know, no reference for the theory of ‘rigid
analytic stacks’, so we proceed by the usual low-level ad hoc methods. Here is an overview of the idea:
Take the level structure one is interested in, and a sufficiently small auxiliary Galois level structure
with Galois group G (for example, a full level M structure for some large prime M). The product
level structure is sufficiently fine to imply the existence of a compact curve X representing a moduli
problem on generalised elliptic curves, and X is equipped with an action of G. One can form the
quotient curve X/G, which is not in general the solution to a moduli problem, but which is a coarse
moduli space. One cannot always form an appropriate sheaf ω on these quotient curves, because ω
does not always descend from X (problems at elliptic points, for example), but one can still define
modular forms as G-invariant sections of tensor powers of ω on X. Next one has to check that the
rigid analytic subspaces that one is interested in are all G-invariant, which comes down to checking
that they have an intrinsic definition that only depends on the underlying elliptic curve and not the
level structure.

We now formulate everything rigorously. Let UN denote the compact open subgroup of GL2(Ẑ)
consisting of matrices congruent to the identity modulo N . If U is an arbitrary compact open
subgroup of GL2(Ẑ), then we define the level of U to be the smallest positive integer N such that
UN ⊆ U .

Let Γ be a compact open subgroup of GL2(Ẑ) and let p be a prime that does not divide the level
of Γ. We shall give the main definitions in the theory of overconvergent p-adic modular forms for Γ.
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We say that a level structure Γ is ‘sufficiently small’ if it satisfies the following two conditions:

(i) The identity element is the only element of Γ which is of finite order and is conjugate in
GL2(Af ) to an element of GL2(Q).

(ii) If C denotes the surjective Ẑ-module homomorphisms (Ẑ)2 → Ẑ, equipped with its natural
right action of GL2(Ẑ), then −1 operates without fixed points on C/Γ.

These properties are used in the following way. Property (i) implies that there will be no
elliptic points in the associated moduli space, or, more precisely, that the associated moduli problem
on elliptic curves is rigid and hence representable [KM85, Appendix to § 4]. Property (ii) implies
that there will be no irregular cusps on the compactification of the representing object [KM85,
§ 10.13 and Proposition 10.13.4]. We remark that Γ = UM for any M � 3 satisfies properties (i)
and (ii). However, perhaps the most common modular curves that one sees are the curves X0(N),
corresponding to the compact open subgroup Γ of matrices in GL2(Ẑ) which are upper triangular
mod N , and property (i) always fails for these Γ, since −Id ∈ Γ.

Let us assume initially that Γ is sufficiently small. Because Γ satisfies (i), the associated mod-
uli problem on elliptic curves is representable over Zp, by a smooth affine curve Y (Γ), equipped
with a universal elliptic curve π : E(Γ) → Y (Γ). Set ω := π∗Ω1

E(Γ)/Y (Γ). Then ω is an invertible
sheaf on Y (Γ). Because Γ satisfies (ii), the natural compactification X(Γ) of Y (Γ) is also the solution
to a moduli problem (that of parameterising generalised elliptic curves with level structure;
see [DR71, III.6], although we shall not use this in what follows). Next note that the sheaf ω
extends in a natural way to an invertible sheaf on X(Γ) (see [KM85, Proposition 10.13.14]).
We define a classical modular form of level Γ and weight k, defined over Qp, to be a global section
of ω⊗k on the generic fibre of X(Γ).

If R is a Zp-algebra then we denote by X(Γ)R the base change of X(Γ) to R. The special
fibre X(Γ)Fp of X(Γ) is a smooth proper geometrically connected curve, and has finitely many
supersingular points. Let P denote a supersingular point and say P is defined over the finite field F.
Let W denote the Witt vectors of F, and let K denote the field of fractions of W . If X(Γ)an denotes
the rigid space over K associated to X(Γ) then there is a reduction map from X(Γ)an to X(Γ)F(F),
and the pre-image U of P is isomorphic to an open disc. The completed local ring of X(Γ)W at P is
a W -algebra isomorphic non-canonically to a power series ring W [[t]] in one variable; let us fix one
such isomorphism. Then t can be thought of as giving an isomorphism from U to the rigid analytic
open unit disc. Hence if r ∈ Q�0 then we can talk about the open subdisc {x : |t(x)| < p−r} of U .
These subdiscs in general depend on the fixed isomorphism between the completed local ring and
the power series ring, but if r < 1 then an easy calculation shows that they are independent of such
choices; the point that we have chosen to be the centre of U is a K-point and the other K-points
in U all have distance at most 1/p from our chosen centre, because K is an unramified extension
of Qp. (See § 3 of [Buz03] for more details of this construction, or § 2 of [BT99].)

The universal formal deformation of the elliptic curve E0/F corresponding to P is an elliptic
curve over the completed local ring of X(Γ)W at P , and hence can be regarded via our fixed
isomorphism as an elliptic curve E/W [[t]]. Fix a basis η of H0(E,Ω1

E/W [[t]]), so

H0(E,Ω1
E/W [[t]]) = W [[t]] · η.

The Hasse invariant can be thought of as a mod p section of the (p−1)th tensor power of this module,
and hence an element A(t)η⊗(p−1) of F[[t]] · η⊗(p−1). It is well known that the Hasse invariant
has a simple zero at every supersingular elliptic curve, which translates into the fact that A(t)
is a uniformiser of F[[t]]. This provides the bridge between our point of view and that of Katz.
For example, Katz’s analysis of the p-divisible group associated to an elliptic curve and its relation
to a lifting of the Hasse invariant [Kat73, § 3.7] shows that, for a K-point u ∈ U corresponding
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to an elliptic curve Eu, if |t(u)| > 1/p then |t(u)| is independent of all choices we have made, and
depends only on the isomorphism class of Eu (and not on the level structure).

Assume from now on that 0 � r < 1, and that F is sufficiently large so that all the supersingular
points in X(Γ)Fp are defined over F. Choose parameters t as above for every supersingular point,
and define X(Γ)K,�p−r to be the rigid space over K which is the complement of the open discs
{x : |t(x)| < p−r} as above, as P ranges over all supersingular points of X(Γ)F. If u is a K-valued
point of Y (Γ)K then let Eu denote the fibre of the universal elliptic curve above x. So Ex is an
elliptic curve defined over K(x). Now Katz’s arguments show that, if Ex has good supersingular
reduction and if |t(x)| > p−1, then |t(x)| = |t(σx)| for any Qp-automorphism of the field K(x).
Hence for r ∈ Q with 0 � r < 1 the rigid space X(Γ)K,�p−r is the base extension to K of a rigid
subspace X(Γ)�p−r of X(Γ) defined over Qp.

Say r ∈ Q with 0 � r < 1. We define a p−r-overconvergent modular form of level Γ and weight k,
defined over Qp, to be a section of ω⊗k on X(Γ)�p−r .

Now let Γ be an arbitrary (not necessarily sufficiently small) compact open subgroup of GL2(Ẑ),
and let p be a prime not dividing the level of Γ. Choose a prime M > 2 dividing neither p nor the
level of Γ, and let Γ′ denote Γ ∩ UM . Then Γ′ is sufficiently small in the sense above, and so all of
the definitions above apply to Γ′. Furthermore, Γ′ is normal in Γ; let G denote the quotient group.
Then G is finite (in fact G is isomorphic to GL2(Z/MZ)) and G acts on X(Γ) and ω. Moreover,
because |t(x)| (notation as above) only depends on the elliptic curve Ex and not any level structure,
X(Γ′)�p−r is G-invariant if 0 � r < 1.

This motivates the following definitions. We define X(Γ) to be quotient of X(Γ′) by the finite
group G; note that X(Γ′) is a projective curve, so taking quotients is not a problem. In practice, one
can form the quotient in the following manner: Y (Γ′) is affine, and is hence of the form Spec(R), R a
ring with an action of G. One defines Y (Γ) = Spec(RG) and then compactifies. Note that the sheaf
ω will probably not in general descend to X(Γ). However, we can still define an r-overconvergent
modular form of level Γ as being a G-invariant element of H0(X(Γ′)�p−r , ω⊗k), if 0 � r < 1.
Sometimes these spaces are zero for trivial reasons, for example if Γ contains −1 and if k is odd.
If they are not zero, then they are always infinite-dimensional.

One needs to check that these definitions are independent of the auxiliary choice of Γ′. This is
not too difficult: if Γ′

1 and Γ′
2 are two choices for Γ′ with Galois groups G1 and G2 then one sets

Γ′ := Γ′
1∩Γ′

2 and checks that both definitions for X(Γ) coincide with the quotient of X(Γ′) by Γ/Γ′,
and so on.

One may check without too much difficulty that the weight 0 r-overconvergent forms of level Γ
are just the functions on X(Γ)�p−r ; this comes from the fact that one can form quotients of affinoids
by finite groups by looking at invariants, and compatibility of this with the analytification functor.

One useful result is that if Γ ⊆ ∆ both have level prime to p then the pre-image of X(∆)�p−r

under the canonical (forgetful functor) map from X(Γ) to X(∆) is X(Γ)�p−r . Only a little harder
is the fact that if γΓγ−1 ⊆ ∆ and Γ and ∆ have level prime to p, and γp = 1, then the same is true
for the map X(Γ) → X(∆) induced by γ. This is because |t(x)| depends only on the underlying
p-divisible group of the elliptic curve.

The above approach is good for theoretical purposes, but is too abstract in general to be of much
computational use. We now show how to use these ideas to make the claims of this paper rigorous,
thus turning the argument in this paper from a formal one into a rigorous one. We set Γ = GL2(Ẑ)
and p = 2, and write X0(1) for X(Γ). We now explicitly evaluate X0(1)�p−r for 0 � r < 3/4.

It is well known that the j-invariant gives an isomorphism X0(1) → P1 defined over Z2. Let us
set M = 3 (notation as above), so Γ′ = U3 and Y (3) := Y (Γ′) is the modular curve over Z2

parameterising elliptic curves equipped with two points of order 3 generating the 3-torsion of the
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curve. The generic fibre of this curve is not geometrically connected, but this does not matter.
The classical theta series θ :=

∑
a,b∈Z qa2+ab+b2 = 1 + 6q + 6q3 + · · · is a modular form of level Γ′

(in fact it has level Γ1(3)) and by the q-expansion principle it is a lift of the mod 2 Hasse invariant.
The special fibre of X(3) := X(Γ′) has two geometric fibres, both of genus 0, both defined over
F := F4, and both with one F-valued supersingular point. Let P denote one of these supersingular
points, and define W , K and U as above. Choose an isomorphism ι of the complete local ring of
X(3)W at P with W [[t]], and let E/W [[t]] denote the universal formal deformation of the elliptic
curve corresponding to the point P . Fix a basis η of H0(E,Ω1

E/W [[t]]), so

H0(E,Ω1
E/W [[t]]) = W [[t]] · η.

Now if f is any modular form over W (F) of level Γ′ and any weight k, then f(E) = hη⊗k for some
h ∈ W [[t]]. We now think of η as being fixed, and identify a modular form f with the corresponding
function h as above. If u ∈ U then we define |f(u)| = |h(u)| and note that this is independent of
the choice of η. Moreover, if |f(u)| > 1/2 then this value is also independent of the choice of ι.

Via this fixed isomorphism, θ can be regarded as an element of W [[t]] and, because θ lifts the
Hasse invariant, we know that θ mod 2 in F[[t]] will be of the form ut + O(t2) with u 
= 0. Now
consider the classical level 1 Eisenstein series E4 = 1+240(

∑
n�1 σ3(n)qn). Note that the q-expansion

of θ is congruent to 1 mod 2, and hence θ4 has q-expansion congruent to 1 mod 8. In particular
θ4 ≡ E4 mod 8. This congruence can be thought of as a congruence of elements of W [[t]]. Now for
u ∈ U with |E4(u)| > 1/8 we see that |θ(u)|4 = |E4(u)| and hence |θ(u)| > 2−3/4 > 2−1. So |t(u)| =
|θ(u)| = |E4(u)|1/4. Conversely, if |t(u)| > 2−3/4 then |E4(u)| = |t(u)|4 > 1/8. We conclude that
if 0 � r < 3/4 then X(3)�2−r is the subregion of X(3) where |E4| > 2−4r. Moreover, because
j = (E4)3/∆, and |∆(u)| = 1 for all u ∈ U (as u corresponds to an elliptic curve with good
reduction), we see that for 0 � r < 3/4, we have that X(3)�2−r is the region defined by |j| � 2−12r.
We have proved the following proposition.

Proposition 1. If p = 2 and 0 � r < 3/4 then X0(1)�p−r is the subdisc of the j-line defined by
|j| � 2−12r.

We now let g denote the modular function 26∆(2z)/∆(z). Recall that this is an isomorphism
X0(2)Q2 → P1. Now one checks that 64/j = g/(4g + 1)3 and hence the map X0(2)Q2 → X0(1)Q2

induced by the forgetful functor sends the region {|g| � 1} to the region {|j| � |64|}.
Moreover, this map preserves q-expansions, and induces an isomorphism between these two
regions (one can write down an inverse, for example, to see this). We deduce that the disc {|g| � 1}
in X0(2) is isomorphic to X0(1)�2−1/2 , and that the functions {1, g, g2 , g3, . . . } are a Banach basis for
2−1/2-overconvergent level 1 weight 0 modular forms. Furthermore, because g vanishes at infinity,
the functions {g, g2, g3, . . . } form a basis for the space of 2−1/2-overconvergent tame level 1 cusp
forms of weight 0.

Finally, we say a word about other weights k ≡ 0 mod 12. Write k = −12m and define
hk := ∆(q2)m/∆(q)2m. Then hk is a meromorphic section of ω⊗k on X0(2) and a computation
of q-expansions shows that it is non-vanishing at infinity. It hence defines a section of ω⊗k on
X(3)�2−1/2 which is G := GL2(F3)-invariant and non-vanishing, and hence a trivialisation of ω⊗k

on this rigid space. It is now easy to show that the G-invariant sections of ω⊗k are exactly the
sections of the form hks for s a function on X0(1)�2−1/2 and this establishes all the claims about
explicit bases of overconvergent modular forms in this paper.

Remark. Matthew Emerton points out to us that this Appendix contains some overlap with [Eme01].
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Bordeaux 9 (1997), 395–403.
CST98 R. Coleman, G. Stevens and J. Teitelbaum, Numerical experiments on families of p-adic modular

forms, in Computational aspects on number theory, Chicago, IL, 1995 (American Mathematical
Society, Providence, RI, 1998), 143–158.
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Ser62 J.-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math.

Inst. Hautes Études Sci. 12 (1962), 69–85.
Smi00 L. Smithline, Exploring slopes of p-adic modular forms, PhD thesis, University of California at

Berkeley (2000).
Wat38 G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. reine angew. Math. 179 (1938),

97–128.
ZE90 D. Zeilberger and S. B. Ekhad, A 21st century proof of Dougall’s hypergeometric sum identity,

J. Math. Anal. Appl. 147 (1990), 610–611.

603

https://doi.org/10.1112/S0010437X04001034 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001034


Slopes of overconvergent 2-adic modular forms

Kevin Buzzard buzzard@ic.ac.uk
Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, UK

Frank Calegari fcale@math.harvard.edu
Department of Mathematics, Harvard University, Science Center, 1 Oxford Street, Cambridge,
MA 02138, USA

604

https://doi.org/10.1112/S0010437X04001034 Published online by Cambridge University Press

mailto:buzzard@ic.ac.uk
mailto:fcale@math.harvard.edu
https://doi.org/10.1112/S0010437X04001034

	1 Introduction
	2 Weight zero
	3 Extensions and generalisations
	3.1 What is special about the function $f$?
	3.2 Weights other than zero
	3.3 Primes other than $p = 2$

	4 Appendix. Overconvergent forms at small level
	References

