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Abstract. We study here slopes of periodicity of tilings. A tiling is of slope θ if
it is periodic along direction θ but has no other direction of periodicity.

We characterize in this paper the set of slopes we can achieve with tilings, and
prove they coincide with recursively enumerable sets of rationals.

1. Introduction

The model of tilings was introduced by Wang [14] to study fragments of the
first order theory. This model is described by geometrical local properties, deciding
whether a given tile can be placed on a given cell based only on its surrounding
neighbours.

While the definition of tilings is deceptively simple, they exhibit complex be-
haviours. As an example, the most basic problem (decide if a given tiling system
can tile the plane) is undecidable [2]. This is due to both a straigthforward encoding
of Turing machines in tilings [3,4,13] and to the existence of socalled aperiodic tiling
systems [8, 12], that can tile the plane but in no periodic way.

In this paper we explore the periodic behaviour of tiling systems. Periodic
tilings have nice closure properties, in the sense that the image of a periodic point
by a shift-preserving morphism (i.e. a block map) is again a periodic point. As a
consequence, understanding the structure of the periodic points of a tiling system
is a first step to decide when some tiling system embeds in another, or when two
tilings systems are “isomorphic” (more accurately conjugate [9])

In dimension one, the question boils down to determine for a tiling system τ the
set of integers n so that there is a valid tiling by τ of period (exactly) n. This question
was answered succesfully: Using automata theory, a complete characterization of the
set of integers we can obtain this way was obtained [9].

The question is more delicate in two dimensions. We might break it down in
two parts: Given a tiling system τ ,

• For which n is there a tiling of horizontal and vertical period n ?
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• For which direction θ is there a tiling which is periodic only along direction θ ?

The authors gave an answer to the first question in [6]: Sets of integers we can
obtain correspond to the complexity class NE. We deal in this paper with the
second question, characterizing the set of slopes we can obtain by tiling systems.

While the answer in dimension one involves finite automata theory, it turns
out that the good tool to solve the problem in higher dimensions is computability
theory. The undecidability of the domino problem (deciding if a tiling system tiles
the plane) is indeed not an anomaly: many combinatorial aspects of tilings can only
be fully comprehended by means of recursivity theory arguments [1, 5, 10].

Along these lines, we will prove here the following theorem:

Theorem 1.1. The sets of slopes of tilings are exactly the recursively enumerable

sets of rationals.

As a consequence, one might for example build a tiling system which admits
slopes arbitrary close to 0, but does not admit 0 as a slope.

This paper is organized as follows. We first give the definitions of a tiling
systems, and an encoding of Turing machines that will be used later. Then we
proceed to the proof of the theorem. The main part of this paper is a construction,
for any recursively enumerable set R, of a tiling system with R as a set of slopes

2. Definitions

2.1. Tilings

Usually when considering tiling systems, Wang rules are used. We use here a
generalization that is equivalent in terms of expressivity but makes the constructions
easier.

While Wang rules consider only adjacent tiles only, our rules may consider an
arbitrary large (but finite) neighborhood of tiles.

A tiling of Z2 with a finite set of tiles T is a mapping c : Z2 → T . A pattern

of neighborhood N ⊆ Z2 is a mapping from N to T . A pattern is finite if N is
finite. A tiling system is a pair (T, F ), where F is a finite set of finite patterns. A
tiling c is said to be valid if and only if none of the patterns of F ever appear in
c. Since the number of forbidden patterns is finite, we could specify the rules by
allowed patterns as well. We give an example of such a tiling system with the tiles
of figure 1a and the forbidden patterns of figure 1b. The allowed tilings are shown
in figure 2.

(a) (b)

Figure 1: The set of tiles (a) and the forbidden patterns (b).
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Figure 2: The only valid tilings of the system.

2.2. (a)periodicity

A tiling c is periodic of period v = (vx, vy) ∈ Z2 if for all points x, y ∈ Z,
c(x, y) = c(x+vx, y+vy). The direction of a vector v 6= (0, 0) is θ = vy/vx ∈ Q∪{∞}
with the convention θ = ∞ if vx = 0.

A tiling is periodic along a direction θ if it is periodic of period v 6= (0, 0) and v
is of direction θ.

For a given tiling c, there are three cases:

• Either c is periodic of period v, w and v, w are of different directions. In this
case, the tiling c is biperiodic: there exists an integer n ∈ N (the period)
so that c(x, y) = c(x+ n, y) = c(x, y + n), and as a consequence c is periodic
along all directions θ ∈ Q ∪ {∞}

• c is periodic along one direction θ only. In this case, we will call θ the slope

of c.
• c has no nonzero vector of periodicity. c is then called aperiodic.

The set of slopes of a tiling system τ , noted Sτ , is the set of the slopes of all valid
tilings by τ . As an example, the first tiling in fig.2 is periodic of vector (1, 0) (hence
of slope 0) and the two other tilings are biperiodic (hence have no slope). As a
consequence, Sτ = {0} for this example. Using rotated versions of this elementary
tiling system, we can produce for each θ ∈ Q ∪ {∞} a tiling system τ so that
Sτ = {θ}.

A tiling system is aperiodic if and only if it tiles the plane but all valid tilings are
aperiodic. Such tiling systems have been shown to exist [2] and are at the core of the
undecidability of the domino problem (decide whether a given tiling system admits
a valid tiling). J. Kari [7] gave such a tiling system with an interesting property:
determinism. A tiling system is NW-deterministic (for North-West) if given two
tiles respectively at the north and west of a given cell, there is at most one tile that
can be put in this cell so that the finite pattern is valid. The mechanism is shown
below:

This tileset can be modified slightly so that a tile will be forced by the one on
its west and on its northwest, we will call this East-determinism :

East-determinism has the interesting property that if we set a whole column of the
plane then the whole half plane on its east will be determined by it.
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Figure 3: A tiling system, given by Wang tiles, simulating a Turing machine : the
states are in the circles and the tape is in the rectangles.

2.3. Computability

The undecidability of the domino problem [2] hinted earlier also comes from a
straightforward encoding of Turing machines into tilings. We provide here such an
encoding for future reference.

For a given Turing machine M , consider the tiling system τM presented in fig-
ure 3. The tiling system is given by Wang tiles, i.e., we can only glue two tiles
together if they coincide on their common edge. We now give some details on the
picture:

• s0 in the tiles is the initial state of the Turing machine.
• The first tile corresponds to the case where the Turing machine, given the
state s and the letter a chose to go to the left and to change from s to s′,
writing a′. The two other tiles are similar.

• h represents a halting state. Note that the only states that can appear in
the last step of a computation (before a border appears) are halting states.

This tiling system τM has the following property: there is an accepting path for the
word u in time (less than) t using space (less than) w if and only if we can tile a
rectangle of size (w + 2)× t with white borders, the first row containing the input.
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3. The sets of slopes are recursively enumerable

We say that a subset S of Q ∪ {∞} is recursively enumerable if there exists a
Turing machine M that on input (p, q) ∈ Z2 6= (0, 0) halts if and only if q/p ∈ S.

θ ∈ S =⇒ ∀(p, q), q/p = θ,M halts on (p, q)
θ 6∈ S =⇒ ∀(p, q), q/p = θ,M does not halt on (p, q)

The exact definition is irrelevant as all reasonable definitions will give rise to the
same class. An alternative interesting definition is as follows: A set S is recursively
enumerable if there exists a Turing machine M so that

θ ∈ S ⇐⇒ ∃(p, q), q/p = θ ∧M halts on (p, q)

Using a known projection technique to go down to dimension 1, we prove here:

Lemma 3.1. For any tiling system τ , Sτ is recursively enumerable.

Proof. We first give a procedure to decide if there is a tiling which is (n, 0)-periodic.
Let k be an integer bigger than the size of any forbidden pattern in τ .

If w is a pattern of support [0, n − 1] × [0, l] for some l, we write wZ for the
pattern of support Z× [0, l] defined by wZ

i,j = w(i mod n),j, that is for the horizontal
repetition of w.

Let V be the set of all patterns w of size n × k so that wZ is correctly tiled.
Consider this a directed graph G, where there is an edge from v to w if and only if
(v ⊗w)Z is correctly tiled, where v ⊗w denotes the pattern of size n× 2k obtained
by putting w above v.

It is then clear that tilings of period (n, 0) correspond to biinfinite walks on
this graph, so that there exists a tiling of period (n, 0) if and only if there exists a
cycle in the graph G. Furthermore, there exist a tiling of period (n, 0) which is not
biperiodic if and only if we can find two distinct cycles C1, C2 in the graph so that
C2 is accessible from C1. All the construction is clearly algorithmic.

Now for a given (p, q) we use the same procedure, where w is a pattern of size
|p| × k|q| and wZ is of support {(i + np, j + nq), i ≤ |p|, j ≤ k|q|} and defined by
wZ

i+np,j+nq = wi,j.
The following algorithm gives then the expected result: Starting from a given

(p, q), test all (p′, q′) so that q′/p′ = q/p to see if there exists a tiling which is
(p′, q′)-periodic but not biperiodic.
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4. The recursively enumerable sets are sets of slopes

Lemma 4.1. For any recursively enumerable set R ⊆ Q∪{∞}, there exists a tiling

system τ , such that Sτ = R.

Proof. We will construct for each Turing machine M , corresponding to a recursively
enumerable set R, a tiling system τ which slopes are exactly the rationals θ accepted
by M . We assume that M takes θ as an input under the form (p, q) in binary and
that its input depends only on q/p.

We will first build a tiling system τ that has as slopes {θ ∈ R|1 < θ < ∞}. The
other cases are treated in the same way and the final tiling system is the disjoint
union of the tiling systems treating each case. The special cases θ = 0, θ = ∞, and
θ = ±1 will be shortly discussed later on.

For the particular case where p > q > 0 we want to enforce the fact that
when a tiling of the plane has exactly one direction of periodicity, this direction of
periodicity has to be accepted by the Turing machine M . The tiling τM will enforce
the skeleton described in figure 4, where each square encodes the computation by
M proving that the slope θ is accepted. This skeleton in itself could be biperiodic,
we will then color the background of each square to ensure the existence of tilings
with only one direction of periodicity.

Figure 4: Skeleton of the tiling : when the tiling is periodic, the squares appear and
each of them is the shifted version of its lower left neighbor. Inside the
squares we will encode the Turing machine.

In order to enforce this skeleton, we will use several layers (or components), each
of them having their own aim, and impose some contraints on how the layers may
combine. We give here τM = C ×R×W × S × P × TM × A where :

• C will allow us to make the rows and columns,
• R to make the squares,
• W to force the periodicity vector and to write the input for the Turing
machine,

• S to force the aperiodic background of the squares to be the same,
• P will reduce the size of the input,
• TM will code the Turing machine M ,
• A will allow slopes of unique periodicity to appear.

We will now proceed to the details of the proof, by giving each component and
explaining what it enforces.
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(a) (b)

Figure 5: Valid periodic tilings are formed of columns of vertical breaking tiles (a)
or of rows of horizontal breaking tiles (b). Between two columns of vertical
breaking tiles there can be rows of horizontal breaking tiles.

Component C: The first component is made of an East-deterministic ape-
riodic set of tiles that we will call white tiles (the white background of fig-
ure 4), and we add two set of tiles the horizontal breaking tiles { } and
the vertical breaking tiles { , , , } (the horizontal and vertical lines of
figure 4). The rules are simple :

• on the left of a there can only be a or a ,
• on the right of a there can only be a or a ,
• above and below a , there can only be a white,
• above a can only be a ,
• above a can only be a or a ,
• above a can only be a ,
• above a can only be a or a .
To put it in a nutshell, it means that hozizontal breaking tiles forms rows

that can only be broken by vertical breaking tiles, and vertical breaking tiles
can only form columns that cannot be broken.

In a periodic tiling, we cannot have a quarter of place filled with white
(aperiodic tiles). As a consequence, periodic tilings at this stage are necessar-
ily formed by a white background broken infinitely many times by horizontal
or vertical breaking tiles.

One more rule we add is that the rules on white tiles ”jump” over the
black tiles. That is to say if we remove a black row, then the white tiles
have to glue themselves together correctly. The valid tilings at this stage are
represented on figure 5.

Component R: . The next component will force the apparition of squares
between two columns of vertical breaking tiles and prevent several infinite
rows of horizontal breaking tiles to appear. This layer is made of the set of
tiles { , , , , , , }, the rules applied on this layer are given by Wang
tiles. We superimpose the rules as follows :

• can only be superimposed to , ,
• can only be superimposed to ,
• goes on , and goes on ,
• , , are superimposed to the white tiles.
Figure 6 shows how this component R forces rows of black tiles to ap-

pear between two gray columns. The distance between these black rows are
exactly the distance between the gray columns thus black rows and gray
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Figure 6: Component R forces squares.

(a) (b)

Figure 7: The dotted row (resp. dashed) corresponds to the prolongation on the
right (resp. left) of the black cells. In (a) the signals sent from the extrem-
ities of the rows forming the square forces the offset between rectangles of
three neighboring columns to be exactly the same for any of them. In (b)
the signals sent from the extremities force the distance between columns
to be identical.

columns form squares. At this stage the valid periodic tilings cannot be
formed of only rows of black tiles anymore.

Component W : What this component does is that it synchronises the offsets
between squares of two neighboring columns, and forces all columns to be at
equal distance of their two neighboring columns, for all of them. As a side
effect, it also writes the offset between two squares (which we call q) in each
square. In order to do that, what we do is that we prolongate the black rows
of each column into their direct neighbors with two new layers, one for the
left and one for the right. The end of the black row then sends a diagonal
signal which changes its direction when it collides with the projected lines
of the neighbors and its colision with the column has to coincide with the
projection of the other column. Figure 7.a shows how this mechanism works.
The collision of the signal sent on the right extremity of the black lines marks
the end of the input q on each square. We add two other sublayers to make
the white rows of same width. The first one sends a signal from the left
extremity of a black line which has to meet the next column at the exact
point of the extension of the square. The second one does the same for the
right extremity. Figure 7.b shows these signals.

Component S: This component is meant to synchronize the aperiodic back-
grounds of all the squares. In order to do that, we only need to transmit the
first column after a vertical breaking column since our initial aperiodic tiling
system is East-deterministic.
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Figure 8: Tiles allowing to transmit the aperiodic background.

In order to do that, we take these tiles { , , , }, with the following
rules :

• on the right,above and below a there can only be a or a .
• on the left of a we necessarily have a and the south western neighbor
of a , if the tile is a white, is a or a ,

• the lower left white tile of a square is necessarily a . The rules on is
that there can only be a or a on a white tile to its right,

• the vertical/horizontal breaking tiles have necessarily a on them.
The tiling obtained inside a square is shown on figure 8. We add a sublayer
that is a copy of the white tiles with the rules that the tiles of this component
on the right of this column are identical to the white ones on component C
and that this copy is transmitted to the tile pointed by the arrow. Then with
the property that the black tiles continue the rules on the whites, the whole
aperiodic background between two vertical breaking columns is exactly the
same but shifted by the offset.

Component P : Now each square contains two data: its size (p) and the offset
to the next square q. We will pass them as input to the Turing machine after
some transformation.

The idea is to transform the input (p, q) into a smaller one (p′, q′) where
gcd(p′, q′) is not a multiple of two. Doing that is fairly easy : we just need
to convert the input in binary, this can be done with a transducer, then we
strip the binary representation of p and q of their common last zeroes.

Component TM : This layer implements the Turing machine M , the input has
been computed by layer P . Note that the Turing machine has to halt for the
tiling to be valid.

Component A: This layer is made of only two tiles, a yellow and a blue
one. It will be superimposed to white tiles and to the of the vertical
breaking tiles of component C only. The rules are that two neighboring
tiles (horizontally and vertically) have the same color. It is easy to see that
the color is uniform inside a square and that it spreads to the upper right
and lower left neighboring squares. Thus the squares along the direction of
periodicity have the same color.
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We now prove that the preceding construction works.

(1) Any slope is an accepted input of M : Let θ = q/p ∈ Sτ be a slope of
periodicity of τ , with p > q > 0 relatively prime.

By construction, the tiling has to be formed of squares of identical size
with constant offset (components C, R, W ). Their aperiodic background
has to be the same on each column (component S), so that in fact the
tiling is periodic along direction (m,n) where m and n denote respectively
the width and offset of the tiling. As a consequence, the tiling is of slope
θ = m/n = q/p ∈]0; 1[ and we have (n,m) = 2kk′(p, q) for some k, k′ with k′

odd.
Now the Turing Machine on each square has (k′q, k′p) as an input and

halts. Hence the slope k′q/k′p is accepted by the machine, so q/p ∈ R,
which proves Sτ ⊆ R ∩ ]0; 1[.

(2) Any accepted input of M is a slope of some tiling: Let θ ∈ R be
an accepted input of M with θ = q/p, p > q > 0 and p, q relatively prime.
There exists a time t and a space s such that M accepts (p, q) in time and

space t and s ≤ t. Take (m,n) = 2⌈log t⌉(p, q) ≥ (t, s) Now the m×m square
is big enough for the computation on input (p, q) to succeed. Hence there is
a tiling of period (m,n) and component A allows us to make the direction of
periodicity unique by dividing the plane into two colors, half a plane yellow
and half a plane blue. Hence R ∩ ]0; 1[⊆ Sτ .

This finishes the proof for the case 0 < θ < 1, i.e. p > q > 0.
The cases where q > p > 0, −p > q > 0, or q > −p > 0 are treated in a very

similar way: rotating the tiling system we just constructed and changing the way
the input is written on the tape (to invert the inputs, or add a minus sign) is enough.
However the remaining cases (p = ±q, p = 0, q = 0) need special treatment.1

For these cases, the construction above does not work, by that we mean that just
rotating it and modifying slightly the Turing machine of component TM won’t do
the trick. However it is actually simpler. We now make squares facing one another,
obtaining a regular grid. This requires less tiles for component C and no component
W . Then according to the case, components C,S and A are modified as follows:

• for p = q (θ = 1), S just transmits diagonally the tiles. In component A,
the color is synchronized from the top right corner to the next square at the
north east. The case p = −q is similar.

• for q = 0 (θ = 0), S transmits horizontally, and the colors of component
A are synchronized with the square on the right. The tiling can only be
horizontally periodic if the Turing machine accepts it, this is the only way it
can be periodic.

• for p = 0 (θ = ∞), C has, instead of an east deterministic tileset, a north
deterministic one. Components S and A are modified accordingly. The tiling
can only be vertically periodic if the Turing machine accepts it and this is
the only way it can be periodic.

1As this corresponds to four specific different θs, note that we could treat them nonconstructively,
adding if necessary four new tiling systems having predescribed slopes.
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5. Concluding remarks

We have shown that the sets of slopes of periodicity of tilings correspond exactly
to the recursively enumerable (Σ0

1) sets of rationals for tilings in dimension 2. Our
intuition for analogous results in higher dimensions would be that the slopes of
periodicity would then be characterized by Σ0

2 sets [11], since knowing whether a
tiling is periodic of vector v in dimension 3 is not decidable anymore but only Π0

1.
Hence the following conjecture:

Conjecture 5.1. The sets of slopes of tilings in dimension d ≥ 3 are exactly the
Σ0

2 subsets of (Q ∪ {∞})d−1.

An analogous construction to the one detailed here should work at least for
dimension 3, it would however be tedious.
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