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Slow dynamics simulation of power systems 
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Abstract. This paper investigates the simulation of slow dynamics in 
two-time-scale power systems. A new approach is proposed to obtain the 
slow dynamics by projecting the trajectory of the post-fault system onto 
its slow manifold. This is achieved by a nonlinear projection of the full 
order system initial condition onto the slow manifold, such that the fast 
intraarea dynamics are not excited. A projection scheme is developed and 
applied to two-test power systems. 
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1. Introduction 

Transient stability studies provide information about the capability of a power system 
t o  remain in synchronism under disturbances such as sudden or sustained load 
changes, loss of generation and transmission facilities, or momentary faults (Kundur 
1985). For a large power system with highly stressed power transfer on interties, the 
loss of synchronism usually is due to the slower interarea modes, that is, groups of 
machines pulling away from the rest of the system (Kundur et al 1990). If the non- 
critical fast inter-machine dynamics within the groups can be eliminated, then the 
analytical complexity can be significantly reduced. 

This paper investigates the simulation of the slow dynamics in two-time-scale power 
systems modelled as nonlinear autonomous singularly perturbed systems 

2 =  f(x,z,!a), xER"', (1) 

1~ = g(x, z, #), z e R %  (2) 

where '.' denotes the derivative with respect to the slow time-scale t, # > 0 is the 
singular perturbation parameter, and the total system order is n = n, + hi. Given the 
initial condition xo = X(to), Zo = Z(to), system (1), (2) generates a trajectory x(0, z(t) 
from t = to to t = t:, which, in general, contains both slow and fast dynamics. Our 
objective is to' obtain the slow components of x(t), z(t). 

A common approach is to explicitly construct reduced-order slow models (Peponides 
et al 1982; Chow 1982). However, for a large-scale power system, exact nonlinear 
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slow subsystems cannot be readily obtained in an analytical form. Another approach 
is to use art implicit integration routine and large step sizes for simulation (deMello 
et a11992). However, such simulations usually do not closely track the slow components 
of the system response. 

In this paper, we propose to use a nonlinear slow-fast transformation (Cheung & 
Chow 1991) to project a post-fault trajectory onto the slow manifold. If a point of 
the trajectory is projected onto the slow manifold by eliminating its fast component, 
then using this projected point as the initial condition for the full order system, the 
resulting simulation will not contain any fast dynamics. Furthermore, the trajectory 
obtained will be identical to the slow dynamics simulated from the exact reduced-order 
slow model. In this technique, no construction of the slow subsystem is required. 
Thus, existing transient simulation packages and models can be used to investigate 
interarea stability of power systems. Moreover, the elimination of the oscillations 
from the stable higher frequency modes speeds up the simulation process since larger 
stepsizes can be used in the simulation. 

The remainder of the paper is organized as follows. Section 2 presents the integral 
manifolds and decomposition of singularly perturbed systems. In w 3, the notion of 
the slow dynamics projection is introduced in terms of the slow and fast manifolds, 
and a slow dynamics projection scheme is developed. In w the projection scheme 
is applied to two-test systems. 

2. Integral manifolds of singularly perturbed systems 

In this section we discuss the integral manifolds and the decomposition of nonlinear 
singularly perturbed systems (Sobolev 1984; Cheung & Chow 1991) in the form of 
system (1), (2). It is assumed that system (1), (2) satisfies the following assumptions 
in a region D c R": 

(hl) All equilibria are isolated equilibrium points among which the origin, x = 0, 
z = 0, is the equil~rium point of interest. 

(h2) Equation g(x,z,O)= 0 has an isolated solution z = ht~ satisfying ht~ = 0. 
(h3) Functions f, g and h t~ are C 2 for Iz - hl~ ~< P0, 0 ~< # ~< #0- 
(A4) The eigenvalues 2~, i - -1 , . . . , n s ,  of the matrix (~g/3z)(x, hC~ satisfy the 

inequality ~ {)q } < 0. 

For a two-time-scale dynamical system, it is desirable to obtain two decoupled 
reduced-order models which govern the slow and the fast dynamics of the full-order 
system. The decoupling scheme starts by seeking specific hypersurfaces or integral 
manifolds in the n-dimensional region D such that for any initial condition of the 
system on these manifolds, the solution of the system vdll remain on the manifolds 
thereafter. For singularly perturbed systems, invariant manifolds are formaUy defined 
as follows. 

DEFINITION 1 
An invariant manifold .At'. for system (1), (2) is a manifold in R n such that if the initial 
condition Xo = X(to), Zo = z(to) is on 0r the solution (x(t), z(t)) is on ~'j, for all t > to. 

We will use two special types of invariant manifolds, namely, slow manifolds and 
fast manifolds, to decompose the slow and the fast dynamics of(l), (2), respectively. 
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Under assumptions (A I)-(A4), it is well-known (Fenichel 1979) that a slow manifold 
exists and is defined by 

.A/s: z = h (x,/.t),  

where h(x, ~) satisfies the slow manifold equation 

g(x, h(x, g), #) = #(~h/c?x) f (x, h(x, #), #), 

(3) 

(4) 

and is a C 2 function of x and #. The dynamics on the slow manifold are governed 
by the ns-dimensional system 

~=f(x ,h(x ,~) ,g) .  (5) 

It follows from (A2) that h(0, p) = 0, implying that the origin is an equilibrium point 
on "is" 

If z(to) = h(x(to),it), then the trajectory of (1), (2) will remain on -/is for all t > to. 
Thus we measure the deviation z from ..r by a new fast variable 

v = z - h (x ,  U). 

Differentiating (6) with respect to the slow time-scale t yields 

(6) 

11(; = g(x, v + h(x, #), #) - #(Oh/Ox) f (x, o + h(x, #), #) 

(7) 

Thus in the variables x and v, system (1), (2) becomes 

= f (x ,  v + h(x,g),l~), 

~f~ = O(x, v, ~). 

(8) 

(9)  

Lemma 1. (Cheun# & Chow 1991) The function ~ satisfies 0(x, 0, # ) =  0, and v = 0 is 
the slow manifold of the (x, O-system (8), (9). 

Lemma 1 establishes that v in (9) is the purely fast variable having no slow 
componergs as 0 does not contain any v-independent terms. To eliminate the fast 
part of the slow variable x in (8), we introduce the transformation 

x = u + oH(u, t,, #), ( i o )  

where u is the purely slow variable, and #H(u, v, g) is the fast part modulated by the 
slow variable u. Since x is purely slow when v = 0, H(u, O, #)= O. 

Differentiating (10) with respect to r, we obtain 

fi = f (u  + laH(u, v, #), v + h(u + #H(u, v, #), #), #) 

- U(c~H/c3u)fi - (3H/Ov)O(u + !all(u, v, #), v, It). (11) 

Ifu is the purely slow variable, then u must satisfy the slow dynamical equation (5), 

c, = y (u ,h(u ,u) ,~)  ~ ] (u ,u) .  (12) 
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To ensure that u is a slow variable, we equate (11) and (12) to obtain a partial 
differential equation for H (u, v, 12) 

f ( u  + 12H(u, v, #), v + h(u + #H(u,  v, I~), #), 1 z) - f ( u ,  h(u, 12), #) 

= 12(on/Ou)f(u,  h(u, #), #) + (Ott/Ov)O(u + IzH(u, v, 12), v, #), (13) 

with the boundary condition H(u,  0,/~)= 0. 
Using the transformation (10), system (8), (9) decouples into 

12e = v, 12), 

(14) 

05)  

where O(u, v, 12) = O(u + 12H (u, v, 12), v, #). In (14), u is completely decoupled, and is all 
the slow part in x. In (15), since 0(u,0,12)=0, the meaning of the fast variable v 
remains unchanged from that in (9), with u acting as slowly time-varying coefficients 
in its dynamical equation. 

Using (6) and (13), (10) can be rewritten to define the fast manifold 

~r A,: x -'r u = 12H (u, z - h(x, #),12). (16) 

The existence and properties of H to (13) is shown by Kelley (1967). 
Note that (16) can be interpreted as a hypersurface in the (x ,z)  state space 

parametrized by the variable u. The dependence of..Ct'.r, on the slow variable u implies 
that "//r is a slowly time-varying dynamic manifold in the (x, z) state space. In fact, 
any trajectory (x(t), z(t)) is a trajectory on ~r162 ,,m" In the special case where u = u e is 
an equilibrium of (14), ..r is a time-invariant fast manifold. 

For linear singularly perturbed systems, the transformations (6) and (10) reduce to 
the block-diagonalization results (Kokotovic et al 1986). Consider system (1), (2) 
linearized about the equilibrium point x = 0, z = 0, 

2 = AI ix.+ A l 2 z  , 

12'2 =- A 2 1 x  + A22 Z, 

where A22 is nonsingular. Transformation (6) becomes 

(17) 

(18) 

v = z - L(#)x ,  veR"*, 

where L(#) satisfies the matrix quadratic equation 

(19) 

A2i + A22 L-- pL(Ai:  + a i 2 z  ) = 0, (20) 

which is obtained from the slow manifold equation (4). The (x, v)-system (8), (9) reduces 
to 

= ( A l l  + A t z L ) x + A 1 2 v ,  

12{) = (A22 - 12LAi2 )v. 

The slow variable transformation (10) is 

(21) 

(22) 

x = u + 12N(12)v, ueR" ' ,  (23) 
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where N(/.t) satisfies the matrix equation 

#(Atl + AI2L)N- N(A22 -/zLAI2 ) + A12 = 0, (24) 

derived from the fast manifold equation (13). The (u, v)-system (14), (i5) reduces to 

/i = (Art + A12L)u, (25) 

#l) = (A22 -#LA12)v. (26) 

In contrast to nonlinear systems, the fast subsystem (26) is independent of the 
purely slow variable. It is also of interest to note that .Ar and dtf .  o are generalizations 
of the slow and the fast eigensubspaces in linear systems. 

The decompositic, n of the slow and fast dynamics of nonlinear singularly perturbed 
systems rely on the solutions of h and H of the slow manifold equation (4) and the 
fast manifold equation (13), respectively, which are both formulated in terms of partial 
differential equations. Using asymptotic methods, approximate solutions for both the 
slow and the fast manifold equations can be obtained (Cheung 1991). For linear 
singularly perturbed systems, the solutions of the slow and the fast manifolds reduce 
to solving two sets of algebraic equations (20) and (24). Since A22 is invertible, the 
contraction mapping technique (Kokotovic 1975) can be used to establish a /~*> 0 
such that the solutions L and N of (20) and (24), respectively, exist for 0 </~ ~< 9". 
Moreover, L and N can be computed from asymptotic expansions through the 
recursions 

and 
Nk+ 1 = At2 + #[NI, LI, A12 + (All + A12 LI,)NI,]A2~, k =  1,2, . . . .  

(27) 

(28) 

At each iteration, L and N are approximated by L k and Nk, respectively, to obtain the 
approximate slow eigensubspace z = Lkx and fast eigensubspace x = kt(I. - pN L )- 1 

n. k k 

NkZ. The recursions (27) and (28) will be used in the slow dynamics projection scheme 
proposed in the next section. 

3. Slow dynamics projection 

The results in the previous section illuminate two approaches to the simulation of 
the slow dynamics in the system (1), (2). In the first approach, the slowsubsystem 
(14) can be constructed. However, the transformations (6) and (10) can seldom be 
obtained in exact analytical form. As a result, the slow subsystem (14) is usually 
approximaied asymptotically using the first few terms of the series expansions of h 
and H. 

In the second approach, the transformations (6) and (10) can be applied to the 
(x, z) system (1), (2), to project the variables (x,z) onto the slow manifold ./t's. To 
project a trajectory (x(t), z(O) onto ./t',, it is not necessary to carry out the projection 
operation for every point of the trajectory. Once a trajectory lies on -/is, it will stay 
on -.r162 thereafter. Thus, the low dynamics projection of a trajectory onto .Ar can be 
formed by projecting one single point, for example, its initial condition, onto .,r and 
the slow dynamics can be obtained by simulating the (x, z) system (1), (2), using the 
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projected initial condition. Knowing h and H, the initial condition (u0 =U(to), 
v0 = v(t0)) of the (u,v) system (14), (15) can be computed from the initial condition 
(xo = x(to), Zo = Z(to)) of the (x,z) system (1), (2). Then Vo is set to zero to obtain the 
projected initial condition 

xp = Uo, zp = h(xp, #), (29) 

of the (x, z) system. 
Although the projection of the initial condition still involves the expressions for h 

and H, it can now be computed numerically. To avoid solving for the partial 
differential equations, we propose a projection scheme based on the slow subspace 
of the linearized model of (1), (2). We first summarize the slow subspace projection. 

For linear singularly perturbed systems, the slow dynamics projection reduces to 
the projection along the fast eigensubspace onto the slow eigensubspace. Consider 
again the linearized system (18). The two-stage transformation for nonlinear systems 
reduces to a block-diagonalized transformation 

#N 
T= [~"  i s + l a L N l ,  (30) 

where L and N satisfy the matrix equations (20) and (24), respectively. The slow 
dynamics projection then reduces to a series of linear operations such that' for any 
given point (x, z), its projection becomes 

~ 1 
_ " - / ~ N  

LL(S , +  NL) 

The projection ~r. can be computed asymptotically using the recursions (27) and 
{28). It is a key step in the following algorithm to obtain the slow dynamics of a 
trajectory x(t), z(t) from t = t o to t = t r. 

Algorithm SDP: Slow dynamics projection algorithm 

Step 

Step 2: 
Step 3: 
Step 4: 
Step 5: 

Step 
Step 
Step 
Step 
Step 

1: Linearize the system (1), (2) about the origin and obtain the state matrices 
A11, At2, A2t and A22 of (18). 
Set k = 0 and let Lk and Nk be null matrices of appropriate dimensions. 
Use the recursions (27) and (28) to update Lk+ 1 and Nk§ 1 . 
Repeat step 3 until Lk§ 1'and Nk+ 1 converge. 
Integrate system (1), (2) forward in time using the initial condition (xo, Zo) to 
a sufficiently long period of time t v < tf to obtain (x(tp), z(tv) ). 

6: Project (x(t~),z(tp)) using (31) to obtain xp(tp),zp(tp). 
7: If tp = to, go to step 10; otherwise, go to step 8. 
8: Integrate system (1), (2) backward for one integration time step t~. 
9: Let t v,-- t p -  t s and go to step 6. 
10: Integrate system (1), (2) forward in time from t = t o to t = ty using xp(to), 

zv(to) as the initial condition. 
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Algorithm SDP is based on two assumptions: 

(I) The slow eigensubspace is a good approximation of the slow manifold .,r 
(II) The fast eigensubspace is a good approximation of the fast manifold 

f~uo  

corresponding to the states at t = tp (x(tp) = u(tp) + laH(u(tp), ~(tp),#),z(tp) = 
v(t v) + h(x(tv), I~) ). 

If the initial condition (Xo,Zo) is close to the slow manifold V~'s, then one can 
set tp = to and skip step 5 and steps 7 through 9. For initial conditions far from 
.At' s, assumption (II) is not valid. The projected initial condition contains some 
significant errors due to the approximation of the fast manifold, even though the 
projected initial condition is very close to the slow manifold. Since the slow manifold 
is attractive from assumption (A4), step 5 will bring the system state closer to the 
slow manifold so that projection errors due to fast manifold approximation are 
reduced. Step 6 will force the system trajectory to 'slide' on the slow eigensubspace 
in the backward-in-time integration and present a fast instability in backward time. 

4. Interarea modes of two-time-scale power systems 

In large power systems, groups of strongly connected machines often exhibit coherent 
slow motions. This physical phenomenon is attributed to the connections within the 
coherent groups being stiffer or more dense than the connection between the coherent 
groups (Chow 1982; Chow & Kokotovic 1985). Consider the following n-machine 
power system modelled by Anderson & Fouad (1977) 

ml ~'i = Pi - D i ~ i -  ~, I'Cl~sin(6~- ~j) q- Eijcos(~ i -  ~j)], 
j = l , j ~ i  

i = 1,..., n, (32) 

where the subscript i denotes the variables associated with the ith machine, and 

m~ = inertia constant, 6~ = rotor angle, 
Pi = P , , i -  I Vi[2Gii, P,,i = mechanical input power, 

C O = Vi VjBI~, Eij = V~ VjG~i, D~ = damping coefficient, 
V~ = constant voltage behind machine transient reactance, 

B o = transfer susceptance in the reduced Y matrix, 
G O = transfer conductance in the reduced Y matrix. 

We assume the power system model (32) to consist of r slow coherent areas, and 
denote by a small parameter e > 0 the ratio of the strength of the external connections 
between machines in different areas to the strength of internal connections between 
machines in the same areas. Let J ,  be the index set of all machines i in area ~, and 
~ denote the summation over all machines i eJ , .  To exhibit the e-weak connections, 
(32) is rewritten as 

,7 

re, g =  P i ( e ) -  ~[C/~s in(6 , -  g j )+ e~cos(6~- 6j)] 
J 

- e { D : ; , +  ~ ~ [ C g s i n ( t ~ , - ~ i ) + E g c o s ( ~ , - ~ i ) ] } ,  

i =  1,...,n, (33) 
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where the superscripts I and E denote ~'intemal" and "external", respectively. The 
scaling of D~ by ~ is to delineate the fact that damping is relatively small. 

To exhibit the time-scale property of the power system, we can cast 133) in a standard 
singularly perturbed form (Kokotovic et al t986) using the slow coherency trans- 
formation (Chow 1982). The essence of this transformation is to introduce the 
inertia-weighted average of the machine angles in the same areas as the slow aggregate 
angle variable rio and the difference of the machine angles with respect to the reference 
machine in the area as the fast difference angle variable fie. A detailed derivation of 
the standard singularly perturbed form model can be found in Chow (I982) and 
Cheung (1992). 

Algorithm SDP is coded using functions from the Power System Toolbox (Chow 
& Cheung 1992), a Matlab-based power system analysis and design package. It is 
applied to the simulation of the slow dynamics of a 3-machine, 10-bus system, and 
a 16-machine, 68-bus system. The simulation consists of the following procedure. The 
loadflow solution of the pre-fault system is first obtained to initialize the state variables 
of the machine models. All loads are modelled as constant impedance. Second and 
third order Runge-Kutta formulas with variable stepsizes are used to integrate the 
power system dynamic equations. The grouping algorithm (Chow 1982; Chow & 
Cheung 1992) is used to identify the slow coherent areas in the system. Then the slow 
coherency transformation is used to cast the power system model in its singularly 
perturbed form. The slow dynamics projection algorithm SDP is used to provide the 
projection of the initial condition of the post-fault system. 

4.1 3-machine lO-bus system 

In the 3-machine 10-bus power system (us DOE Report 1987), machines 2 and 3 form 
a slow coherent group and machine 1 is a single-machine coherent group. Algorithm 
SDP with tp = t o is used to simulate the slow dynamics following a 0.3 s duration 
three-phase to ground fault at bus 7. The relative angle plots of machines 2 and 3 
with respect to machine 1 for the full order initial condition simu!ation and the 
projected initial condition simulation are given in figures la and lb, respectively, 
showing that the slow dynamics projection successfully removes almost aU the fast 
oscillations between machines 2 and 3 and retains the interarea oscillations. Note the 
discontinuities in the angles in figure lb when the fault is cleared and the initial 
condition projection is carried out. In this case, assumption (II) is satisfied, and 
algorithm SDP is essentially a linear projection. 

4.2 16-machine 68-bus system 

The 16-machine system (Schulz et a11974) is a simplified model of the US Northeastern 
system. The New England system is represented in detail with machines 1. to 9, while 
the neighbouring utilities in New York, Pennsylvania and Michigan are modelled 
with large equivalent machines 10 to 16. Based on the grouping algorithm, machines 
1-9 form a slow coherent area (area 1) while machines 10-16 form the other coherent 
area (area 2). 

Algorithm SDP is used to simulate the slow dynamics following a 0.21 s duration 
three-phase to ground-fault at bus 2, which is cleared by tripping the line between 
bus 1 and bus 2. The full order initial condition simulation of the angles of machines 
1 to 9 is given in figure 2a. The simulation using the projected initial condition from 
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Figure 1. Interarea mode of 3-machine 10-bus system. Initial conditions- full 
order (a); from algorithm SDI' with tp = to (b). 

algorithm SDP with tp = to is shown in figure 2b. Note that the simulation does not 
contain any observable fast dynamics, implying that the projected initial condition 
is very close to the slow manifold. However, the slow dynamics in figure 2b is abotit 
0.5 second out of phase with the trajectories shown in figure 2a, implying that the 
initial condition has been projected to an incorrect point on the slow manifold. Thus 
the results show that assumption (II) is not valid, and a linear projection does not 
provide sufficient accuracy. 

Then algorithm SDP is applied with t~ = to + 2 seconds. The full system state is 
projected onto the slow manifold ~nd the system integrated backward in time to 
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find the projected initial condition. The simulation is shown in figure 2c. Note the 
more substantial jump in the angles due to the projection when the fault is cleared. 
Also the phase of the slow dynamics now matches those of figure 2a. The results 
show that the whole New England system, acting as a group, is swinging against the 
rest of the system. This is consistent with the slow coherency grouping technique 
(Chow 1982). Figure 2c shows very clearly the interarea oscillations of area 1 with 
respect to area 2 while the higher frequency oscillations within area 1 are suppressed 
significantly. The results here clearly indicate the existence of  a nonlinear slow manifold 
in the swin9 equations of  power systems. The simulation using the projected initial 
condition from algorithm SDP is almost 130% faster than that of the full order initial 
condition simulation because of the larger stepsizes being used by the variable stepsize 
integration routine. However, the computation of the initial condition (xp(to),Zp(to)) 
is time-consuming because of the projection required in every step of the backward- 
in-time integration. In practice, the backward-in-time integration can be avoided if 
one is interested in only eliminating the fast dynamics for t > tp. In this case, the 
simulation can continue using the projected slow variables at t = tp (deMello et al 
1982). 

5. Conclusions 

In this paper we have studied the slow manifold simulation of two-time-scale power 
systems using aprojection method. The method is based on a nonlinear decoupling 
transformation which defines the slow and fast manifolds. A projection scheme is 
proposed for extracting the purely slow dynamics of a singularly perturbed system. 
The algorithm is applied to the simulation of the interarea modes of two power 
systems. The simulation results show that the irrelevant higher frequency dynamics 
are almost completely eliminated while the interarea modes are retained. Furthermore, 
the idea of projection may also be applied to define slow and fast energies which 
could be useful in direct stability analysis of power systems. 

This research is supported in part by US NSF grants EC-8915667 and EC-9215076. 
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