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SLOW ESCAPING POINTS OF MEROMORPHIC FUNCTIONS

P. J. RIPPON AND G. M. STALLARD

Abstract. We show that for any transcendental meromorphic function f
there is a point z in the Julia set of f such that the iterates fn(z) escape,
that is, tend to ∞, arbitrarily slowly. The proof uses new covering results
for analytic functions. We also introduce several slow escaping sets, in each
of which fn(z) tends to ∞ at a bounded rate, and establish the connections
between these sets and the Julia set of f . To do this, we show that the it-
erates of f satisfy a strong distortion estimate in all types of escaping Fatou
components except one, which we call a quasi-nested wandering domain. We
give examples to show how varied the structures of these slow escaping sets
can be.

1. Introduction

Let f : C → Ĉ be a meromorphic function that is not rational of degree 1, and
denote by fn, n = 0, 1, 2, . . . , the nth iterate of f . The Fatou set F (f) is defined
to be the set of points z ∈ C such that (fn)n∈N is well-defined and forms a normal
family in some neighbourhood of z. The complement C \ F (f) is called the Julia
set J(f) of f . An introduction to the properties of these sets can be found in [7].

This paper concerns the escaping set of f , defined as follows:

I(f) = {z : fn(z) is defined for n ∈ N, fn(z) → ∞ as n → ∞}.
If f is a polynomial, then I(f) is a neighbourhood of ∞ in which iterates tend to ∞
at a uniform rate, so I(f) ⊂ F (f) and J(f) = ∂I(f); see [6]. For a transcendental
entire function f , the escaping set was first studied by Eremenko [15] who proved
that

(1.1) I(f) ∩ J(f) �= ∅,
unlike for a polynomial, that

(1.2) J(f) = ∂I(f),

as for a polynomial, and finally that

(1.3) all components of I(f) are unbounded.

Domı́nguez [14] showed that the first two of these properties are true for any tran-
scendental meromorphic function, but the third is not. The set I(f) and the dynam-
ical behaviour of f on I(f) are more complicated for a transcendental meromorphic
function than for a polynomial. For example, I(f) can have infinitely many com-
ponents or it can be connected, and simple examples show that the set I(f) may
or may not meet F (f).
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For a transcendental entire function f , the fast escaping set was introduced by
Bergweiler and Hinkkanen in [11]:

A(f) = {z : there exists L ∈ N such that |fn+L(z)| > M(R, fn), for n ∈ N}.
Here,

M(r, f) = max
|z|=r

|f(z)|, for r > 0,

and R is any value such that R > minz∈J(f) |z|. The set A(f) has many properties
that make it easier to work with than I(f); see [11], [30] and [34]. For example, all
its components are unbounded, whereas for I(f) this is an open question asked by
Eremenko in [15]. The set A(f) also meets J(f), and we have J(f) = ∂A(f). Note
that A(f) is a subset of

(1.4) Z(f) = {z ∈ I(f) :
1

n
log log |fn(z)| → ∞ as n → ∞},

which is the set of points that ‘zip towards ∞’; see [11]. The set Z(f) is defined for
all transcendental meromorphic functions, it meets J(f) and we have J(f) = ∂Z(f);
see [29].

It is natural to expect that Z(f) �= I(f) for every transcendental meromorphic
function f , but this has not been established previously. Here we prove a much
stronger result. We show that for all transcendental meromorphic functions f there
are points of I(f) whose iterates tend to ∞ arbitrarily slowly, that is, more slowly
than at any given rate.

Theorem 1. Let f be a transcendental meromorphic function. Then, given any
positive sequence (an) such that an → ∞ as n → ∞, there exist

ζ ∈ I(f) ∩ J(f) and N ∈ N

such that

(1.5) |fn(ζ)| ≤ an, for n ≥ N.

Our proof of Theorem 1 relies on certain new covering properties of annuli, which
we state and prove in Section 2, and on the Ahlfors five islands theorem. We prove
Theorem 1 for functions with finitely many poles in Section 3, and for functions with
infinitely many poles in Section 4. We also indicate how the proof of Theorem 1
can be adapted to construct points such that (1.5) holds, and

lim inf
n→∞

|fn(ζ)| < ∞ and lim sup
n→∞

|fn(ζ)| = ∞.

Rempe [25, Theorem 1.4] proved a slow escape result for the exponential family
by using facts about the structure of the escaping sets of such functions, which are
known to be unions of curves to infinity called dynamic rays, or hairs. Expressed in
terms of functions of the form fλ(z) = λez, where λ �= 0, his result states that for
any positive sequence (an) such that an → ∞ as n → ∞ and an+1 = O(exp(an))
as n → ∞, there is a point ζ ∈ J(fλ) – in fact, an escaping endpoint of a dynamic
ray – and N ∈ N such that

1

C
an ≤ |fn(ζ)| ≤ Can, for n ≥ N,

where C = exp(2 + 2π).
In Section 5, we show that a two-sided slow escape result of this type holds for

a wide range of meromorphic functions.
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Theorem 2. Let f be a transcendental meromorphic function with a finite number
of poles. Then f has the property that, for all positive sequences (an) such that
an → ∞ as n → ∞ and an+1 = O(M(an, f)) as n → ∞, there exist ζ ∈ J(f) and
C > 1 such that

(1.6) an ≤ |fn(ζ)| ≤ Can, for n ∈ N,

if and only if there are positive constants c, d and r0 such that d > 1 and

(1.7) for all r ≥ r0 there exists ρ ∈ (r, dr) such that m(ρ, f) ≤ c.

Here

m(r, f) = min
|z|=r

|f(z)|, for r > 0,

denotes the minimum modulus of f . Note that (1.7) holds whenever f is bounded
on some path to ∞.

We prove Theorem 2 in Section 5. The proof of Theorem 2 is considerably simpler
than that of Theorem 1, where extra difficulty arises from the fact that m(r, f)
may be large for long intervals of values of r. It is clear that in Theorem 2 some
restriction on the sequence (an) is needed, such as an+1 = O(M(an, f)) as n → ∞.
To extend Theorem 2 to more general meromorphic functions, some replacement
for the restriction an+1 = O(M(an, f)) as n → ∞ would be needed.

Now we introduce sets of points which escape to ∞ at various bounded rates and
investigate to what extent the Eremenko properties (1.2) and (1.3) hold for these
new sets. First we define the slow escaping set of a transcendental meromorphic
function f ,

L(f) = {z ∈ I(f) : lim sup
n→∞

1

n
log |fn(z)| < ∞},

and the moderately slow escaping set of f ,

M(f) = {z ∈ I(f) : lim sup
n→∞

1

n
log log |fn(z)| < ∞}.

Evidently we have L(f) ⊂ M(f) ⊂ I(f) \ Z(f).
Next, for a positive sequence a = (an) such that an → ∞ as n → ∞, we define

Ia(f) = {z ∈ I(f) : |fn(z)| = O(an) as n → ∞},

where the constant in the O(.) condition depends on the point z. If an → ∞ as
n → ∞ and an = O(Cn) as n → ∞, for some C > 1, then Ia(f) ⊂ L(f). Note that
each set L(f), M(f) and Ia(f) is non-empty and meets J(f), by Theorem 1.

To state our results about these sets we need some further notions. First we
describe certain types of Fatou components. For any component U of F (f) we
write Un, for n ∈ N, to denote the component of F (f) which contains fn(U). Then
U is a wandering domain of f if the sequence Un is not periodic or pre-periodic.

Recall from [29] that a Baker wandering domain of f is a wandering domain U
of f such that

• each Un is bounded,
• Un surrounds 0 for large n,
• Un → ∞ as n → ∞.

The first example of such a wandering domain was given by Baker [1].
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We also introduce the notion of a nested wandering domain of f , which is a
wandering domain U of f such that

• each Un is bounded,
• Un+1 surrounds Un for large n,
• Un → ∞ as n → ∞.

Finally, we introduce the notion of a quasi-nested wandering domain of f , which
is a wandering domain U of f such that there is a sequence (nj) in N for which

• each Un is bounded,
• each Unj

surrounds 0,
• Unj

→ ∞ as j → ∞.

Any nested wandering domain is a Baker wandering domain and, in turn, any
Baker wandering domain is a quasi-nested wandering domain. For transcendental
entire functions, any multiply connected Fatou component is a nested wandering
domain, by [2, Theorem 3.1], so all three definitions are equivalent and the terms
are interchangeable. An example of a transcendental meromorphic function with
a quasi-nested wandering domain that is not a Baker wandering domain can be
found in [14, Theorem E]; see also Example 1 of this paper. These examples could
be modified to provide an example of a transcendental meromorphic function with
a Baker wandering domain that is not a nested wandering domain.

Our next result includes a ‘slow escape’ version of Eremenko’s property (1.2).

Theorem 3. Let f be a transcendental meromorphic function and let a = (an) be
a positive sequence such that an → ∞ as n → ∞. Then

(a) L(f) and M(f) are completely invariant under f ;
(b) L(f), M(f) and Ia(f) are each dense in J(f);
(c) J(f) = ∂L(f) = ∂M(f);
(d) we have

J(f) ⊂ ∂Ia(f)

⊂ J(f) ∪
⋃

{U : U is a quasi-nested wandering domain},

so if Ia(f) meets no quasi-nested wandering domain, then J(f) = ∂Ia(f).

Remarks. 1. If J(f) is connected, then the sets

∂L(f) = ∂M(f) = J(f), L(f) and M(f)

are also connected, as are ∂Ia(f) and Ia(f), provided that Ia(f) meets no quasi-
nested wandering domain, by Theorem 3(c) and (d). Note that J(f) is connected
if and only if all Fatou components of f have connected boundaries; see [23, Propo-
sition 1].

2. In Theorem 3(d), quasi-nested wandering domains arise because they are
‘exceptional’ Fatou components in the following sense: all other types of Fatou
components U in I(f) have the property that if Δ is a compact disc in U , then
there exist C > 1 and n0 ∈ N such that

|fn(z′)| ≤ C|fn(z)|, for z, z′ ∈ Δ, n ≥ n0;

see Theorem 5 in Section 6.
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3. For any meromorphic function f and any sequence a = (an) satisfying the
hypotheses of Theorem 2, it is natural to consider subsets of I(f) of the form

{z ∈ I(f) : there exists C = C(z) > 1 such that
an
C

≤ |fn(z)| ≤ Can}

and to ask if results similar to those in Theorem 3 can be obtained. Results of this
type appear to depend on how fast an tends to ∞ in relation to the speed of escape
of points in A(f); we hope to return to this question in a later paper.

Next we describe a family of transcendental meromorphic functions which have
many dynamical properties in common with transcendental entire functions; see [12].
Let D be an unbounded domain in C whose boundary consists of piecewise smooth
curves, and suppose that {z : |z| > r} \D �= ∅ for all r > 0. Let f be a complex-
valued function whose domain of definition contains the closure D of D. Then D is
called a direct tract of f if the function f is analytic in D and continuous in D and
if there exists R > 0 such that |f(z)| = R for z ∈ ∂D and |f(z)| > R for z ∈ D. For
example, any transcendental meromorphic function with a finite number of poles
has at least one direct tract. However, a transcendental meromorphic function with
infinitely many poles may or may not have a direct tract.

Recently, the following results about functions with a direct tract were obtained;
see [12, Theorem 5.1(a), Theorem 4.1(c) and Theorem 5.2].

Let f be a transcendental meromorphic function with a direct tract:

• if U is a Baker wandering domain of f , then U ⊂ Z(f);
• there is a constant r0 > 0 such that if U is a component of F (f) which
contains a Jordan curve surrounding {z : |z| = r0}, then U is a Baker
wandering domain, and indeed a nested wandering domain.

Thus, if f is a transcendental meromorphic function with a direct tract, then
the notions of quasi-nested wandering domain, Baker wandering domain and nested
wandering domain are equivalent. In earlier papers, we used the term Baker wan-
dering domain to describe such a wandering domain. From now on, we will usually
use the name nested wandering domain, since it is the strongest of these notions
and also the most descriptive. Note that if f has a direct tract, then any nested
wandering domain of f is in Z(f) by the first bullet point above. Thus we obtain
the following corollary of Theorem 3(d).

Corollary 1. Let f be a transcendental meromorphic function with a direct tract
and let a = (an) be a positive sequence such that an → ∞ as n → ∞. Then

(a) we have

J(f) ⊂ ∂Ia(f)

⊂ J(f) ∪
⋃

{U : U is a nested wandering domain},

so if Ia(f) meets no nested wandering domain, then J(f) = ∂Ia(f);

(b) if
1

n
log log an � ∞ as n → ∞, then Ia(f) meets no nested wandering

domain, so J(f) = ∂Ia(f).

We prove Theorem 3 in Section 6. We also show there that Theorem 3(d) and
Corollary 1(a) cannot be improved to state that we always have J(f) = ∂Ia(f),
and that in Corollary 1(a) the assumption about the existence of a direct tract
cannot be omitted.
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Our final result includes a ‘slow escape’ version of Eremenko’s property (1.3)
for a meromorphic function with a direct tract, and it shows that a fundamental
difference occurs here depending on whether or not there are nested wandering
domains. First recall that if f is a transcendental meromorphic function with a
direct tract, then I(f) has at least one unbounded component; see [12, Theorem 1.1].

However, if f has no direct tract, then I(f) may have no unbounded components;

for example, for f(z) = 1
2 tan z the set I(f) = J(f) is totally disconnected.

Theorem 4. Let f be a transcendental meromorphic function with a direct tract.

(a) Suppose that a = (an) is a positive sequence such that an → ∞ as n → ∞.
(i) If f has no nested wandering domains, then the sets ∂L(f), ∂M(f)

and ∂Ia(f) all have an unbounded component, and therefore so do

L(f), M(f) and Ia(f).
(ii) If f is entire and has no nested wandering domains, then all the com-

ponents of ∂L(f), ∂M(f) and ∂Ia(f) are unbounded and therefore so

are all the components of L(f), M(f) and Ia(f).

(b) If f has a nested wandering domain, then all the components of M(f) are
bounded.

We prove Theorem 4 in Section 7, and in Section 8 we give a number of examples
which show how varied the structures of the sets L(f), M(f) and Ia(f) can be.

We end this section by making some observations about the possible relationships
between these various subsets of the escaping set and the components of the Fatou
set when f is a transcendental meromorphic function.

• Any Fatou component U which meets I(f) must lie in I(f), and such
a Fatou component must be either a wandering domain or a Baker (or
pre-Baker) domain; that is, U eventually maps into a p-cycle of Fatou
components in which fnp(z) → z0 as n → ∞ but fp(z0) is not defined.

• If f has a Baker domain U ⊂ I(f), then U ⊂ L(f), by [28, Theorem 1].
• As pointed out earlier in this section, if f has a direct tract and U is a
nested wandering domain of f , then U ⊂ Z(f) and hence U ∩M(f) = ∅.

• There exists a transcendental meromorphic function f , with no direct tract,
which has a nested wandering domain U such that U ⊂ L(f); see [31,
discussion after Theorem 3].

• There exists a transcendental entire function with a simply connected wan-
dering domain contained in A(f); see [10].

• There exists a transcendental entire function with a simply connected wan-
dering domain (either bounded or unbounded) contained in L(f); see Ex-
amples 4 and 5 in Section 8.

2. Preliminary results

The construction of the slowly escaping point in Theorem 1 uses the following
simple lemma.

Lemma 1. Let En, n ≥ 0, be a sequence of compact sets in C and f : C → Ĉ be a
continuous function such that

(2.1) f(En) ⊃ En+1, for n ≥ 0.

Then there exists ζ such that fn(ζ) ∈ En, for n ≥ 0.
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If f is also meromorphic and En∩J(f) �= ∅, for n ≥ 0, then there exists ζ ∈ J(f)
such that fn(ζ) ∈ En, for n ≥ 0.

Proof. Let

Fn = {z ∈ E0 : f(z) ∈ E1, . . . , f
n(z) ∈ En}.

Then, by (2.1), Fn is a decreasing sequence of non-empty compact sets, so F =⋂∞
n=0 Fn is non-empty. If ζ ∈ F , then fn(ζ) ∈ En, for n ≥ 0, as required.
The second statement follows by applying the first statement to the non-empty

compact sets En ∩ J(f), n ≥ 0, in view of the complete invariance of J(f). �

In our proof of Theorem 1 for functions with a finite number of poles, we apply
Lemma 1 to sets En that are closed annuli. In order to do this we require two
annulus covering properties. Throughout, we use the following notation, for z ∈ C

and 0 < r < R:

• A(r, R) = {z : r < |z| < R},
• B(z, r) = {w : |w − z| < r}.

We use a result of Baker and Liverpool [4, Lemma 1].

Lemma 2. Let f be analytic in the annulus A(α, β) and let |z0| = |z| =
√
αβ. If

f omits the values 0 and 1 in A(α, β), then

|f(z)| ≤ exp
(
(log+ |f(z0)|+ C0)(exp(π

2/ log γ) + 1)
)
,

where C0 is a positive absolute constant and γ = β/α. In particular, if we also have
γ ≥ 2, then

(2.2) |f(z)| ≤ (|f(z0)|+ 2)L,

where L > 2 is an absolute constant.

The estimate (2.2) follows from the fact that

log+ t+ C ≤ 2C log(t+ 2), for t ≥ 0, C ≥ 2.

We use Lemma 2 to prove our first annulus covering property, which is related to
a theorem of Bohr; see [19, page 170].

Lemma 3. Let f be a transcendental meromorphic function with a finite number
of poles, let cL < 1/4, where c > 0 and L is the constant in Lemma 2, and let
R0 = R0(f) > 0 be so large that M(r, f) is increasing on [R0,∞) and

(2.3) M(r, f) > 34L, for r ≥ R0.

If r > R0 and

(2.4) there exists ρ ∈ (2r, 4r) such that logm(ρ, f) ≤ c logM(ρ, f),

then, for any R and R̃ such that

2 < R and R10 < R̃ < M(r, f)1/10,

we have

f (A(r, 8r)) covers A(R,R5) or A(R̃, R̃5).
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Proof. Suppose that r > R0. By (2.4), there exists ρ ∈ (2r, 4r) such that m(ρ, f) ≤
M(ρ, f)c. Then A(r, 8r) ⊃ A( 12ρ, 2ρ).

Now suppose that f omits in A( 12ρ, 2ρ) two values:

w1 ∈ A(R,R5) and w2 ∈ A(R̃, R̃5).

Then w1 �= w2 and

g(z) =
f(z)− w1

w2 − w1

omits in A( 12ρ, 2ρ) the values 0 and 1, so we can apply (2.2) to the function g.

Take z0 such that |z0| = ρ and |f(z0)| = m(ρ, f) ≤ M(ρ, f)c. Since R̃ ≥ 2R5,
we have

|g(z0)| ≤
|f(z0)|+R5

R̃−R5
≤ |f(z0)|+R5

R5
.

Therefore, for |z| = ρ, we have, by (2.2),

|f(z)| ≤ |w1|+ (|w2|+ |w1|)|g(z)|
≤ R5 + 2R̃5 (|g(z0)|+ 2)L

≤ R5 + 2R̃5

(
|f(z0)|+ 3R5

R5

)L

≤ R5 + 2R̃5

(
M(ρ, f)c + 3R5

R5

)L

.

Now

R < R̃ < M(ρ, f)1/10, 0 < cL < 1/4 and 1 + 2L+1 < 3L < M(ρ, f)1/4,

by (2.3) and the fact that L > 2. We deduce that, for |z| = ρ,

|f(z)| ≤ M(ρ, f)1/2 + 2M(ρ, f)1/2
(
M(ρ, f)c +M(ρ, f)1/(4L)

)L

< M(ρ, f)3/4(1 + 2L+1)

< M(ρ, f),

which is a contradiction. Thus f
(
A( 12ρ, 2ρ)

)
covers at least one of the annuli

A(R,R5) or A(R̃, R̃5), and so f (A(r, 8r)) does this as well. �

Next, we require a certain Hadamard convexity property.

Lemma 4. Let f be a transcendental meromorphic function with a finite number
of poles. Then there exists R1 = R1(f) > 0 such that

(2.5) M(rc, f) ≥ M(r, f)c, for r ≥ R1, c > 1.

This result follows from the fact that logM(r, f) is a convex function of log r
such that logM(r, f)/ log r → ∞ as r → ∞, and hence

rM ′(r)

M(r)
→ ∞ as r → ∞,

where for definiteness we take M ′(r) to be the right-derivative; see [33, Lemma 2.2]
for a proof of Lemma 4 in the case that f is entire.
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We use Lemma 4 and Harnack’s inequality to obtain an annulus covering prop-
erty in which we assume an opposite type of hypothesis about m(r, f) to that
of Lemma 3. (Note that Harnack’s inequality is used in a similar way
in [21, Lemma 2].)

Lemma 5. Let f be a transcendental meromorphic function with a finite number
of poles, let k > 1, and let R2 = R2(f, k) > 0 be so large that

• M(r, f) is increasing on [R2,∞),
• M(r, f) > rk and s =

√
log r > max{2π, 4/(k − 1)}, for r > R2,

• the inequality (2.5) holds for r ≥ R2 and c > 1.

If r > R2 and

(2.6) m(ρ, f) > 1, for ρ ∈ (r1+1/s, rk−1/s),

then the following hold.

(a) We have

logm(ρ, f) ≥
(
1− 2π

s

)
logM(ρ, f) > 0, for ρ ∈ [r1+2/s, rk−2/s].

(b) We have R > rk, where R = M(r1+2/s, f). Also, if A ⊂ A
(
R,Rk(1−12/s)

)
is any domain such that A is homeomorphic to a closed annulus and sur-
rounds 0, then A(r1+2/s, rk−2/s) contains a unique component B of f−1(A)
with the following properties:

• B is homeomorphic to a closed annulus and surrounds 0;
• f(B) = A;
• f maps the inner and outer boundary components of B onto the cor-
responding boundary components of A.

Proof. By (2.6) the function u(z)=log |f(z)| is positive harmonic in A(r1+1/s, rk−1/s),
so U(t) = u(et) is positive harmonic in the strip

S = {t : log r + s < �(t) < k log r − s},
since s =

√
log r. Now log r + 2s < k log r − 2s, since s > 4/(k− 1). Thus if t1 and

t2 satisfy log r + 2s < �(t1) = �(t2) < k log r − 2s and |�(t1) − �(t2)| ≤ π, then
B(t1, s) ⊂ S and |t2 − t1| ≤ π < s. So

s− π

s+ π
≤ U(t2)

U(t1)
≤ s+ π

s− π
,

by Harnack’s inequality; see [20, page 35]. Hence, if z1 and z2 satisfy r1+2/s <
|z1| = |z2| < rk−2/s, then

1− π/s

1 + π/s
≤ u(z2)

u(z1)
≤ 1 + π/s

1− π/s
.

Since π/s < 1/2, part (a) then follows.
To prove part (b), first note that R > M(r, f) > rk. Next

(2.7) f
(
{z : |z| = r1+2/s}

)
⊂ {z : |z| ≤ M(r1+2/s, f)} = {z : |z| ≤ R}.

On the other hand, by part (a),

(2.8) f
(
{z : |z| = rk−2/s}

)
⊂ {z : |z| ≥ M(rk−2/s, f)1−2π/s}.
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By (2.5), with c = (k − 2/s)/(1 + 2/s) > 1,

M
(
rk−2/s, f

)1−2π/s

≥ M
(
r1+2/s, f

) k−2/s
1+2/s

(1−2π/s)

≥ M
(
r1+2/s, f

)k(1−12/s)

= Rk(1−12/s).

Thus, by (2.7) and (2.8),

(2.9) f
(
∂A(r1+2/s, rk−2/s)

)
∩ A

(
R,Rk(1−12/s)

)
= ∅,

but f
(
∂A(r1+2/s, rk−2/s)

)
does meet both of the complementary components of

A
(
R,Rk(1−12/s)

)
. Therefore, since f is analytic in A(r, rk), we have

(2.10) f
(
A(r1+2/s, rk−2/s)

)
⊃ A

(
R,Rk(1−12/s)

)
.

Now let A ⊂ A
(
R,Rk(1−12/s)

)
be a domain such that A is homeomorphic to a

closed annulus and surrounds 0. Then, by (2.9) and (2.10), the set f−1(A) meets
A(r1+2/s, rk−2/s) but does not meet ∂A(r1+2/s, rk−2/s). Thus there is at least
one component, B say, of f−1(A) in A(r1+2/s, rk−2/s) and f(B) = A. By the
argument principle, this component must surround 0 since f is analytic and f �= 0
in A(r1+2/s, rk−2/s). Also, B has only one bounded complementary component,
namely the one containing 0, because any other bounded complementary component
must lie in A(r1+2/s, rk−2/s) where f �= 0. Hence B is homeomorphic to a closed
annulus. The mapping property of the two boundary components of B follows from
the argument principle since f : B → A is a proper map. From this we deduce that
B is the unique component of f−1(A) in A(r1+2/s, rk−2/s) with these properties.
This proves part (b). �

3. Functions with finitely many poles

In this section we prove Theorem 1 for functions with finitely many poles. First
we deal with a special case.

Lemma 6. Let f be a transcendental meromorphic function with a finite number
of poles. Suppose there is a sequence of continua Γm, m ≥ 0, such that

(1) for each m ≥ 0, Γm surrounds 0 and has exactly two complementary com-
ponents, and Γm is surrounded by Γm+1;

(2) dist (0,Γm) → ∞ as m → ∞;
(3) f(Γm) = Γm+1, for m ≥ 0.

Then, given any positive sequence (an) such that an → ∞ as n → ∞, there exists

ζ ∈ I(f) ∩ J(f) and N ∈ N

such that (1.5) holds.

Proof. First note that we can assume that (an) is an increasing sequence. Also, by
renumbering if necessary, we can assume that f has no poles on Γ0 or outside Γ0.

By (1) we can define Bm, for m ≥ 0, to be the union of Γm and Γm+1 and those
points that are both outside Γm and inside Γm+1. Then Bm is a continuum that
surrounds 0 and ∂Bm is a subset of Γm ∪ Γm+1. Thus by (3) and the fact that f
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is analytic in a neighbourhood of Bm, we have, for each m ≥ 0, exactly one of the
following possibilities:

f(Bm) = Bm+1,(3.1)

f(Bm) = Gm+1 ∪Bm+1,(3.2)

where Gm+1 is the complementary component of Bm+1 that contains 0. Since J(f)
is unbounded, we deduce that

(3.3) Bm ∩ J(f) �= ∅, for all m ≥ 0.

If (3.1) holds for all m ≥ M , say, then (by the hypotheses (1) and (2)) the
outside of BM is contained in the Fatou set of f , which is impossible. Thus there
is a strictly increasing sequence m(j) ∈ N such that (3.2) holds for all m = m(j),
j ∈ N. Hence we have the covering properties

(3.4) f(Bm) ⊃ Bm+1, for m ≥ 0,

and

(3.5) f(Bm(j)) ⊃ Bm(j), for j ∈ N.

By (3.5), for any d ∈ N, we have

fd(Bm(j)) ⊃ Bm(j), for j ∈ N.

The idea now is to choose a point ζ ∈ B0 which has an orbit that visits each of the
compact sets Bm, m ≥ 0, in order of increasing m, except that the orbit remains in
each Bm(j), j ∈ N, for d(j) steps. To arrange this, we introduce a sequence (p(j))
of the form

p(j) = d(1) + · · ·+ d(j), j ∈ N,

where d(j) ∈ N. The sequence (d(j)) will be chosen later to give the desired rate
of escape of fn(ζ). We also put m(0) = 0 and p(0) = 0.

If we define

En =

{
Bn−p(j−1), for m(j − 1) + p(j − 1) ≤ n < m(j) + p(j − 1), j ∈ N,
Bm(j), for m(j) + p(j − 1) ≤ n < m(j) + p(j), j ∈ N,

then it follows from (3.4) and (3.5) that (2.1) holds. Thus, by Lemma 1 and (3.3),
there exists a point ζ ∈ E0 ∩ J(f) = B0 ∩ J(f) such that, for j ∈ N,

fn(ζ) ∈ Bn−p(j−1), for m(j − 1) + p(j − 1) ≤ n < m(j) + p(j − 1),

and

fn(ζ) ∈ Bm(j), for m(j) + p(j − 1) ≤ n < m(j) + p(j).

Clearly ζ ∈ I(f) ∩ J(f) for all possible choices of p(j).
To complete the proof, we choose a subsequence (an(j)) of (an) such that

Bm(j) ⊂ B(0, an(j)),

and then choose d(j) so large that m(j − 1) + p(j − 1) ≥ n(j), for j ≥ 2. Then, for
j ≥ 2 and m(j − 1) + p(j − 1) ≤ n < m(j) + p(j), the point fn(ζ) lies inside the
outer boundary of Bm(j), so

|fn(ζ)| ≤ an(j) ≤ am(j−1)+p(j−1) ≤ an,

since (an) is increasing. This proves (1.5). �
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We now prove Theorem 1 for any transcendental meromorphic function with
a finite number of poles. Once again we can assume that (an) is an increasing
sequence such that an → ∞ as n → ∞.

First take r0 so large that r0 ≥ max{R0, R1, R2}, where R0 = R0(f), R1 = R1(f)
and R2 = R2(f, k), 4 ≤ k ≤ 5, are the constants appearing in Lemmas 3, 4 and 5,
and also

(3.6) r0 ≥ exp(1202)

and

(3.7)
logM(r, f)

log r
≥ 1000, for r ≥ r0.

Consider the annulus A0 = A(r0, r
k0
0 ), where k0 = 5. The first step of the proof

is to use Lemma 3 and Lemma 5 to choose a sequence of annuli of the form

Am = A(rm, rkm
m ), m ≥ 0,

such that, for m ∈ N,

f(Am−1) ⊃ Am,(3.8)

rm > r10m−1 and km ≥ km−1(1− 12/sm−1),(3.9)

where sm =
√
log rm, and

(3.10) 4 ≤ km ≤ 5.

In particular, note that Am surrounds Am−1 and rm → ∞ as m → ∞.
Suppose that the annuli A0, A1, . . . , Am−1, m ∈ N, have been chosen so that

they satisfy the above conditions. To choose Am we consider two cases.

Case 1. Suppose first that

(3.11) there exists ρ ∈ (3rm−1,
3
8r

km−1

m−1 ) such that m(ρ, f) ≤ 1.

Then

ρ ∈ ( 23ρ,
4
3ρ) ⊂ ( 13ρ,

8
3ρ) ⊂ (rm−1, r

km−1

m−1 ).

Since M(ρ, f) ≥ M(r0, f) ≥ 1, by (3.6) and (3.7), it follows from (3.11) that we

can apply Lemma 3 with r = 1
3ρ. We choose R and R̃ such that

(3.12) r10m−1 < R and R10 < R̃ < M(rm−1, f)
1/10;

this is possible by (3.7). With r = 1
3ρ, we deduce from (3.11), (3.12) and Lemma 3

that

f
(
A(rm−1, r

km−1

m−1 )
)

covers A(R,R5) or A(R̃, R̃5).

Hence we can choose rm = R or rm = R̃ and km = 5 to ensure that (3.8), (3.9)
and (3.10) also hold for Am.

Case 2. On the other hand, suppose that (3.11) is false; that is,

m(ρ, f) > 1, for all ρ ∈ (3rm−1,
3
8r

km−1

m−1 ).

Then

m(ρ, f) > 1, for all ρ ∈ (r
1+1/sm−1

m−1 , r
km−1−1/sm−1

m−1 ),

because

(1/sm−1) log rm−1 =
√
log rm−1 > log 3,
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by (3.6). Thus, by Lemma 5 and (3.7),

f
(
A(rm−1, r

km−1

m−1 )
)
⊃ A

(
R,Rkm−1(1−12/sm−1)

)
,

where R = M(r
1+2/sm−1

m−1 , f) > r10m−1. Thus we can choose rm = R and km =
km−1(1− 12/sm−1) to ensure that (3.8) and (3.9) hold for Am. To see that (3.10)
also holds for Am, note that, for 1 ≤ j ≤ m− 1 we have, by (3.9),

kj ≥ kj−1(1− 12/sj−1)

and

sj
sj−1

=

√
log rj

log rj−1
≥ 3.

Also, k0 = 5 and s0 ≥ 120, by (3.6). Thus

12

sj
≤ 1

10

(
1

3

)j

, for 0 ≤ j ≤ m− 1,

so

km ≥ 5
m−1∏
j=0

(
1− 1

10

(
1

3

)j
)

≥ 4,

as required.
We have now shown that it is possible to construct a sequence of annuli Am

satisfying conditions (3.8), (3.9) and (3.10). Next we use these annuli to obtain a
point ζ ∈ I(f) ∩ J(f) satisfying (1.5).

First suppose that in this process of choosing the annuli we were in Case 2 for
all m ≥ M , say. Without loss of generality we can assume that M = 0. So, for
each m ∈ N, the annulus Am was obtained by applying Lemma 5 to Am−1. We
can also deduce from Lemma 5 that if A ⊂ A

(
rm, rkm

m

)
is any domain such that

A is homeomorphic to a closed annulus which surrounds 0, then Am−1 contains a
unique component B of f−1(A) such that B is homeomorphic to a closed annulus
and surrounds 0, f(B) = A, and f maps the inner and outer boundary components
of B onto the corresponding boundary components of A.

Therefore, for each n ≥ m ≥ 0 there is a unique set Γm,n, homeomorphic to a

closed annulus, contained in Am such that

• fn−m(Γm,n) = Γn,n = An, for n ≥ m ≥ 0;
• Γm,n surrounds 0, for n ≥ m ≥ 0;
• for n > m ≥ 0, we have f(Γm,n) = Γm+1,n, and f maps the inner and outer
boundary components of Γm,n onto the corresponding boundary compo-
nents of Γm+1,n;

• Γm,n+1 ⊂ Γm,n, for n ≥ m ≥ 0.

Now let Γm =
⋂

n≥m Γm,n, for m ≥ 0. Then each Γm, m ≥ 0, is a continuum which
surrounds 0 and has two complementary components, and also Γm+1 surrounds
Γm. Moreover, for each m ≥ 0, we have f(Γm) = Γm+1, since f(Γm,n) = Γm+1,n,
for all n > m. Thus the sequence of continua Γm has properties (1), (2) and (3) of
Lemma 6, so there exists a point ζ ∈ I(f) ∩ J(f) satisfying (1.5).

The alternative is that in the process of choosing the annuli Am we were in
Case 1 infinitely often; that is, we obtained Am by applying Lemma 3 to Am−1 for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4184 P. J. RIPPON AND G. M. STALLARD

infinitely many m. When we apply Lemma 3 to Am−1, for m ≥ 2, there exists ρ
such that (3.11) holds, and for this value of ρ we have

r10m−2 < rm−1 < M(rm−1, f)
1/10 < M( 13ρ, f)

1/10,

by (3.9), (3.7) and the fact that M(r, f) is increasing on [r0,∞). Thus, by applying

Lemma 3 with r = 1
3ρ again, but R = rm−2 and R̃ = rm−1, we obtain

f (Am−1) covers Am−2 or Am−1, so f2 (Am−1) ⊃ Am−1.

Hence in this situation, not only do we have

(3.13) f(Am−1) ⊃ Am, for m ∈ N,

but, in addition, there is a strictly increasing sequence of positive integers m(j),
j ≥ 0, such that

(3.14) f
(
Am(j)

)
covers Am(j)−1 or Am(j), so f2

(
Am(j)

)
⊃ Am(j), for j ∈ N.

We now use similar arguments to those used in the proof of Lemma 6 to prove the
existence of a point ζ ∈ I(f) satisfying (1.5). In this case, we use (3.13) and (3.14)
instead of (3.4) and (3.5). Arguing in this way, we can show that there exists a
point ζ ∈ A0 which has an orbit that visits each of the annuli Am, m ≥ 0, in order
of increasing m, except that after entering Am(j), j ∈ N, for the first time the orbit

remains in Am(j)−1 ∪ Am(j) for d(j) steps, ending in Am(j). The only difference
from the argument used in Lemma 6 is that here the positive integers d(j) must be
even because of (3.14). Clearly ζ ∈ I(f) once again, and by choosing the integers
d(j) appropriately we can ensure that ζ satisfies (1.5), as in the proof of Lemma 6.

To complete the proof of Theorem 1 we show that we can take ζ ∈ J(f). We do
this, using the second statement in Lemma 1, by proving that each of the closed
annuli Am must meet J(f).

Suppose that Am(j) ⊂ F (f) for some j ∈ N. Then Am(j) ⊂ I(f) by normality,

since Am(j)∩I(f) �= ∅. However, by (3.14) and Lemma 1, for each j ∈ N there exists

a point zj ∈ Am(j) such that the forward orbit of zj remains in Am(j)−1∪Am(j), so
zj /∈ I(f), a contradiction. Therefore our supposition must be false. Hence the sets

Am meet J(f) for arbitrarily large m and hence for all m by (3.13), as required.
This completes the proof of Theorem 1 for functions with finitely many poles.

Remark. Whenever we apply Lemma 3 or (3.2) we have the option to choose the
covered annulus to be either large or within a uniformly bounded distance of 0. If
we do this, then the corresponding points of the orbit of ζ have the same property.
Hence we can ensure that (1.5) holds and that

lim inf
n→∞

|fn(ζ)| < ∞ and lim sup
n→∞

|fn(ζ)| = ∞.

4. Functions with infinitely many poles

For functions with infinitely many poles, we prove Theorem 1 using the following
version of Ahlfors’ five islands theorem; see [36, Corollary to Theorem VI.8].

Lemma 7. If f is a transcendental meromorphic function and Di, 1 ≤ i ≤ 5, are
simply connected domains bounded by Jordan curves such that the Di are disjoint,
then for each R > 0 there are infinitely many domains in C\B(0, R), each of which
is mapped by f univalently onto one of the Di.
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Suppose that f is a transcendental meromorphic function with infinitely many
poles. We have the following properties:

(1) the image under f of any open disc around a pole of f contains a neigh-
bourhood of ∞;

(2) if D0, D1, D2, D3, D4 are open discs with disjoint closures and R > 0, then,
by Lemma 7, there exists a Jordan domain D in C \ B(0, R) such that f
maps D univalently onto Di, for some i ∈ {0, 1, . . . , 4}.

We now obtain a sequence of Jordan domains tending to ∞ with certain covering
properties. First, we use property (1) and the fact that f has infinitely many poles
to obtain open discs

Dm = B(zm, rm), m ≥ 0,

such that

dist (0, Dm) → ∞ as m → ∞,(4.1)

zm is a pole of f, for m ≥ 0,(4.2)

and

(4.3) f(Dm) ⊃ Dm+1, for m ≥ 0.

Next, we use property (2) to obtain Jordan domains Vj , j ≥ 0, such that

dist (0, Vj) → ∞ as j → ∞,(4.4)

f(D5j+4) ⊃ Vj , for j ≥ 0,(4.5)

and

(4.6) f(Vj) ⊃ Dm(j), for j ≥ 0 and some m(j) ∈ {5j, 5j + 1, . . . , 5j + 4}.
By (4.3), (4.5) and (4.6), we have

(4.7) f60(D5j+4) ⊃ D5j+4, for j ≥ 0,

since 60 is the least common multiple of 2, 3, 4, 5 and 6.
The idea now is to choose a point ζ ∈ D0 which has an orbit that visits each

of the sets Dm, m ≥ 0, in order of increasing m, except that after entering D5j+4,

j ≥ 0, for the first time the orbit remains in D5j ∪ · · · ∪D5j+4 ∪ Vj for d(j) steps

ending in D5j+4.
To arrange this, we introduce a sequence p(j) of the form

p(j) = d(0) + · · ·+ d(j), j ≥ 0,

where each d(j) ∈ 60N, and also put p(−1) = 0. Then, for j ≥ 0, define

(4.8) En = Dn−p(j−1), for 5j + p(j − 1) ≤ n < 5j + 5 + p(j − 1),

and define En, for 5j+5+ p(j− 1) ≤ n < 5j+5+ p(j), to be d(j) closed sets, each
belonging to {D5j , D5j+1, . . . , D5j+4, Vj}, which are arranged in the order defined

by the covering properties (4.6) and (4.7), starting with Vj and ending with D5j+4.
Then (2.1) holds by (4.3) and (4.7), so we can use Lemma 1 to choose the required
point ζ ∈ D0 such that, for j ≥ 0,

fn(ζ) ∈ Dn−p(j−1), for 5j + p(j − 1) ≤ n < 5j + 5 + p(j − 1),

and

fn(ζ) ∈ D5j ∪ · · · ∪D5j+4 ∪ Vj , for 5j + 5 + p(j − 1) ≤ n < 5j + 5 + p(j).
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Clearly ζ ∈ I(f) for all possible choices of p(j) by (4.1) and (4.4). Also, given any
positive increasing sequence (an) such that an → ∞ as n → ∞, we can choose
d(j) appropriately to ensure that ζ satisfies (1.5), as in the proof of Lemma 6.
Finally, note that all poles and their pre-images are in J(f), so we deduce from the
second statement of Lemma 1 that ζ can be taken to lie in J(f), as required. This
completes the proof of Theorem 1.

Remark. Whenever we apply Lemma 7 we have the option to choose the covered
disc to be either large or within a uniformly bounded distance of 0. If we do this,
then the corresponding points of the orbit of ζ have the same property. Hence we
can ensure that (1.5) holds and that

lim inf
n→∞

|fn(ζ)| < ∞ and lim sup
n→∞

|fn(ζ)| = ∞.

5. Proof of Theorem 2

To prove Theorem 2 we use another annulus covering property related to Bohr’s
theorem.

Lemma 8. Let f be a transcendental meromorphic function with a finite number
of poles, let c and K be positive constants, and let α, β, γ, α′, β′, α′′, β′′ and C be
constants such that

(5.1) 1 < α < β, 1 < α′ < β′ < α′′ < β′′ ≤ C and α′′/β′ ≥ γ = β/α.

There exists R0 = R0(f, γ, C, c,K) > 0 such that if r > R0,

(5.2) 1 ≤ R ≤ KM(r, f) and m(
√
αβ r, f) ≤ c,

then
f (A(αr, βr)) covers A(α′R, β′R) or A(α′′R, β′′R).

Proof. Assume that (5.2) holds for some r > 0. Then there exists z0 such that
|z0| =

√
αβ r and |f(z0)| ≤ c. Suppose that f omits in A(αr, βr) two values:

w1 ∈ A(α′R, β′R) and w2 ∈ A(α′′R, β′′R).

Then w1 �= w2 and

g(z) =
f(z)− w1

w2 − w1

omits in A(αr, βr) the values 0 and 1, so we can apply Lemma 2 to the function g.
Now

|g(z0)| ≤
c+ β′R

α′′R− β′R
≤ c+ 1

α′′/β′ − 1
.

Thus, by Lemma 2 and (5.1), for |z| =
√
αβ r,

|g(z)| ≤ exp

((
log+

(
c+ 1

γ − 1

)
+ C0

)(
exp

(
π2

log γ

)
+ 1

))
= D,

where C0 is a positive absolute constant and the positive constant D depends on γ
and c. Therefore, for |z| =

√
αβ r, we have

|f(z)| ≤ |w1|+ (|w2|+ |w1|)|g(z)|
≤ β′R+ (β′′R + β′R)D

≤ (1 + 2D)CKM(r, f),

by (5.1) and (5.2).
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Now, for any k > 1 we have

M(kr, f)

M(r, f)
→ ∞ as r → ∞,

since logM(r, f) is a convex function of log r such that logM(r, f)/ log r → ∞ as
r → ∞. Therefore, there exists R0 = R0(f, γ, C, c,K) such that if r > R0, then

|f(z)| < M(
√
αβ r, f), for |z| =

√
αβ r,

which is a contradiction. Thus we deduce that if r > R0, then f (A(αr, βr)) covers
at least one of the annuli A(α′R, β′R) or A(α′′R, β′′R), as required. �

We also require the following result due to Zheng [38]. (Recall from Section 1
that, for a transcendental meromorphic function with at most finitely many poles,
the notions of nested wandering domain and Baker wandering domain are equiva-
lent.)

Lemma 9. Let f be a transcendental meromorphic function with at most finitely
many poles. If f has a nested wandering domain U , then for a multiply connected
domain A in U such that each fn(A), n ∈ N, contains a closed curve which is not
null-homotopic in Un, there exist annuli An = {z : rn < |z| < Rn}, n ∈ N, and
n0 ∈ N such that

An ⊂ fn(A), for n > n0,

and Rn/rn → ∞ as n → ∞.

Proof of Theorem 2. First we assume that f is a transcendental meromorphic func-
tion with a finite number of poles and that c, d and r0 are positive constants such
that d > 1 and

(5.3) for all r ≥ r0 there exists ρ ∈ (r, dr) such that m(ρ, f) ≤ c.

Suppose that (an) is a positive sequence such that an → ∞ as n → ∞ and
an+1 = O(M(an, f)) as n → ∞. We take a positive constant K and N ∈ N so large
that

(5.4) 1 ≤ an+1 ≤ KM(an, f) and an ≥ max{r0, R0}, for n ≥ N,

where R0 = R0(f, d, d
6, c,K) is the constant in Lemma 8. Then, by (5.3), there

exist sequences (ρ′n) and (ρ′′n) such that, for n ≥ N ,

(5.5) ρ′n ∈ (dan, d
2an) and m(ρ′n, f) ≤ c,

and

(5.6) ρ′′n ∈ (d4an, d
5an) and m(ρ′′n, f) ≤ c.

Now define, for n ≥ N ,

A′
n = A(d−1/2ρ′n, d

1/2ρ′n) and A′′
n = A(d−1/2ρ′′n, d

1/2ρ′′n).

Then

(5.7) an < d−1/2ρ′n < d1/2ρ′n < d−1/2ρ′′n < d1/2ρ′′n < d 6an.

We now apply Lemma 8 with

(5.8) r = an, αr = d−1/2ρ′n, βr = d1/2ρ′n,

and

R=an+1, α
′R = d−1/2ρ′n+1, β

′R=d1/2ρ′n+1, α
′′R=d−1/2ρ′′n+1, β

′′R=d1/2ρ′′n+1.
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Then α′′/β′ = d−1ρ′′n+1/ρ
′
n+1 ≥ d by (5.5) and (5.6), and β/α = d by (5.8). We

deduce from Lemma 8 and (5.4) that for n ≥ N we have

f(A′
n) covers A′

n+1 or A′′
n+1;

similarly,

f(A′′
n) covers A′

n+1 or A′′
n+1.

Therefore we can choose, for n ≥ N , the compact set En to be either A′
n or A′′

n in
such a way that

(5.9) f(En) ⊃ En+1, for n ≥ N.

Then, by Lemma 1 and (5.7), there exists ζN ∈ EN such that

fn−N (ζN ) ∈ En ⊂ A(an, Can), for n ≥ N,

where C = d 6.
Without loss of generality, we can assume that ζN is not a Fatou-exceptional

value, so by applying Picard’s theorem a finite number of times we can choose ζ
such that fN (ζ) = ζN and |fn(ζ)| ≥ an, for n = 1, . . . , N − 1. Thus, for this ζ we
have (possibly with a larger constant C)

an ≤ |fn(ζ)| ≤ Can, for n ∈ N.

To ensure that we also have ζ ∈ J(f), we observe that f cannot have a nested
wandering domain U . For this would imply, by Lemma 9, the existence of a sequence
of annuli A(rn, Rn), where rn < Rn, such that rn → ∞ as n → ∞ and Rn/rn → ∞
as n → ∞, and for n large enough

A(rn, Rn) ⊂ fn(U).

Thus m(r, f) → ∞ as r → ∞ through

∞⋃
n=1

(rn, Rn),

contrary to hypothesis (1.7). It follows that J(f) has an unbounded component,
by [37, Theorem 1], for example. Thus, by (5.9), we can choose ζN ∈ EN ∩ J(f),
as required.

In the other direction, if there do not exist positive constants c, d and r0 such
that d > 1 and (1.7) holds, then there exists a sequence of annuli A(rn, Rn), where
0 < rn < Rn, such that rn → ∞ as n → ∞, Rn/rn → ∞ as n → ∞ and

m(r, f) > 1, for rn < r < Rn, n ∈ N.

Then by an argument similar to that in the proof of Lemma 5 we deduce that

m(r, f) > M(r, f)δ, for 2rn < r < 1
2Rn, n ≥ N,

for some constant 0 < δ < 1 and some N ∈ N. Since M(r, f)δ/r → ∞ as r → ∞,
it is not possible to satisfy (1.6) for any positive sequence (an) having the property
that: an(j)+1 = O(an(j)) as j → ∞, for a sequence n(j), j ∈ N, such that an(j) ∼√
rjRj as j → ∞. This completes the proof of Theorem 2. �
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6. Proof of Theorem 3

To prove Theorem 3 we need several preliminary results. First we give a lemma
based on two key ideas from [15, proof of Theorem 1].

Lemma 10. Let f be a transcendental meromorphic function and let E ⊂ C be a
non-empty set.

(a) If E has a subset E′ with at least 3 points, such that E′ is backwards in-
variant under f , and intE ∩ J(f) = ∅, then J(f) ⊂ ∂E′ and J(f) ⊂ ∂E.

(b) If z ∈ ∂E \J(f), then z lies in a Fatou component of f which meets both E
and Ec. In particular, if every component of F (f) that meets E is contained
in E, then ∂E ⊂ J(f).

Proof. Since E′ is backwards invariant under f and f is an open map, we have
f(C\E′) ⊂ C\E′. Thus (fn) forms a normal family in C\E′ by Montel’s theorem,
so J(f) ⊂ E′ ⊂ E. Since intE′ ⊂ intE ⊂ F (f), we deduce that J(f) ⊂ ∂E′ and
J(f) ⊂ ∂E.

Part (b) follows immediately from the fact that any open disc centred at a point
of ∂E meets both E and Ec. �

Proving that the hypotheses of Lemma 10(a) hold for the sets L(f), M(f) and
Ia(f) will be straightforward. However, to apply Lemma 10(b) to these sets we
must determine which Fatou components of f can meet them and also meet their
complements. To do this we use the following distortion lemma, which is obtained
by combining [7, Lemma 7] and [28, Theorem 1].

Lemma 11. Let G be an unbounded open set in C such that ∂G has at least two
finite points, and let f be analytic in G. Let D be a domain contained in G such
that fn(D) ⊂ G, for n ≥ 1, and fn(z) → ∞ as n → ∞, for z ∈ D.

(a) For any compact disc Δ ⊂ D, there exist C > 1 and n0 ∈ N such that

(6.1) |fn(z′)| ≤ |fn(z)|C , for z, z′ ∈ Δ, n ≥ n0.

(b) If, in addition, one of the following holds:

(i) Ĉ \G contains an unbounded connected set, or
(ii) D = G and f does not extend analytically to ∞,
then for any compact disc Δ ⊂ D, there exist C > 1 and n0 ∈ N such that

(6.2) |fn(z′)| ≤ C|fn(z)|, for z, z′ ∈ Δ, n ≥ n0.

We also need the following topological lemma. Here, for a set E ⊂ C, the set Ẽ
denotes the union of E and its bounded complementary components.

Lemma 12. Let V ⊂ C be an open set with components Vn, n ∈ N. For n ∈ N,
put

(6.3) ΩVn
=

⋃
{Ṽm : m ∈ N,m �= n, Ṽn ⊂ Ṽm}.

Then the following cases can arise:

(1) ΩVN
= C = ṼN for some N ∈ N;

(2) ΩVN
= C for some N ∈ N but each Vn, n ∈ N, is bounded, so there is a

sequence (nj) in N such that

Ṽn1
⊂ Ṽn2

⊂ · · · and
⋃
j≥1

Ṽnj
= C;
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(3) ΩVN
is unbounded for some N ∈ N and ΩVN

�= C;
(4) ΩVn

is bounded for all n ∈ N.

This lemma can be found in [27, Lemma 3]. There the proof is given for the case
when V = {z : u(z) > M}, where u is a real-valued, continuous function defined
in C and M ∈ R, but this proof applies without change when V is an arbitrary
open set. Note that each set ΩVn

is full ; that is, it has no bounded complementary
components.

Using Lemmas 11 and 12 we obtain the following result about the behaviour of
the iterates of a transcendental meromorphic function in its escaping Fatou com-
ponents; this result may be of independent interest. Later in the section, we give
examples to show that the hypothesis that U is not a quasi-nested wandering do-
main cannot be omitted in this result.

Theorem 5. Let f be a transcendental meromorphic function and let U be a com-
ponent of F (f) which is contained in I(f). If U is not a quasi-nested wandering
domain, then the estimate (6.2) holds for any compact disc Δ ⊂ U .

Proof. For n ∈ N, let Un be the Fatou component of f such that fn(U) ⊂ Un. By
Lemma 12, applied to the open set V =

⋃
n∈N

Un, the following cases can arise:

(1) ΩUN
= C = ŨN for some N ∈ N;

(2) ΩUN
= C for some N ∈ N but each Un, n ∈ N, is bounded, so there is a

sequence (nj) in N such that

Ũn1
⊂ Ũn2

⊂ · · · and
⋃
j≥1

Ũnj
= C;

(3) ΩUN
is unbounded for some N ∈ N and ΩUN

�= C;
(4) ΩUn

is bounded for all n ∈ N.

In case (1), either UN is periodic, in which case UN is an invariant Baker domain
because UN ⊂ I(f), or all the Fatou components Un, n > N , are contained in
bounded complementary components of UN . If UN is an invariant Baker domain,
then Lemma 11(b)(ii) can be applied to f in G = UN , and hence (6.2) holds for any
compact disc Δ ⊂ U . On the other hand, if all the Fatou components Un, n > N ,
are contained in bounded complementary components of UN , then Lemma 11(b)(i)
can be applied to f in the open set G =

⋃
n>N Un, and hence (6.2) holds for any

compact disc Δ ⊂ U .
In case (3), the boundary of ΩUN

has an unbounded component which is con-
tained in an unbounded complementary component of the set

(6.4) G =
⋃
n∈N

Un.

Since G is invariant under f , we can apply Lemma 11(b)(i) to f in G with D = U1

to deduce that (6.2) holds for any compact disc Δ ⊂ U .
In case (4), the complement of the set⋃

n∈N

ΩUn

is connected and unbounded and lies in the complement of the set G defined in (6.4),
so we can apply Lemma 11(b)(i) again to f in G with D = U1.

Thus the estimate (6.2) holds for any compact disc Δ ⊂ U unless case (2) holds.
In this case U is a quasi-nested wandering domain, as required. �
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We now use Theorem 5 and Lemma 11 to prove the following result. This
indicates when Lemma 10(b) can be applied if E is L(f), M(f) or Ia(f).

Lemma 13. Let f be a transcendental meromorphic function, let U be a component
of F (f) and let a = (an) be a positive sequence with an → ∞ as n → ∞.

(a) If U ∩ L(f) �= ∅, then U ⊂ L(f).
(b) If U ∩M(f) �= ∅, then U ⊂ M(f).
(c) If U ∩ Ia(f) �= ∅ and U is not a quasi-nested wandering domain, then

U ⊂ Ia(f).

Proof. First recall that if U ∩ I(f) �= ∅, then U ⊂ I(f).
To prove part (a), take z ∈ U ∩ L(f). Then

lim sup
n→∞

1

n
log |fn(z)| < ∞.

Let Δ be any compact disc in U with centre z. Then, by (6.1), there exists C > 1
such that

lim sup
n→∞

1

n
log |fn(z′)| ≤ C lim sup

n→∞

1

n
log |fn(z)| < ∞, for z′ ∈ Δ,

so Δ ⊂ L(f). Hence U ⊂ L(f). A similar argument applies to M(f).
To prove part (c), take z ∈ U ∩ Ia(f). Then

(6.5) |fn(z)| = O(an) as n → ∞.

Since U is not a quasi-nested wandering domain we deduce by Theorem 5 that if
Δ is any compact disc in U with centre z, then there exist C > 1 and n0 ∈ N such
that

|fn(z′)| ≤ C|fn(z)|, for z′ ∈ Δ, n ≥ n0,

so Δ ⊂ Ia(f) by (6.5). Hence U ⊂ Ia(f), as required. �

Proof of Theorem 3. Let a = (an) be a positive sequence such that an → ∞ as
n → ∞. We consider a positive sequence a′ = (a′n) such that

a′n ≤ an and a′n is increasing, for n ∈ N, and a′n → ∞ as n → ∞.

It is clear from the definitions that Ia
′
(f) ⊂ Ia(f), that Ia

′
(f) is backwards in-

variant under f , and that each of the sets L(f) and M(f) is completely invariant
under f . Also, each of the sets

L(f) ∩ J(f), M(f) ∩ J(f) and Ia
′
(f) ∩ J(f)

is non-empty, by Theorem 1.
Therefore

• each of L(f)∩J(f), M(f)∩J(f) and Ia
′
(f)∩J(f) is a non-empty backwards

invariant subset of I(f)∩J(f) and so is infinite, since for every ζ at least one
of ζ, f(ζ) or f2(ζ) is not Fatou-exceptional and so has an infinite backwards
orbit;

• each of L(f), M(f) and Ia(f) contains no periodic points, and so has no
interior points which lie in J(f).

Thus, by Lemma 10(a), L(f), M(f) and Ia(f) are each dense in J(f), and

(6.6) J(f) ⊂ ∂L(f), J(f) ⊂ ∂M(f) and J(f) ⊂ ∂Ia(f).
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By Lemma 13(a) and (b), and Lemma 10(b), we have

∂L(f) ⊂ J(f) and ∂M(f) ⊂ J(f), so J(f) = ∂L(f) and J(f) = ∂M(f).

This proves part (c).
Part (d) follows immediately from (6.6), Lemma 13(c) and Lemma 10(b). This

completes the proof of Theorem 3. �
We now show that we cannot strengthen the statement of Theorem 3(d) or

Corollary 1(a) to assert that we always have J(f) = ∂Ia(f). More precisely, we
show that for a meromorphic function f with a finite number of poles, if U is a nested
wandering domain, then there exists a sequence (an) for which ∂Ia(f) ∩ U �= ∅,
and hence ∂Ia(f) �⊂ J(f). (Recall from Section 1 that, for such a meromorphic
function, any quasi-nested wandering domain is a nested wandering domain.) This
theorem also shows that the conclusion of Theorem 5 fails if U is a nested wandering
domain of a transcendental meromorphic function with a finite number of poles.

Theorem 6. Let f be a transcendental meromorphic function with a finite number
of poles and with a nested wandering domain U . Then there exist points z0, z

′
0 ∈ U

such that ∣∣∣∣fn(z′0)

fn(z0)

∣∣∣∣ → ∞ as n → ∞.

Thus, if an = |fn(z0)|, n ∈ N, then z0 ∈ Ia(f) but z′0 /∈ Ia(f), so ∂Ia(f) ∩ U �= ∅.
Proof. First note that it is sufficient to construct the required points z0 and z′0 in
fN (U), where N ≥ 0.

Since f has a finite number of poles, it has a direct tract. Thus, by using a
method of Eremenko (see [15, Theorem 1] and [12, proof of Theorem 3.1]), we can
show that in any annulus A( 12r, 2r), where r is large enough, there exists z′0 such
that

(6.7) |fn+1(z′0)| ≥
1

2
M(|fn(z′0)|, f), for n ≥ 0.

Next, by Lemma 9, there exists a sequence of annuli A(rn, Rn), where 0 < rn < Rn,
such that rn → ∞ as n → ∞ and Rn/rn → ∞ as n → ∞, and for n large enough

(6.8) A(rn, Rn) ⊂ fn(U).

Thus we can choose N ∈ N so large that, with ρN =
√
rNRN ,

there exists z′0 ∈ A(2ρN , RN ) ⊂ fN (U) such that (6.7) holds,

(6.8) holds for n ≥ N,

and also, for all r′ > r ≥ rN ,

(6.9) M(r, f) > r

and

(6.10)
M(r′, f)

M(r, f)
≥

(
r′

r

)2

; in particular, M(2r, f) ≥ 4M(r, f).

The estimate (6.10) is a special case of Lemma 4, or it follows directly from the
convexity of logM(r, f) with respect to log r.

Using (6.7), the fact that |z′0| > 2ρN , and the second estimate in (6.10), we
deduce by induction that

|fn(z′0)| ≥ 2Mn(ρN , f), for n ∈ N.
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On the other hand, if |z0| = rN , then z0 ∈ fN (U) and

|fn(z0)| ≤ Mn(rN , f), for n ∈ N.

Hence, by (6.9) and the first estimate in (6.10), we deduce by induction that

|fn(z′0)|
|fn(z0)|

≥ 2Mn(ρN , f)

Mn(rN , f)
≥ 2

(
ρN
rN

)2n

→ ∞ as n → ∞,

as required. �

In Theorem 6 the sequence an = |fn(z0)| tends to ∞ quickly; for example,
z0 ∈ Z(f). Our next example shows that

• in the absence of a direct tract, J(f) = ∂Ia(f) need not hold even if an
tends to ∞ at a much slower rate;

• in Corollary 1(a), the assumption about the existence of a direct tract
cannot be omitted.

This example also shows that the conclusion of Theorem 5 can fail for a quasi-nested
wandering domain U that is not a Baker wandering domain.

Example 1. There is a positive increasing sequence a = (an) such that an → ∞ as
n → ∞ and an+1 = O(an) as n → ∞, and a transcendental meromorphic function
f with a Fatou component U containing z0 and z′0 such that

(a) z0 ∈ Ia(f) but z′0 �∈ Ia(f), so ∂Ia(f) ∩ U �= ∅;
(b) lim supn→∞ |fn(z′0)/f

n(z0)| = ∞;
(c) U is a quasi-nested wandering domain but not a Baker wandering domain.

Proof. We take a, b, z0 and z′0 such that

(6.11) 1 < a < z0 < z′0 < b, a2 > 4b, (z0 + 1)4 > b3 and z′0 > z0 + 3.

The sequence (an) is defined as an = bn+1, n ≥ 0.
To construct f , we define a sequence of closed annuli Bn as follows. Here we use

the notation

B(z; r, R) = {w : r ≤ |w − z| ≤ R}, for z ∈ C, 0 < r < R.

First we choose a sequence (nk) in {0, 1, 2, . . .} such that

(6.12) bnk < (z0 + 1)2
k ≤ bnk+1, for k ≥ 0.

Then n0 = 0, n1 = 1 and n2 = 3, by (6.11). Also,

(6.13) nk+1 + 1 > 2nk, for k ≥ 0, so nk+1 ≥ nk + 2, for k ≥ 1,

and we define the corresponding subsequence of closed annuli

(6.14) Bnk
= B(0; a2

k

, b2
k

), k ≥ 0.

Now we define the rest of the Bn to be certain nested finite sequences of closed
annuli lying between adjacent annuli Bnk

. For k ≥ 1, we put

pk = 1
2a

2k , so pk > 2b2
k−1

,

by (6.11),

mk = nk+1 − nk − 1, for k ≥ 0, so mk ≥ 1, for k ≥ 1,
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by (6.13), and choose tk, 0 < tk < 1, such that

tk

a2k
<

1

2b2k
.

Then define

Bnk+j = B

(
pk;

tj−1
k

b2k
,
tj−1
k

a2k

)
, j = 1, . . . ,mk,

which are mk nested disjoint closed annuli lying between Bnk−1
and Bnk

. The
function

(6.15) z �→ pk +
1

z
, z ∈ Bnk

, k ≥ 1,

maps Bnk
one-to-one onto Bnk+1, and the function

(6.16) z �→ pk + tk(z − pk)

maps Bnk+j one-to-one onto Bnk+j+1, for j = 1, . . . ,mk − 1. Note that the annuli
Bnk

, Bnk+1, . . . , Bnk+mk
all have modulus 2k log(b/a).

Finally, for k ≥ 1, we put Sk = t
2(mk−1)
k so that the function

(6.17) z �→ Sk

(z − pk)2

maps Bnk+mk
two-to-one onto Bnk+1

= B
(
0; a2

k+1

, b2
k+1

)
.

Now we use (6.15), (6.16) and (6.17) to define a function g on the annuli Bn,
n ≥ 1, and we also set g(z) = z2 on B0.

We have

gn(B0) = Bn, for n ≥ 1, and gnk(z) = z2
k

, for k ≥ 0,

since

(6.18) gmk+1(z) = z2, for z ∈ Bnk
, k ≥ 0.

Next, for n ≥ 0, we choose closed annuli B′
n ⊂ Bn, with B′

n and Bn concentric,
and ∂B′

n so close to ∂Bn that, for n ≥ 0,

(6.19) z0, z
′
0 ∈ B′

0, g(B′
n) ⊂ B′

n+1 and dist(∂g(B′
n), ∂B

′
n+1) > 0.

Now, for k ≥ 0, let

Ek =

nk+mk⋃
n=nk

Bn,

and let Pk be a finite set, including ∞, with one point in each component of

Ĉ \ (Ek ∪ {z : |z| ≤ b2
k−1}). Note that Ek ∩ {z : |z| ≤ b2

k−1} = ∅ and g is analytic
on each set Ek.

For each k ≥ 0, we can use Runge’s theorem (see [18]) to choose a rational
function fk with poles in the set Pk such that

(6.20) sup
Ek

|f0 + f1 + · · ·+ fk − g| < εk and sup{|fk(z)| : |z| ≤ b2
k−1} < εk,

where the positive sequence εk, k ≥ 0, is so small that

f(z) = f0(z) + f1(z) + · · · is locally uniformly convergent on C,
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and (using (6.19)) the function f is so close to g on the annuli Bn, n ≥ 0, that

(6.21) f(B′
n) ⊂ B′

n+1, for n ≥ 0, so

∞⋃
n=0

B′
n ⊂ F (f) ∩ I(f),

by Montel’s theorem, and also, by (6.18), that

|fmk+1(z)− gmk+1(z)| = |fmk+1(z)− z2| < 1, for z ∈ B′
nk
, k ≥ 0.

Hence

(6.22) fnk(z) ∈ B′
nk

and |fnk+1(z)− fnk(z)2| < 1, for z ∈ B′
0, k ≥ 0.

By (6.19) and (6.21) we see that z0 and z′0 lie in the same Fatou component
of f , say U . We now show that z0 ∈ U ∩ Ia(f), where an = bn+1, n ≥ 0. Let
Xk = |fnk(z0)|, k ≥ 0. Then X0 = z0 > 1 and, by (6.19) and (6.22),

Xk+1 ≤ X2
k + 1, for k ≥ 0.

Thus by induction

Xk ≤ (X0 + 1)2
k − 1, for k ≥ 0.

Therefore, for k ≥ 0 and j = 0, 1, . . . ,mk, by (6.12),

|fnk+j(z0)| ≤ (X0 + 1)2
k − 1 ≤ bnk+1 ≤ bnk+j+1,

so z0 ∈ Ia(f), as required.
Now let Yk = |fnk(z′0)|, k ≥ 0. Then Y0 = z′0 > 1 and, by (6.19) and (6.22),

Yk+1 ≥ Y 2
k − 1, for k ≥ 0.

It again follows by induction that

Yk ≥ (Y0 − 1)2
k

+ 1, for k ≥ 0.

Therefore, for k ≥ 0, by (6.11) and (6.12),

|fnk(z′0)| ≥ (z′0 − 1)2
k

+ 1 > (z0 + 2)2
k

>

(
z0 + 2

z0 + 1

)2k

bnk =

(
z0 + 2

z0 + 1

)2k
ank

b
,

so z′0 /∈ Ia(f). This proves part (a).
By Theorem 3(d), the Fatou component U must be a quasi-nested wandering

domain. Thus the Fatou components Un ⊃ B′
n, n ≥ 0, are disjoint. Since mk ≥ 2

for k ≥ 3, by (6.13), there are infinitely many of these Fatou components that do
not surround 0, so U is not a Baker wandering domain. �
Remark. The proof of Example 1 can easily be modified to give the same type of
example in which (an) is any positive increasing sequence such that an → ∞ as
n → ∞ and an+1 = O(an) as n → ∞.

7. Proof of Theorem 4

Theorem 4 follows easily from Theorem 3, Corollary 1 and the definition ofM(f).

Proof of Theorem 4. In part (a), f has a direct tract and no nested wandering
domains. Hence

J(f) = ∂L(f) = ∂M(f) = ∂Ia(f),

by Theorem 3(c) and Corollary 1(a). In this situation we know that J(f) has at
least one unbounded component; see [12, Theorem 5.3]. Hence the sets ∂L(f),
∂M(f) and ∂Ia(f) each have at least one unbounded component, as required.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4196 P. J. RIPPON AND G. M. STALLARD

To prove part (a)(ii), note that if f is entire and J(f) has a bounded component,
then f has a multiply connected Fatou component [23, Theorem 1] and so has a
nested wandering domain, by [2, Theorem 3.1]. Thus all the components of J(f)
are unbounded, so this is also true for all the components of ∂L(f), ∂M(f) and
∂Ia(f), as required.

Theorem 4(b) follows immediately from the fact that if f has a direct tract, then
any nested wandering domain lies in Z(f), as mentioned in the introduction before
Corollary 1, together with the fact that M(f) ∩ Z(f) = ∅. �

8. Examples

We end the paper by giving a number of explicit examples to show how varied
the structures of the sets L(f), M(f) and Ia(f) can be. Here, as usual, a = (an)
is a positive sequence such that an → ∞ as n → ∞.

Example 2. Let

f(z) = λez, where 0 < λ < 1/e.

Then the components of M(f) are all singletons, and hence so are those of L(f)

and also Ia(f) when Ia(f) ⊂ M(f). However, all the components of L(f), M(f)

and Ia(f) are unbounded.

Proof. In this case, F (f) is a completely invariant immediate attracting basin
and J(f) consists of disjoint simple curves, each with one finite endpoint and the
other endpoint at ∞; see [13]. The set I(f) consists of the open curves (without
endpoints), together with some of their finite endpoints; see [22] and [25]. These
open curves are in Z(f), and even in A(f); see [35] and [26]. Thus M(f) is con-
tained in the set of finite endpoints which is totally disconnected (see [24]), so the

components of M(f) are singletons. However, the components of L(f), M(f) and

Ia(f) are all unbounded, by Theorem 4(a)(ii). �

Example 3. Let

f(z) = z + 1 + e−z.

Then f has a completely invariant Baker domain U such that U ⊂ L(f). The
sets L(f), M(f) and I(f) are all connected and dense in C, as is Ia(f) whenever
lim infn→∞ an/n > 0. However, all components of M(f)∩ J(f) are singletons, and
hence so are those of L(f) ∩ J(f) and also Ia(f) ∩ J(f) when Ia(f) ⊂ M(f).

Proof. In this case, F (f) is a completely invariant Baker domain U in which
fn(z) → ∞ as n → ∞ and |fn(z)| = O(n) as n → ∞; see [17, Example 1].
Thus we have U ⊂ L(f) ⊂ M(f) and U ⊂ Ia(f) whenever lim infn→∞ an/n > 0.
Note, however, that there are points of ∂U (for example, fixed points of f) which
are not in I(f). Each of the sets L(f), M(f), Ia(f) and I(f) is connected and
dense in C, since U ⊂ Ia(f) ⊂ U = C, for example.

It can be shown by using a result of Barański [5, Theorem 3], together with the
fact that f is the lift of g(w) = (1/e)we−w under w = e−z, that J(f) consists
of disjoint simple curves, each with one finite endpoint and the other endpoint
at ∞, and I(f)∩J(f) consists of the open curves together with some of their finite
endpoints. Moreover, these open curves are in A(f) (see [26]), so M(f) ∩ J(f) is
contained in the set of finite endpoints and its components are singletons. �
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Example 4. Let

f(z) = z + sin z + 2π.

Then every component of F (f) is a bounded wandering domain whose closure is
contained in L(f). The sets I(f) and L(f) are connected and dense in C, and
I(f)∩J(f) and L(f)∩J(f) are connected and unbounded. Similar properties hold
for Ia(f) whenever lim infn→∞ an/n > 0.

Proof. Since the function f and h(z) = z + sin z are both lifts under w = eiz of

g(w) = w exp( 12 (w − 1/w)), z ∈ C \ {0},

we have F (g) = exp(iF (f)) = exp(iF (h)), by a result of Bergweiler [9]. Now F (g)
consists of the basin of attraction of the super-attracting fixed point −1, which is
the only singular value of g, so F (f) = F (h) is the lift of this basin.

In particular, the point −1 lifts to the points (2n+1)π, n ∈ Z, which are super-
attracting fixed points of h. The immediate basin of attraction of π contains the
interval (0, 2π) and is bounded, since h maps the boundary of the open rectangle
{x + iy : 0 < x < 2π,−3 < y < 3} outside this rectangle. See [16] for a discussion
of the properties of functions such as g and their lifts.

Thus F (f) = F (h) consists of an infinite necklace of congruent bounded Fatou
components, say Un, n ∈ Z, where (2n + 1)π ∈ Un, together with the successive
pre-images of these components under h. The components Un form a wandering
orbit under f with f(Un) = Un+1 for n ∈ Z, in which fn(z) → ∞ as n → ∞ and
|fn(z)| = O(n) as n → ∞. Hence

R ⊂
⋃
n∈Z

Un ⊂ L(f) and
⋃
n∈Z

∂Un ⊂ L(f) ∩ J(f).

Now, the pre-image under f of the real axis consists of the real axis itself and
infinitely many pairs of curves tending to ∞ at both ends, with each pair passing
through a critical point (2n + 1)π, n ∈ Z, and lying in {z : (2n + 1

2 )π < �z <

(2n+ 3
2 )π}. Thus F (f) consists of infinite necklaces of bounded Fatou components,

together forming an infinite tree-like structure. Therefore the set

E1 =
⋃

{U : U is a Fatou component of f}

is connected and dense in C, and E1 ⊂ L(f) ⊂ I(f) ⊂ C = E1. Hence I(f) and
L(f) are connected and dense in C. The set

E2 =
⋃

{∂U : U is a Fatou component of f}

is also connected and unbounded, and

E2 ⊂ L(f) ∩ J(f) ⊂ I(f) ∩ J(f) ⊂ J(f) = E1 \ F (f) = E2.

Hence I(f) ∩ J(f) and L(f) ∩ J(f) are connected and unbounded. �

Example 5. Let

f(z) = z + e−z + 2πi.

Then every component of F (f) is an unbounded wandering domain U contained in
L(f) and also in Ia(f) whenever lim infn→∞ an/n > 0. However, the boundaries
of these wandering domains are not contained in L(f) and indeed meet A(f).
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Proof. The function h(z) = z + e−z has congruent unbounded invariant Baker
domains Un, n ∈ Z, such that 2nπi ∈ Un ⊂ {z : (2n − 1)π < �(z) < (2n + 1)π},
and |hm(z)| = O(m) as m → ∞, for z ∈ U0; see [14]. The Fatou set of h consists
of these Baker domains and their successive pre-images under h, which are all
unbounded. Since J(f) = J(h), by [9], the components Un form a wandering orbit
under f with f(Un) = Un+1 for n ∈ Z, in which fn(z) → ∞ as n → ∞ and
|fn(z)| = O(n) as n → ∞. Hence F (f) = F (h) ⊂ L(f).

It was shown in [3, Theorem 6.1] that Γ0 = {z : �z = π} ⊂ ∂U0, so Γn = {z :
�z = nπ} ⊂ ∂Un for n ∈ Z. It is easy to check directly that each Γn ⊂ Z(f), and
even that Γn ⊂ A(f). The result now follows. �

Example 6. Let

f(z) =
1

2

(
cos z1/4 + cosh z1/4

)
= 1 +

z

4!
+

z2

8!
+ · · · .

Then A(f) and I(f) are connected, all components of M(f) are bounded, and all

components of L(f), M(f) and Ia(f) are unbounded.

Proof. The connectedness of A(f) and I(f) is proved in [32, Corollary 5]. This
proof depends on the fact that there is a sequence of continua in A(f) which sur-
round 0 and tend to ∞, and this property forces all components of M(f) to be
bounded. Also, f has no nested wandering domains; see [32, Section 6]. Hence all

the components of L(f), M(f) and Ia(f) are unbounded by Theorem 4(a)(ii). �

Remark. Using results in [32, see Theorem 2, its proof, and Section 6], we can
show that there are many transcendental entire functions that have the properties
of Example 6, as follows:

• if f is a transcendental entire function and there is a hole in A(f), that is,
a bounded domain G such that ∂G ⊂ A(f) but G ∩ J(f) �= ∅, then there
is a sequence of continua in A(f) which surround 0 and tend to ∞, from
which it follows that A(f) and I(f) are connected and all the components
of M(f) are bounded;

• there are many examples of transcendental entire functions for which there
is a hole in A(f) and no nested wandering domains – all such functions
must have the properties of Example 6.

Note that in [32] the set A(f) is called B(f) because an alternative definition is
used.

Example 7. Let

f(z) = 2z + 2− log 2− ez.

Then f has an invariant Baker domain U such that U \{z0} ⊂ L(f), where z0 ∈ ∂U
is a fixed point of f , and a bounded wandering domain V such that V ⊂ L(f).

Proof. It is shown in [8] that the function f has

• an invariant Baker domain U contained in {z : �z < 0} such that the map
f : U → U is univalent and ∂U is a Jordan curve through ∞;

• a bounded Fatou component V0 containing the super-attracting fixed point
log 2;
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• bounded Fatou components of the form Vk = {z + 2πki : z ∈ V0}, k ∈ Z,
such that f(Vk) = V2k, for k ∈ N.

Thus V = V1 is a bounded wandering domain such that V ⊂ L(f).
Also, it is easy to check that ∂U meets the real axis at a repelling fixed point z0

of f and that

(3/2)n|z| ≤ |fn(z)| ≤ 3n|z|, for z ∈ U ∩ {z : |z| ≥ 2(3 + log 2)},
so

(8.1) U ∩ {z : |z| ≥ 2(3 + log 2)} ⊂ L(f).

Since f is univalent on U , it is conjugate, via a Riemann map, to a Möbius trans-
formation of the unit disc onto itself. Since ∂U is a Jordan curve the Riemann
map extends to a homeomorphism on the closed unit disc, so the conjugate Möbius
transformation fixes two boundary points, one repelling and one attracting; the
latter attracts all points of C except the repelling fixed point. It follows that
U \ {z0} ⊂ I(f). Hence, by (8.1), the whole of U \ {z0} is contained in L(f).

Note that in this case J(f) is connected; see [23]. �

Our final example shows that Theorem 4(a)(ii) is false without the assumption
that f is entire.

Example 8. Let

f(z) = λ sin z − ε/(z − π), where 0 < λ < 1, ε > 0 small.

Then f has a direct tract and no nested wandering domains, and L(f), M(f) and

Ia(f) each have infinitely many bounded components.

Proof. The function f has a direct tract, since it has only one pole, and it has a
completely invariant, unbounded, infinitely connected, attracting Fatou component;
see [14, Example 2]. Hence J(f) has infinitely many bounded components and f
has no nested wandering domains. Since f has a direct tract, this is equivalent to
saying that f has no quasi-nested wandering domains. Thus the sets L(f), M(f)

and Ia(f) have infinitely many bounded components, by Theorem 3(c) and (d). �
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