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Abstract

We study a slow-fast system with two slow and one fast variables. We assume
that the slow manifold of the system possesses a fold and there is an equilibrium of
the system in a small neighbourhood of the fold. We derive a normal form for the
system in a neighbourhood of the pair ”equilibrium-fold” and study the dynamics of
the normal form. In particular, as the ratio of two time scales tends to zero we obtain
an asymptotic formula for the Poincaré map and calculate the parameter values for
the first period-doubling bifurcation. The theory is applied to a generalization of the
FitzHugh-Nagumo system.
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1 Introduction

Since fundamental works of A. N. Tikhonov, L. S. Pontryagin, N. Fenichel [8], [7], [1] singular
perturbed dynamical systems became a subject of many researches and are intensively stud-
ied nowadays. These systems have many applications in various areas of physics: mechanics,
hydrodynamics, plasma physics, neurobiology and others. They are aimed to describe those
systems for which different processes are running with different speeds. Mathematically,
such systems can often be written in the form of so-called slow-fast system

εẋ = F (x, y),

ẏ = G(x, y),
(1.1)

where x ∈ Rn is a fast variable and y ∈ Rm is a slow one. The parameter ε describes the
ratio of two time scales and is assumed to be small. In the limit ε = 0 we obtain the slow
system

0 = F (x, y),

ẏ = G(x, y),
(1.2)
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which describes the motion in a vicinity of the slow manifold defined by the equality F (x, y) =
0. On the other hand, using the fast time s = t/ε we can rewrite the system (1.1) as

x′ = F (x, y),

y′ = εG(x, y),
(1.3)

where the prime stands for the derivative with respect to s. Setting ε = 0 in (1.3), we obtain
the fast system

x′ = F (x, y),

y′ = 0.
(1.4)

The fast system approximates the original system on any finite interval with respect to s
due to smooth dependence of solutions on a vectorfield. It should be noted that for ε ̸= 0
the systems (1.1) and (1.3) are equivalent, however, the limit systems (1.2) and (1.4) are
different.

The standard tool for studying slow-fast systems is based on the geometric singular
perturbation theory (GSPT) [1]. Using the notion of normal hyperbolicity, GSPT predicts
that a trajectory attracted by a stable branch of the slow manifold follows closely a trajectory
of (1.2) till this trajectory hits a singularity of the slow manifold. Singularities of slow
manifolds cause a variety of phenomena including delay of stability loss and canard explosion
(see e.g. [2], [3], [4], [5]).

The present paper was inspired by [9], where the author studied a FitzHugh-Nagumo-like
sysytem originated from the mathematical theory of neural cells. This system consists of
three ODEs with one fast variable corresponding to the membrane potential and two slow
gating variables:

εẋ = x− x3/3− y − z,

ẏ = a+ x, (1.5)

ż = a+ x− z,

where ε is a small parameter and a is a real parameter. The slow manifold of the system is
described by the equation x−x3/3− y− z = 0 and possesses folds at x = ±1, y+ z = ±2/3.
The system has a unique equilibrium which is close to the fold if a is close to one. The
equilibrium is stable for larger values of a and undergoes a supercritical Andronov-Hopf
bifurcation at aH = 1− 1

4
ε+O(ε2) (see [9] for details) .

In [9] M. Zaks found numerically that the initial periodic orbit may lose stability via a
sequence of period-doubling bifurcations. Studying numerically the period-doubling cascades
for small but fixed values of the parameter ε, M. Zaks observed that the cascade follows the
Feigenbaum law with the Feigenbaum constant 4.67 . . . typical for dissipative systems. On
the other hand for smaller values of ε the process switches to the Feigenbaum constant of a
conservative map as, in the limit ε → 0, two-dimensional Poincaré map nearly preserves the
area. The reason for such phenomenon was assumed to be in the closeness of the equilibrium
to a fold of the slow manifold.
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In the present paper we consider a family of slow-fast systems having one fast and two
slow variables and depending on a real parameter δ:

εẋ = F (x, y, z; δ) ,

ẏ = G1(x, y, z; δ) , (1.6)

ż = G2(x, y, z; δ) ,

where (x, y, z) ∈ R3, functions F , G1 and G2 are smooth functions, ε and δ are small
parameters.

We suppose that the system (1.6) possesses an equilibrium (x, y, z) = (x0(δ), y0(δ), z0(δ))
and if δ = 0 the equilibrium lies on the fold of the slow manifold. Shifting the origin into
the equilibrium, we have the following conditions:

F (0, 0, 0; δ) = 0, G1(0, 0, 0; δ) = 0, G2(0, 0, 0; δ) = 0. (1.7)

The slow manifold is defined by the equality

F (x, y, z; δ) = 0.

We assume that for δ = 0 the slow manifold possesses a non-degenerate fold which is tangent
to a fast fibre. More precisely, we impose the following conditions (see e.g. [6]):

F ′
x(0, 0, 0; 0) = 0, ∇F (0, 0, 0; 0) ̸= 0, F ′′

x2(0, 0, 0; 0) ̸= 0. (1.8)

Finally, we impose a condition

F ′
y(0, 0, 0; 0)G

′
1x(0, 0, 0; 0) + F ′

z(0, 0, 0; 0)G
′
2x(0, 0, 0; 0) < 0, (1.9)

which ensures the linear stability of the equilibrium in the following sence. Consider the
equations (1.6) linearized at the point (0, 0, 0, 0). Then its characteristic equation reads

− λ3 + (G′
1y +G′

2z)λ
2 +

(
ε−1(F ′

yG
′
1x + F ′

zG
′
2x)− (G′

1yG
′
2z −G′

1zG
′
2y)
)
λ−

− ε−1
(
F ′
y(G

′
1xG

′
2z −G′

1zG
′
2x)− F ′

z(G
′
1xG

′
2y −G′

1yG
′
2x)
)
= 0,

where all the derivatives are evaluated at the point (0, 0, 0, 0). Substituting Λ =
√
ελ, we

obtain
−Λ

(
Λ2 − (F ′

yG
′
1x + F ′

zG
′
2x)
)
= O(

√
ε). (1.10)

By setting ε = 0 in (1.10) one arrives at the limit equation

−Λ
(
Λ2 − (F ′

yG
′
1x + F ′

zG
′
2x)
)
= 0,

which has three roots Λ0 = 0, Λ± = ±
√

F ′
yG

′
1x + F ′

zG
′
2x. Then the condition (1.9) guarantees

that all these roots have non-positive (in fact, zero) real parts.
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Under these assumptions we derive a normal form for the system (1.6) in a neighbourhood
of the pair ”fold-equilibrium”:

ξ′ = ξ2 − η + µ(γ0ξ + γξ3) + µ2g1(ξ, η, ζ) ,

η′ = 2ξ + µ(α1η + α2ζ) + µ2g2(ξ, η, ζ) ,

ζ ′ = µ(β1η + β2ζ) + µ2g3(ξ, η, ζ),

where µ =
√
ε is a new small parameter, γ0, γ, α1,2, β1,2 are constants and functions gk, k =

1, 2, 3 are polynomials of (ξ, η, ζ), which will be specified later. The parameter γ0 has a
special role: it describes the closeness of the equilibrium to the fold. Using the Poincaré
map technique we study the dynamics of the normal form. In particular, we show that in
a µ lnµ-neighborhood of the equilibrium the normal form system has a periodic trajectory.
Varying distance between the equilibrium and the fold one may observe how this thrajec-
tory undergoes the period-doubling bifurcation. We obtain conditions on parameters of the
normal form which correspond to this scenario.

The paper is organized in the following way. In the second section we derive the normal
form. The asymptotics for the Poincaré map associated with the normal form are obtained
in Section 3. Section 4 is devoted to a construction of asymptotic conditions for existence
of a periodic orbit and its period-doubling bifurcations. The main result of the paper is
the asymptotic formula (4.116). Finally, in Section 5 we apply the obtained results to the
FitzHugh-Nagumo system and compare them with numeric data.

2 Normal form

In this section we derive the formal normal form for the system (1.6) when the right-hand
side satisfies the assumptions (1.7), (1.8) and (1.9).

We construct a sequence of changes of space variables and time and apply them to (1.6).
First, we introduce a new small parameter µ:

ε = µ2

and make a rescaling of the space variables, time and the second parameter δ:

x = µX1, y = µ2Y1, z = µ2Z1, t = µs, δ = µ2σ . (2.11)

Then εẋ = µ2X ′
1 , ẏ = µY ′

1 , ż = µZ ′
1 , where the prime stands for the derivative with respect

to the ”semi-fast” time s. We substitute (2.11) into (1.6) and use the Taylor formula for the
right hand side of (1.6) in a neighborhood of the point (x, y, z; δ) = (0, 0, 0; 0). Then, taking
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into account (1.7) and (1.8), one obtains

X ′
1 = F ′

yY1 + F ′
zZ1 +

1

2
F ′′
x2X2

1 +

+µ

[
σF ′′

xδX1 + F ′′
xyX1Y1 + F ′′

xzX1Z1 +
1

6
F ′′′
x3X3

1

]
+ (2.12)

+µ2

[
σF ′′

yδY1 + σF ′′
zδZ1 +

1

2
F ′′
y2Y

2
1 +

1

2
F ′′
z2Z

2
1 + F ′′

yzY1Z1 +

+ X2
1

(
1

2
σF ′′′

x2δ +
1

2
F ′′′
x2yY1 +

1

2
F ′′′
x2zZ1

)
+

1

24
F

(4)

x4 X
4
1

]
+O(µ3),

Y ′
1 = G′

1xX1 + µ

[
G′

1yY1 +G′
1zZ1 +

1

2
G′′

1x2X2
1

]
+

+µ2

[
X1

(
σG′′

1xδ +G′′
1xyY1 +G′′

1xzZ1

)
+

1

6
G′′′

1x3X3
1

]
+O(µ3) ,

Z ′
1 = G′

2xX1 + µ

[
G′

2yY1 +G′
2zZ1 +

1

2
G′′

2x2X2
1

]
+

+µ2

[
X1

(
σG′′

2xδ +G′′
2xyY1 +G′′

2xzZ1

)
+

1

6
G′′′

2x3X3
1

]
+O(µ3) .

Here and below in this section all derivatives of the functions F , G1 and G2 are evaluated
at the point (x, y, z; δ) = (0, 0, 0; 0).

For µ = 0 the system takes the form

X ′
1 = F ′

yY1 + F ′
zZ1 +

1

2
F ′′
x2X2

1 ,

Y ′
1 = G′

1xX1,

Z ′
1 = G′

2xX1.

and the multipliers of the corresponding linearized system satisfy an equation

−λ3 + λ(F ′
yG

′
1x + F ′

zG
′
2x) = 0.

As it was mentioned above, in this paper we consider the case of stable equilibrium. Then,
denoting by

D = F ′
yG

′
1x + F ′

zG
′
2x, (2.13)

the condition (1.9) takes the form
D < 0. (2.14)

One may note that for µ = 0 the system (2.12) has an obvious integral:

−G′
2xY1 +G′

1xZ1.

Taking this into account, we introduce new variables (X2, Y2, Z2) by

X2 = X1, Y2 = F ′
yY1 + F ′

zZ1, Z2 = −G′
2xY1 +G′

1xZ1.
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Due to (2.14) the inverse change of variables is well-defined:

X1 = X2, Y1 =
1

D
(G′

1xY2 − F ′
zZ2), Z1 =

1

D
(G′

2xY2 + F ′
yZ2)

and the system (2.12) can be rewritten as

X ′
2 = Y2 +

1

2
F ′′
x2X2

2 + µ
{
X2

[
γ
(2)
0 + γ

(2)
1 Y2 + γ

(2)
2 Z2

]
+ γ

(2)
3 X3

2

}
+ (2.15)

µ2

{
γ
(2)
4 Y2 + γ

(2)
5 Z2 + γ

(2)
6 Y 2

2 + γ
(2)
7 Z2

2 + γ
(2)
8 Y2Z2 +

X2
2

[
γ
(2)
9 + γ

(2)
10 Y2 + γ

(2)
11 Z2

]
+ γ

(2)
12 X

4
2

}
+O(µ3),

Y ′
2 = DX2 + µ

(
α
(2)
1 Y2 + α

(2)
2 Z2 + α

(2)
3 X2

2

)
+ µ2

{
X2

[
α
(2)
4 + α

(2)
5 Y2 + α

(2)
6 Z2

]
+ α

(2)
7 X3

2

}
+O(µ3) ,

Z ′
2 = µ

[
β
(2)
1 Y2 + β

(2)
2 Z2 + β

(2)
3 X2

2

]
+ µ2

{
X2

[
β
(2)
4 + β

(2)
5 Y2 + β

(2)
6 Z2

]
+ β

(2)
7 X3

2

}
+O(µ3) ,

where

γ
(2)
0 = σF ′′

xδ, γ
(2)
1 =

1

D

(
F ′′
xyG

′
1x + F ′′

xzG
′
2x

)
, γ

(2)
2 =

1

D

(
F ′′
xzF

′
y − F ′′

xyF
′
z

)
, γ

(2)
3 =

1

6
F ′′′
x3 ,

(2.16)

α
(2)
1 =

1

D
(F ′

yG
′
1xG

′
1y + F ′

yG
′
1zG

′
2x + F ′

zG
′
1xG

′
2y + F ′

zG
′
2xG

′
2z),

α
(2)
2 =

1

D
(F ′2

y G′
1z − F ′2

z G′
2y + F ′

yF
′
zG

′
2z − F ′

yF
′
zG

′
1y), α

(2)
3 =

1

2
(F ′

yG
′′
1x2 + F ′

zG
′′
2x2),

β
(2)
1 =

1

D
(G′2

1xG
′
2y −G′

1xG
′
2xG

′
1y +G′

1xG
′
2xG

′
2z −G′2

2xG
′
1z),

β
(2)
2 =

1

D
(−F ′

zG
′
1xG

′
2y + F ′

zG
′
2xG

′
1y + F ′

yG
′
1xG

′
2z − F ′

yG
′
2xG

′
1z),

β
(2)
3 =

1

2
(G′

1xG
′′
2x2 −G′

2xG
′′
1x2).

We do not write formulae for the coefficients of terms of the order µ2 (i.e. γ
(2)
i , α

(2)
i , β

(2)
i

with i ≥ 4) since they do not enter the main result of the paper.

In the system (2.15) the variable Z2 is slow and the leading term of the right-hand side
in the first equation does not contain Z2.

The next change of variables is aimed at simplification of the leading term of the right
hand side in (2.15). Using scaling

X2 = kX3, Y2 = mY3, Z2 = Z3, s = nτ
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we represent (2.15) as

X ′
3 =

nm

k
Y3 +

1

2
F ′′
x2knX2

3 +O(µ),

Y ′
3 = D

kn

m
X3 +O(µ) ,

Z ′
3 = O(µ) .

We fix the factors m, k, n in the following way

m =
D

F ′′
x2

, k =

√
−2D

F ′′
x2

, n =

√
2

−D
.

Then the leading term of (2.15) is simplified to

X ′
3 = X2

3 − Y3 ,

Y ′
3 = 2X3 ,

Z ′
3 = 0 .

Here the prime stands for the derivative with respect to τ . And the whole system (2.15)
takes the form

X ′
3 = X2

3 − Y3 + µ
(
X3(γ

(3)
0 + γ

(3)
1 Y3 + γ

(3)
2 Z3) + γ

(3)
3 X3

3

)
+ (2.17)

+ µ2

{
γ
(3)
4 Y3 + γ

(3)
5 Z3 + γ

(3)
6 Y 2

3 + γ
(3)
7 Z2

3 + γ
(3)
8 Y3Z3 +

+ X2
3

[
γ
(3)
9 + γ

(3)
10 Y3 + γ

(3)
11 Z3

]
+ γ

(3)
12 X

4
3

}
+O(µ3) ,

Y ′
3 = 2X3 + µ(α

(3)
1 Y3 + α

(3)
2 Z3 + α

(3)
3 X2

3 ) +

+ µ2(X3(α
(3)
4 + α

(3)
5 Y3 + α

(3)
6 Z3) + α

(3)
7 X3

3 ) +O(µ3) ,

Z ′
3 = µ

(
β
(3)
1 Y3 + β

(3)
2 Z3 + β

(3)
3 X2

3

)
+

+ µ2(X3(β
(3)
4 + β

(3)
5 Y3 + β

(3)
6 Z3) + β

(3)
7 X3

3 ) +O(µ3) ,

where

γ
(3)
0 =

√
2

−D
γ
(2)
0 , γ

(3)
1 = −

√
−2D

F ′′
x2

γ
(2)
1 , γ

(3)
2 =

√
2

−D
γ
(2)
2 , γ

(3)
3 =

2
√
−2D

F ′′2
x2

γ
(2)
3 ,

(2.18)

α
(3)
1 =

√
2

−D
α
(2)
1 , α

(3)
2 =

√
2

−D

F ′′
x2

D
α
(2)
2 , α

(3)
3 = − 2

√
2

F ′′
x2

√
−D

α
(2)
3 ,

β
(3)
1 = −

√
−2D

F ′′
x2

β
(2)
1 , β

(3)
2 =

√
2

−D
β
(2)
2 , β

(3)
3 =

2
√
−2D

F ′′2
x2

β
(2)
3 .
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The final change of variables is aimed at excluding as many coefficients αi, βi, γi as possible.
One may remark that equations (2.17) (and in fact already (2.12) due to scaling (2.11))
possess a symmetry. Namely, they are invariant with respect to the following transformation

(X3, τ, µ) 7→ (−X3,−τ,−µ) (2.19)

This symmetry will be used to simplify the study of the Poincaré map. Thus, our purpose is
not only to exclude a number of coefficients and keep the leading term, but also to preserve
this symmetry.

For this reason we consider the following close-to-identity change of variables X3

Y3

Z3

 = (I + µA+ µ2B)

 ξ
η
ζ

 , (2.20)

where

A =

 0 B1 C1

A2 0 0
A3 0 0

 , B =

 a1 0 0
0 b2 c2
0 b3 c3

 .

Inverting of (2.20) yields ξ
η
ζ

 = (I − µA+ µ2(A2 −B))

 X3

Y3

Z3

+O(µ3). (2.21)

In order to simplify the terms of the first order, we choose

B1 = −1

2
γ
(3)
1 , C1 = −1

2
γ
(3)
2 , A2 = α

(3)
3 , A3 = β

(3)
3 .

Then by appropriate choice of a1, b2, b3 and c2 we remove four coefficients of the order µ2

and obtain the following system:

ξ′ = ξ2 − η + µf1 + µ2g1 +O(µ3) ,

η′ = 2ξ + µf2 + µ2g2 +O(µ3) ,

ζ ′ = µf3 + µ2g3 +O(µ3) ,

where

f1 = γ0ξ + γξ3,

g1 = γ1η + γ2η
2 + γ3ζ

2 + γ4ηζ + ξ2(γ5η + γ6ζ) + γ7ξ
4,

f2 = α1η + α2ζ,

g2 = ξ(α3η + α4ζ) + α5ξ
3, (2.22)

f3 = β1η + β2ζ,

g3 = ξ(β3η + β4ζ) + β5ξ
3

8



and
γ0 = γ

(3)
0 + γ

(3)
1 − α

(3)
3 , γ = γ

(3)
3 , (2.23)

α1 = α
(3)
1 + α

(3)
3 − γ

(3)
1 , α2 = α

(3)
2 − γ

(3)
2 , β1 = β

(3)
1 + β

(3)
3 , β2 = β

(3)
2 .

We omit terms of the order O(µ3) and obtain the following system:

ξ′ = ξ2 − η + µf1 + µ2g1 ,

η′ = 2ξ + µf2 + µ2g2 , (2.24)

ζ ′ = µf3 + µ2g3

with fi and gi defined by (2.22). The system (2.24) will be called the normal form in a
neighborhood of a pair ”equilibrium-fold”. One should emphasize that equations (2.24) are
invariant under the following transformation

(ξ, τ, µ) 7→ (−ξ,−τ,−µ). (2.25)

3 Dynamics of the normal form

3.1 Poincaré map

Setting µ = 0 in (2.24) (that corresponds to ε = 0 for the original system), we obtain the
system

ξ′ = ξ2 − η,

η′ = 2ξ , (3.26)

ζ ′ = 0 .

In addition to the obvious integral of motion ζ, the unperturbed system has the second
integral

J = (η + 1− ξ2)e−(η+1). (3.27)

The orbits of the system (3.26) belong to intersections of the integrals’ level sets (see fig.1)

ζ = ζ0, (η + 1− ξ2)e−(η+1) = J0. (3.28)

Note that all fixed points of (3.26) belong to the line (0, 0, ζ). Moreover, the unperturbed
system possesses a separatrix. Namely, the parabola η = ξ2−1 (that corresponds to J0 = 0)
separates the plane (ξ, η) into two parts: above the parabola (J0 > 0) all orbits of (3.26) are
closed and below it (J0 < 0) all orbits are not closed.

To study the dynamics of (2.24) we construct the Poincaré map for this system. The
normal form system can be considered as a small perturbation of (3.26).

We add to the system (2.24) an additional equation in order to describe evolution of the
variable J . Using (3.27) and (2.24), we obtain the following equation on J :

J ′ = µf4e
−(η+1) + µ2g4e

−(η+1), (3.29)
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Figure 1: Orbits of the unperturbed system (3.26) for different values of J0.

where
f4 = (ξ2 − η)f2 − 2ξf1, g4 = (ξ2 − η)g2 − 2ξg1. (3.30)

Then we introduce the Poincaré section S−:

S− = {( ξ, η, ζ) : ξ = 0, −1 < η < 0, ζ ∈ R }. (3.31)

We use the variables (ζ, J) as coordinates on this section and denote the first return map by

P (µ) : S− → S−. (3.32)

Since all trajectories of the unperturbed system are closed for J > 0, the unperturbed
Poincaré map P (0) coincides with the identity map. It is natural to expect that after a
perturbation a trajectory starting at S− will hit this section again near the initial point.
Additionally one may expect that eigenvalues of the tangent map TP (µ) should be close
to one. However, this conjecture may become false if the trajectory is located near the
separatrix where the first return time grows substantially. To describe this effect we will
concentrate our attention on the region near the separatrix where J ≪ 1.

Assuming J0 = O(µ), we consider a closed orbit of the unperturbed system (3.26), defined
by ζ = ζ0, (η + 1− ξ2)e−(η+1) = J0, and denote the orbit by O(ζ0, J0). We also introduce a
µ lnµ−neighborhood of the orbit, Uµ (O(ζ0, J0)). Finally, we denote by Oµ(ζ0, J0) the orbit
of the system (2.24), which contains the point M(0) for which

ξ = 0, ζ = ζ0, J = J0.
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We suppose that Oµ(ζ0, J0) ⊂ Uµ (O(ζ0, J0)).
One may note that a trajectory corresponding to the unperturbed orbit O(ζ0, J0) pos-

sesses different behaviour in different regions. It starts at the point M(0) and moves initially
near the separatrix J = 0 till it comes close to a turning point

ξ+ = (k−1 − 1)1/2, η+ = k−1 − 1, ζ+ = ζ0, (3.33)

where

k =
1

ln J0
−1 , k = O

(
1

lnµ−1

)
. (3.34)

Then the trajectory ”detaches” from the separatix, turns in the ξ-direction and then ”flies”
across the region between two branches of the separatrix. At the top of the orbit

ξt = 0, ηt = k−1 + ln k−1 − 1 + o(1), ζt = ζ0.

Then the trajectory approaches the second turning point which is located symmetrically at
ξ− = −(k−1 − 1)1/2, η− = k−1 − 1, ζ− = ζ0, where the direction of motion with respect to ξ
is changed again and finally the trajectory follows the separtrix till an intersection with S−.

According to this description we highlight in the neighborhood Uµ (O(ζ0, J0)) the follow-
ing overlapping domains:

D1 = {(ξ, η, ζ) ∈ Uµ (O(ζ0, J0)) : |ξ| ≪ ξ+, η < η+},
D±

2 = {(ξ, η, ζ) ∈ Uµ (O(ζ0, J0)) : |ξ − ξ±| ≪ 1, |η − η±| ≪ k−1},
D3 = {(ξ, η, ζ) ∈ Uµ (O(ζ0, J0)) : |ξ| ≪ ξ+, η > η+}.

Taking into account the symmetry of the system, we define an auxiliary Poincaré section

S+ = {(ξ, η, ζ) ∈ Uµ (O(ζ0, J0)) : ξ = 0, η > η+, ζ ∈ R} (3.35)

and introduce an auxiliary Poincaré map

F (µ) : S− → S+.

We begin with considering the system (2.24), (3.29) in the domain D1 with initial condi-
tions:

ξ(0) = 0, ζ(0) = ζ0, J(0) = J0, η(0) = η0 : (η0 + 1) e−(η0+1) = J0

and we find some point M(1) at the orbit Oµ(ζ0, J0) such that it belongs to D1 ∩D+
2 . Then

we consider the system in D+
2 with corresponding initial conditions and find a point M(2)

at Oµ(ζ0, J0) ∩ D+
2 ∩ D3. Finaly we consider the system in D3 and find the point M(3) that

belongs to Oµ(ζ0, J0) ∩ S+. In this way we get F (µ).
We also note that due to invariance of the system (2.24) with respect to change (2.25) the

map F (−µ) corresponds to the Poincaré map between sections S− and S+, but backward in
time (see fig.2).

Therefore the first-return map P (µ) : S− → S− can be represented as a composition

P (µ) = F−1(−µ) ◦ F (µ). (3.36)

11



Figure 2: Poincaré maps F± = F (±µ).

3.2 Fixed points and the period-doubling bifurcation

Since all trajectories of the unperturbed system are closed for J > 0 one may expect that
after a small perturbation the image of a point (ζ0, J0) ∈ S− under the Poincaré map will be
close to the initial point (ζ0, J0). The condition for a fixed point reads as

P (µ)

(
ζ0
J0

)
=

(
ζ0
J0

)
(3.37)

or, taking into account (3.36), it can be rewritten

F (µ)

(
ζ0
J0

)
= F (−µ)

(
ζ0
J0

)
. (3.38)

Due to smooth dependence of (2.24) on µ one may represent the map F (µ) in the form

F (µ) = id + µF1 + µ2F2 + µ3F3 +O(µ4). (3.39)

Then the symmetry of the normal form (3.38) implies that

F1, F3 :

(
ζ0
J0

)
7→
(

0
0

)
. (3.40)

The period-doubling bifurcation occurs when one of the eigenvalues of the tangent map
D(ζ0,J0)P at a fixed point passes through −1. Thus, the condition for the period-doubling
bifurcation can be written in the form

det
(
D(ζ0,J0)P (µ) + I

)
= 0 (3.41)
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or equivalently due to (3.36) as

det
(
D(ζ0,J0)F (µ) +D(ζ0,J0)F (−µ)

)
= 0. (3.42)

Substituting (3.39) into (3.42), one gets

det
(
2I + 2µ2D(ζ0,J0)F2 +O(µ4)

)
= 0

or
1 + µ2TrD(ζ0,J0)F2 +O(µ4) = 0. (3.43)

The condition (3.43) justifies the necessity of second order approximation (3.39) for the map
F (µ) to reveal the cascade of the period-doubling bifurcations.

3.3 Domain D1

In this subsection we consider the system (2.24) in the domain D1. As the orbit is close to
the separatrix in this domain, we introduce new variable ϑ instead of η:

η = ϑ+ ξ2 − 1. (3.44)

Substituting (3.44) into (2.24) and (3.29), one obtains the system for (ξ, ϑ, ζ, J):

ξ′ = 1− ϑ+ µf1 + µ2g1 ,

ϑ′ = 2ξϑ+ µ(f2 − 2ξf1) + µ2(g2 − 2ξg1) , (3.45)

ζ ′ = µf3 + µ2g3 ,

J ′ = µf4e
−ϑ−ξ2 + µ2g4e

−ϑ−ξ2 ,

where all functions fi, gi are defined in (2.22), (3.30) and are evaluated at the point (ξ, ϑ +
ξ2 − 1, ζ).

One may conclude that as the variable ϑ ≪ 1 in D1, the derivative of the variable ξ in
(3.45) is positive in this domain. Taking this into account, we choose ξ as a new independent
variable and rewrite the system for other variables ϑ, ζ and J as functions of ξ:

dϑ

dξ
=

2ξϑ+ µ(f2 − 2ξf1) + µ2(g2 − 2ξg1)

1− ϑ+ µf1 + µ2g1
,

dζ

dξ
=

µf3 + µ2g3
1− ϑ+ µf1 + µ2g1

, (3.46)

dJ

dξ
=

µf4 + µ2g4
1− ϑ+ µf1 + µ2g1

e−ϑ−ξ2 .

We will find a solution of the system (3.46) as a perturbation of the orbit O(ζ0, J0)

ϑ(ξ) = ϑ0(ξ) + µϑ1(ξ) + µ2ϑ2(ξ) +O(µ3),

ζ(ξ) = ζ0 + µζ1(ξ) + µ2ζ2(ξ) +O(µ3), (3.47)

J(ξ) = J0 + µJ1(ξ) + µ2J2(ξ) +O(µ3)
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and fix initial conditions for the unknown functions in the following way:

ϑi(0) = 0, ζi(0) = 0, Ji(0) = 0, i = 1, 2. (3.48)

The function ϑ0(ξ) corresponds to the unperturbed orbit and is given implicitly by the
following equation

ϑ0e
−ϑ0 = J0e

ξ2 . (3.49)

Hence
ϑ0(ξ) = J0e

ξ2
(
1 +O

(
J0e

ξ2
))

. (3.50)

Now we fix the point M(1) by setting the corresponding value of ξ = ξ(1) as

ξ(1) = k−1/2

(
1− 1

2
k ln k−1

)
. (3.51)

Then, taking into account (3.34), one obtains that

(ξ(1))2 = k−1 − ln k−1 +
1

4
k ln2 k−1, e(ξ

(1))2 =
k

J0

(
1 +O(k ln2 k−1)

)
. (3.52)

and the following estimates hold

ϑ0(ξ) = J0e
ξ2 +O(k2), ϑ0(ξ) = O(k). (3.53)

Substituting (3.47) into (3.46) and expanding with respect to µ, one obtains equations
for the functions ϑi, ζi, Ji. Note that derivatives dζ/dξ, dJ/dξ are of the order O(µ). This
implies the function ϑ2 does not appear in equations for ζ2, J2 and we need to construct the
solution ϑ(ξ) only up to terms of the order O(µ).

The function ϑ1(ξ) satisfies an equation:

dϑ1

dξ
=

2ξϑ1

(1− ϑ0)2
+R(ϑ)

1 (ξ),

where

R(ϑ)
1 (ξ) =

(1− ϑ0)f2 − 2ξf1
(1− ϑ0)2

,

and the functions f1, f2 are evaluated at the point (ξ, ϑ0 + ξ2 − 1, ζ0).
Taking into account (3.48), the solution of the equation on ϑ1(ξ) has the form

ϑ1(ξ) = e
∫ ξ
0

2s ds
(1−ϑ0(s))

2

∫ ξ

0

e
−

∫ s
0

2p dp

(1−ϑ0(p))
2 · R(ϑ)

1 (s)ds.

From (3.53) we get∫ s

0

2p dp

(1− ϑ0(p))2
=

∫ s

0

2p
(
1 +O(ϑ0(p))

)
dp = s2 +O(k).
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Then, using (2.22) and (3.53), one obtains

ϑ1(ξ) = eξ
2

∫ ξ

0

e−s2
[
−2γs4 + (α1 − 2γ0)s

2 − α1 + α2ζ0
]
ds · (1 +O(k)) .

Note that

Φ(ξ) =

∫ ξ

0

e−s2ds =

√
π

2
+O

(
e−ξ2

ξ

)
, ξ → +∞,

∫ ξ

0

s2e−s2ds = −1

2
ξe−ξ2 +

1

2
Φ(ξ),∫ ξ

0

s4e−s2ds = −1

2
ξ3e−ξ2 − 3

4
ξe−ξ2 +

3

4
Φ(ξ).

We introduce

A(ζ0) =

√
π

2

(
−3

2
γ + α2ζ0 −

1

2
α1 − γ0

)
. (3.54)

Thus, for ϑ1(ξ) one has

ϑ1(ξ) =

[
eξ

2 2√
π
A(ζ0)Φ(ξ) +Q

(ϑ)
3 (ξ)

]
(1 +O(k)), (3.55)

where Q
(ϑ)
3 (ξ) is a polynomial of the third order in ξ. Using (3.52), we may calculate ϑ1(ξ)

at the point M(1)

ϑ
(1)
1 = ϑ1(ξ

(1)) = A(ζ0)
k

J0

(
1 +O(k ln2 k−1)

)
+O(k−3/2). (3.56)

From (3.46) one gets that the i-th order approximation (ζi, Ji) satisfies a system of equa-
tions (i = 1, 2):

dζi
dξ

= R(ζ)
i (ξ), (3.57)

dJi
dξ

= R(J)
i (ξ).

Here for i = 1

R(ζ)
1 (ξ) =

f3
1− ϑ0

, (3.58)

R(J)
1 (ξ) =

f4
1− ϑ0

e−ϑ0−ξ2

and for i = 2

R(ζ)
2 (ξ) =

f ′
3,ηϑ1 + f ′

3,ζζ1 + g3

1− ϑ0

+
f3(ϑ1 − f1)

(1− ϑ0)2
,

R(J)
2 (ξ) =

[
f ′
4,ηϑ1 + f ′

4,ζζ1 + g4

1− ϑ0

+
f4(ϑ0ϑ1 − f1)

(1− ϑ0)2

]
e−ϑ0−ξ2 (3.59)
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and the functions fi, gi, i = 1, . . . , 4 are evaluated at the point (ξ, ϑ0 + ξ2 − 1, ζ0).
Taking into account (3.48), the solution of the system (3.57) has the form

ζi(ξ) =

∫ ξ

0

R(ζ)
i (s)ds, (3.60)

Ji(ξ) =

∫ ξ

0

R(J)
i (s)ds.

Substituting (2.22) into (3.58) and then into (3.60) and taking into account (3.53), we
get

ζ1(ξ) =

∫ ξ

0

[
β1(s

2 − 1) + β2ζ0
]
ds · (1 +O(k)) ,

J1(ξ) =

∫ ξ

0

e−s2
[
−2γs4 + (α1 − 2γ0)s

2 − α1 + α2ζ0
]
ds · (1 +O(k)) .

Consequently,

ζ1(ξ) =

[
1

3
β1ξ

3 − β1ξ + β2ζ0ξ

]
(1 +O(k)),

J1(ξ) =

[
2√
π
A(ζ0)Φ(ξ) + e−ξ2Q

(J)
3 (ξ)

](
1 +O(k)

)
. (3.61)

where Q
(J)
3 (ξ) is a polynomial of the third order in ξ.

Then, using (3.51), we have at the point M(1)

ζ
(1)
1 = ζ1(ξ

(1)) = k−3/2

[
1

3
β1 + β2kζ0 −

1

2
(β1 + β2kζ0) k ln k

−1 − β1k +O(k2 ln2 k−1)

]
,

J
(1)
1 = J1(ξ

(1)) = A(ζ0)
(
1 +O(k)

)
+O

(
J0
k5/2

)
. (3.62)

For i = 2 we use (3.59) and take into account (3.55), (3.61) to obtain

R(ζ)
2 (ξ) =

[
(β1ξ

2 + β2ζ0)e
ξ2 2√

π
A(ζ0)Φ(ξ) +Q

(ζ)
5 (ξ)

]
(1 +O(k)),

where Q
(ζ)
5 (ξ) is a polynomial of the fifth order in ξ. Note that due to (3.52)∫ ξ(1)

0

es
2

Φ(s) ds =

√
π

4

k3/2

J0
(1 +O(k ln2 k−1)),

∫ ξ(1)

0

s2es
2

Φ(s) ds =

√
π

4

k1/2

J0
(1 +O(k ln2 k−1)).
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Then for i = 2 we get from (3.60)

ζ
(1)
2 = ζ2(ξ

(1)) = A(ζ0)
k1/2

2J0
[β1 + β2kζ0]

(
1 +O(k ln2 k−1)

)
+O(k−3). (3.63)

Application of formulae (3.59), (3.61) and (3.55) yields

R(J)
2 (ξ) =

[
e−ξ2Q

(J)
7 (ξ)− (α1ξ

2 + α2ζ0 − 2α1)
2√
π
A(ζ0)Φ(ξ)

]
(1 +O(k)),

where Q
(J)
7 (ξ) is a polynomial of the seventh order in ξ. Note that due to (3.51)∫ ξ(1)

0

Φ(s)ds =

√
π

2
k−1/2(1 +O(k ln k−1))− 1

2
,∫ ξ(1)

0

s2Φ(s)ds =
k−3/2

3

√
π

2
(1 +O(k ln k−1)).

Then we get

J
(1)
2 = J2(ξ

(1)) = −k−3/2A(ζ0)
(α1

3
+ α2kζ0

)(
1 +O(k ln k−1)

)
+O(k−1). (3.64)

Thus, the coordinates (ζ(1), J (1)) of the point M(1) which belongs to Oµ(ζ0, J0)∩D1∩D+
2

are described by

ζ(1) = ζ0 + µζ
(1)
1 + µ2ζ

(1)
2 +O(µ3), (3.65)

J (1) = J0 + µJ
(1)
1 + µ2J

(1)
2 +O(µ3),

where ζ
(1)
i and J

(1)
i are defined by (3.62), (3.63) and (3.64).

3.4 Domain D+
2

The aim of this subsection is to obtain the second order approximation for a point M(2) =
(ζ(2), J (2)) ∈ Oµ(ζ0, J0) ∩ D+

2 ∩ D3. We fix the point M(2) by setting a value of the variable
η corresponding to this point as

η(2) = k−1 +
1

2
ln k−1 − 1. (3.66)

To consider the system in the domain D+
2 it is convinient to introduce new variables z and

v by the following way:

ξ = k−1/2(1− kz), η = k−1 + v − 1.

Then the coordinate v corresponding to M(2) = (ζ(2), J (2)) is

v(2) =
1

2
ln k−1. (3.67)
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On the other hand, the coordinates (z, v) which correspond to the point M(1) = (ζ(1), J (1))
are

z(1) =
1

2
ln k−1, v(1) = η(1) − k−1 + 1 = ϑ(1) + (ξ(1))2 − k−1.

Therefore the coordinate v(1) depends on µ:

v(1) = v
(1)
0 + µv

(1)
1 +O(µ2),

where, due to relations (3.52), (3.53), (3.56),

v
(1)
0 = − ln k−1 +O(k ln2 k−1), (3.68)

v
(1)
1 = ϑ

(1)
1 = A(ζ0)

k

J0
·
(
1 +O(k ln2 k−1)

)
+O(k−3/2). (3.69)

In terms of new variables the equations of motion (2.24) and (3.29) can be rewritten as

z′ = 2k−1/2z − k1/2z2 + k−1/2(v − 1)− µk−1/2f1 − µ2k−1/2g1 ,

v′ = 2k−1/2(1− kz) + µf2 + µ2g2 ,

ζ ′ = µf3 + µ2g3 ,

J ′ = J0
[
µf4 + µ2g4

]
e−v ,

where the functions fi, gi, i = 1, . . . , 4 are evaluated at the point (k−1/2(1−kz), k−1−1+v, ζ).
Note that in the domain D+

2 an expression kz < 1 and the derivative v′ does not vanish.
Thus, one can take v as a new independent variable and obtain equations on (z, ζ, J) as
functions of v:

dz

dv
=

2z + v − 1− kz2 − µf1 − µ2g1
2(1− kz) + µk1/2f2 + µ2k1/2g2

,

dζ

dv
=

k1/2(µf3 + µ2g3)

2(1− kz) + µk1/2f2 + µ2k1/2g2
, (3.70)

dJ

dv
=

J0k
1/2(µf4 + µ2g4)

2(1− kz) + µk1/2f2 + µ2k1/2g2]
e−v .

We supply (3.70) by initial conditions corresponding to the point M(1):

z(v(1)) = z(1), ζ(v(1)) = ζ(1), J(v(1)) = J (1) (3.71)

and find the solution satisfying (3.70) and (3.71) in a form

z(v) = z0(v) + µz1(v) +O(µ2),

ζ(v) = ζ0 + µζ1(v) + µ2ζ2(v) +O(µ3), (3.72)

J(v) = J0 + µJ1(v) + µ2J2(v) +O(µ3),
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where z0(v) corresponds to the unperturbed orbit O(ζ0, J0).
The initial conditions (3.71) are set at the point v(1) which depends on µ. Using the

Taylor formula with respect to µ, one may reformulate these conditions at the point v
(1)
0 as

follows:

z0(v
(1)
0 ) = z

(1)
0 , z1(v

(1)
0 ) = −dz0

dv
(v

(1)
0 ) · v(1)1 ,

ζ1(v
(1)
0 ) = ζ

(1)
1 , ζ2(v

(1)
0 ) = ζ

(1)
2 − dζ1

dv
(v

(1)
0 ) · v(1)1 , (3.73)

J1(v
(1)
0 ) = J

(1)
1 , J2(v

(1)
0 ) = J

(1)
2 − dJ1

dv
(v

(1)
0 ) · v(1)1 .

Substituting (3.72) into (3.70) and collecting the terms of the same order of µ, one gets
equations for the components zi, ζi, Ji. We solve these equations with the initial conditions
(3.73) to obtain ζi(v) and Ji(v). Finally, substituting v = v(2), one gets the point M(2) =
(ζ(2), J (2)).

Thus, our task is to derive asymptotic formulae for ζ1,2(v
(2)) and J1,2(v

(2)). We begin
with auxilary asymptotics for z0(v) and z1(v).

Note that z0(v) corresponds to the unperturbed orbit O(ζ0, J0). Hence, due to (3.28), it
is a solution of the following equation

z0 −
1

2
kz20 =

1

2

(
ev − v

)
. (3.74)

Since k(ev−v) ≪ 1 in the domainD+
2 , the function z0(v) admits the following asymptotics

z0(v) =
1

2

(
ev − v

)(
1 +O (k (ev − v))

)
. (3.75)

It is not difficult to verify that in D+
2

kz0(v) = O(k1/2). (3.76)

From (3.70) one may deduce that equation for z1 as a function of v can be written as

dz1
dv

=

(
1 + k

dz0/dv

1− kz0

)
z1 +R(z)

1 (v),

where

R(z)
1 (v) = − f1

2(1− kz0(v))
− k1/2 (2z0(v) + v − 1− kz20)f2

4(1− kz0(v))2
= O(k−3/2).

Then

z1(v) = e

∫ v

v
(1)
0

[
1+k

dz0/ds
1−kz0

]
ds

(
z1

(
v
(1)
0

)
+

∫ v

v
(1)
0

e
−

∫ s

v
(1)
0

[
1+k

dz0/dp
1−kz0

]
dp
· R(z)

1 (s)ds

)
. (3.77)
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Due to (3.68) and (3.76) we have∫ v

v
(1)
0

[
1 + k

dz0/ds

1− kz0

]
ds = v + ln k−1 +O(k1/2).

Then, using (3.73), (3.75) and (3.69), one gets

z1(v) =
ev

2J0
A(ζ0) (1 +O(k1/2)). (3.78)

Finally, (3.67) yields

z1(v
(2)) =

k−1/2

2J0
A(ζ0)(1 +O(k1/2)). (3.79)

We substitute (3.72) into (3.70) and obtain equations for ζi and Ji (i = 1, 2) in the
following form

dζi
dv

= R(ζ)
i (v), (3.80)

dJi
dv

= R(J)
i (v),

where for i = 1:

R(ζ)
1 (v) = k1/2 f3

2(1− kz0(v))
, (3.81)

R(J)
1 (v) = J0k

1/2 f4
2(1− kz0(v))

e−v,

and for i = 2:

R(ζ)
2 (v) = k1/2

[
−k1/2f ′

3,ξ · z1(v) + f ′
3,ζ · ζ1(v) + g3

2(1− kz0(v))
+

f3 · (2kz1(v)− k1/2f2)

4(1− kz0(v))2

]
, (3.82)

R(J)
2 (v) = J0k

1/2

[
−k1/2f ′

4,ξ · z1(v) + f ′
4,ζ · ζ1(v) + g4

2(1− kz0(v))
+

f4(2kz1(v)− k1/2f2)

4(1− kz0(v))2

]
e−v.

Here the functions fi, gi are evaluated at the point (ξ, η, ζ) =
(
k−1/2(1− kz0(v)), k

−1 + v −

1, ζ0

)
.

The solutions of (3.80) are

ζi(v) = ζi

(
v
(1)
0

)
+

∫ v

v
(1)
0

R(ζ)
i (s)ds, (3.83)

Ji(v) = Ji

(
v
(1)
0

)
+

∫ v

v
(1)
0

R(J)
i (s)ds.
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Due to (2.22), (3.30) and the estimate (3.76) one may deduce from (3.81) that the func-

tions R(ζ)
1 (v) and R(J)

1 (v) can be written as

R(ζ)
1 (v) =

1

2
k−1/2(β1 + β2kζ0) +O(k1/2 ln k−1),

R(J)
1 (v) = −γJ0k

−3/2e−v(1 +O(k1/2)). (3.84)

Substituting v = v(2) = 1
2
ln k−1 into (3.83) and taking into account the formulae (3.84),

(3.73), (3.62), one obtains

ζ
(2)
1 = ζ1(v

(2)) = k−3/2

[
1

3
β1 + β2kζ0 +

1

4
(β1 + β2kζ0) k ln k

−1 − β1k +O(k3/2)

]
,

J
(2)
1 = J1(v

(2)) = A(ζ0)
(
1 +O(k)

)
+O(J0k

−5/2). (3.85)

The formula (3.83) for i = 2 together with (3.73) leads to

ζ2(v
(2)) = ζ

(1)
2 − dζ1

dv
(v

(1)
0 ) · v(1)1 +

∫ v(2)

v
(1)
0

R(ζ)
2 (s)ds, (3.86)

J2(v
(2)) = J

(1)
2 − dJ1

dv
(v

(1)
0 ) · v(1)1 +

∫ v(2)

v
(1)
0

R(J)
2 (s)ds.

Taking into account (3.69), (3.80) and (3.84), one gets

−dζ1
dv

(v
(1)
0 ) · v(1)1 = −A(ζ0)

k1/2

2J0
(β1 + β2kζ0)(1 +O(k1/2)),

−dJ1
dv

(v
(1)
0 ) · v(1)1 = γk−3/2A(ζ0)(1 +O(k1/2)).

Then (3.82), (3.76), (3.78) yield

R(ζ)
2 (v) =

k1/2

4J0
A(ζ0)(β1 + β2kζ0)e

v
(
1 +O(k1/2)

)
,

R(J)
2 (v) = O(k−1/2).

Hence ∫ v(2)

v
(1)
0

R(ζ)
2 (s) ds =

1

4J0
A(ζ0)(β1 + β2kζ0)

(
1 +O(k1/2)

)
,∫ v(2)

v
(1)
0

R(J)
2 (s) ds = O(k−1/2 ln k−1).

Substituting these formulae together with (3.63), (3.64) into (3.86), we get

ζ
(2)
2 = ζ2(v

(2)) = A(ζ0)
1

4J0
[β1 + β2kζ0]

(
1 +O(k1/2)

)
, (3.87)

J
(2)
2 = J2(v

(2)) = −A(ζ0)k
−3/2

(α1

3
+ α2kζ0 − γ

)(
1 +O(k1/2)

)
.
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Consequently, the point M(2) is characterized by

ζ(2) = ζ0 + µζ
(2)
1 + µ2ζ

(2)
2 +O(µ3), (3.88)

J (2) = J0 + µJ
(2)
1 + µ2J

(2)
2 +O(µ3),

where ζ
(2)
i and J

(2)
i are defined by (3.85) for i = 1 and (3.87) for i = 2.

3.5 Domain D3

In this subsection we derive an asymptotic for the Poincaré map F (µ). In the domain D3 it
is convenient to introduce variables

y = k1/2ξ, v = η − k−1 + 1. (3.89)

In terms of the variables (y, v, ζ) the section S+ can be rewritten as

S+ = {(y, v, ζ) ∈ Uµ (O(ζ0, J0)) : y = 0, v > 0} (3.90)

and the equations of motion (2.24) and (3.29) take the form

y′ = k−1/2(y2 − 1− k(v − 1)) + µk1/2f1 + µ2k1/2g1 ,

v′ = 2k−1/2y + µf2 + µ2g2 ,

ζ ′ = µf3 + µ2g3 ,

J ′ = J0(µf4 + µ2g4) e
−v ,

where the functions fi, gi are evaluated at the point (ξ, η, ζ) = (k−1/2y, v + k−1 − 1, ζ). One
may note that in the domain D3 the derivative y

′ does not vanish. Hence, we may set y as a
new independent variable and consider (v, ζ, J) as functions of y. Then evolution of (v, ζ, J)
is described by the following equations

dv

dy
=

2y + µk1/2f2 + µ2k1/2g2
(y2 − 1− k(v − 1)) + µkf1 + µ2kg1

,

dζ

dy
=

k1/2(µf3 + µ2g3)

(y2 − 1− k(v − 1)) + µkf1 + µ2kg1
, (3.91)

dJ

dy
=

J0k
1/2(µf4 + µ2g4)

(y2 − 1− k(v − 1)) + µkf1 + µ2kg1
e−v.

We supply these equations by initial conditions corresponding to the point M(2):

v(y(2)) = v(2), ζ(y(2)) = ζ(2), J(y(2)) = J (2), (3.92)

where ζ(2), J (2) and v(2) are defined by (3.88) and (3.67).
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One represents the solution satisfying (3.91) and (3.92) in the form

v(y) = v0(y) + µv1(y) +O(µ2),

ζ(y) = ζ0 + µζ1(y) + µ2ζ2(y) +O(µ3), (3.93)

J(y) = J0 + µJ1(y) + µ2J2(y) +O(µ3),

where v0(y) corresponds to the unperturbed orbit O(ζ0, J0).
Taking into account relations y = 1− kz and v(2) = 1

2
ln k−1 and expanding y(2) as

y(2) = y
(2)
0 + µy

(2)
1 +O(µ2),

one obtains from (3.75)

y
(2)
0 = 1− kz0(v

(2)) = 1− 1

2
k1/2 +

1

4
k ln k−1 +O(k) (3.94)

and due to (3.79)

y
(2)
1 = −kz1(v

(2)) = −A(ζ0)
k1/2

2J0
·
(
1 +O(k1/2)

)
+O(k−5/2). (3.95)

Then, using the Taylor formula with respect to µ, we shift initial conditions (3.92) to the

point y = y
(2)
0 as follows:

v0(y
(2)
0 ) = v

(2)
0 , v1(y

(2)
0 ) = −dv0

dy
(y

(2)
0 ) · y(2)1 ,

ζ1(y
(2)
0 ) = ζ

(2)
1 , ζ2(y

(2)
0 ) = ζ

(2)
2 − dζ1

dy
(y

(2)
0 ) · y(2)1 , (3.96)

J1(y
(2)
0 ) = J

(2)
1 , J2(y

(2)
0 ) = J

(2)
2 − dJ1

dy
(y

(2)
0 ) · y(2)1 .

Substituting (3.93) into (3.91) and expanding with respect to µ, one obtains equations
for the i-th approximations ζi and Ji:

dζi
dy

= R(ζ)
i (y), (3.97)

dJi
dy

= R(J)
i (y).

The solution of this system is

ζi(y) = ζi(y
(2)
0 ) +

∫ y

y
(2)
0

R(ζ)
i (s) ds, (3.98)

Ji(v) = Ji(y
(2)
0 ) +

∫ y

y
(2)
0

R(J)
i (s) ds.
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For i = 1 one has

R(ζ)
1 (y) = k1/2 f3

y2 − 1− k(v0(y)− 1)
, (3.99)

R(J)
1 (y) = J0k

1/2 f4
y2 − 1− k(v0(y)− 1)

e−v0(y),

and for i = 2

R(ζ)
2 (y) = k1/2

f ′
3,η · v1(y) + f ′

3,ζ · ζ1(y) + g3

y2 − 1− k(v0(y)− 1)
+ k3/2 f3 · (v1(y)− f1)

(y2 − 1− k(v0(y)− 1))2
, (3.100)

R(J)
2 (y) = J0k

1/2

[
(f ′

4,η − f4) · v1(y) + f ′
4,ζ · ζ1(y) + g4

y2 − 1− k(v0(y)− 1)
+ k

f4 · (v1(y)− f1)

(y2 − 1− k(v0(y)− 1))2

]
e−v0(y),

where the functions fi, gi are evaluated at the point (ξ, η, ζ) = (k−1/2y, k−1 + v0(y)− 1, ζ0).
Our task is to derive asymptotic formulae for ζ1,2(0) and J1,2(0). We begin with auxilary

asymptotics for v0(y) and v1(y).
The function v0(y) satisfies the following equation

dv0
dy

=
2y

y2 − 1− k(v0 − 1)
. (3.101)

As v0(y) corresponds to the unperturbed orbit O(ζ0, J0) then due to (3.28) it is described
implicitly by an equality

ev0 = k−1(1− y2 + kv0). (3.102)

Hence, in the domain D3 it admits an esimate

v0(y) = ln k−1 + ln(1− y2) +O(k1/2 ln k−1). (3.103)

Applying (3.91), we obtain the following equation for v1(y):

dv1
dy

= k
2y

(y2 − 1− k(v0(y)− 1))2
v1 +R(v)

1 (y),

where

R(v)
1 (y) = k1/2 f2

y2 − 1− k(v0(y)− 1)
− k

2yf1
(y2 − 1− k(v0(y)− 1))2

and the functions fi are evaluated at the point (ξ, η, ζ) = (k−1/2y, k−1 + v0(y)− 1, ζ0).
The solution of this equation is

v1(y) = e
k
∫ y

y
(2)
0

2s
(s2−1−k(v0(s)−1))2

ds
(
v1(y

(2)
0 ) +

∫ y

y
(2)
0

e
−k

∫ s

y
(2)
0

2p

(p2−1−k(v0(p)−1))2
dp
· R(v)

1 (s) ds

)
.

(3.104)
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Note that in the domain D3 one has

1

y2 − 1
= O(k−1/2), v0(y) = O(ln k−1),

y2 − 1− k(v0 − 1) = (y2 − 1)(1 +O(k1/2 ln k−1)), (3.105)

e
±k

∫ y

y
(2)
0

2s
(s2−1−k(v0(s)−1))2

ds

= 1 +O(k1/2),

R(v)
1 (y) = O(k−3/2),

∫ y

y
(2)
0

R(v)
1 (s)ds = O(k−3/2).

Taking into account (3.96) and using (3.101), (3.105), (3.94), (3.95), one concludes from
(3.104) that

v1(y) = −A(ζ0)

J0

(
1 +O(k1/2 ln k−1)

)
+O(k−3/2). (3.106)

Then (3.99) with (3.105), (3.102) yield

R(ζ)
1 (y) = −k−1/2(β1 + β2kζ0)

1− y2
(1 +O(k1/2 ln k−1)),

R(J)
1 (y) = O

(
J0k

−1/2

(1− y2)2

)
. (3.107)

Consequently,∫ 0

y
(2)
0

R(ζ)
1 (s) ds = k−1/2(β1 + β2kζ0)

(
1

4
ln k−1 +

1

2
ln 4

)
+O

(
ln k−1

)
,

∫ 0

y
(2)
0

R(J)
1 (s) ds = O

(
k−1J0

)
.

Taking into account (3.96) and (3.85) together with (3.98), one gets

ζ
(3)
1 = k−3/2

[
1

3
β1 + β2kζ0 +

1

2
(β1 + β2kζ0) k(ln k

−1 + ln 4)− β1k +O(k3/2 ln k−1)

]
,

J
(3)
1 = A(ζ0)

(
1 +O(k)

)
+O(J0k

−1). (3.108)

For the second order terms, due to (3.98) and (3.96), we have:

ζ2(0) = ζ
(2)
2 − dζ1

dy
(y

(2)
0 ) · y(2)1 +

∫ 0

y
(2)
0

R(ζ)
2 (s) ds, (3.109)

J2(0) = J
(2)
2 − dJ1

dy
(y

(2)
0 ) · y(2)1 +

∫ 0

y
(2)
0

R(J)
2 (s) ds,

25



where ζ
(2)
2 and J

(2)
2 are defined by (3.87),

−dζ1
dy

(y
(2)
0 ) · y(2)1 = −R(ζ)

1 (y
(2)
0 ) · y(2)1 , −dJ1

dy
(y

(2)
0 ) · y(2)1 = −R(J)

1 (y
(2)
0 ) · y(2)1 .

Formulae (3.107), (3.94), (3.95) imply

−dζ1
dy

(y
(2)
0 ) · y(2)1 = −A(ζ0)

k−1/2

2J0
(β1 + β2kζ0)

(
1 +O(k1/2 ln k−1

)
, (3.110)

−dJ1
dy

(y
(2)
0 ) · y(2)1 = O(k−1).

Application of (3.100), (3.103), (3.106) leads to the following estimates

R(ζ)
2 (y) = O

(
k1/2

J0
· 1

(1− y2)2

)
⇒
∫ 0

y
(2)
0

R(ζ)
2 (s) ds = O

(
1

J0

)
, (3.111)

R(J)
2 (y) = O

(
k1/2

(1− y2)3

)
⇒
∫ 0

y
(2)
0

R(J)
2 (s) ds = O(k−1/2).

Therefore, we have the following asymptotics for the second order approximations

ζ
(3)
2 = −A(ζ0)

k−1/2

2J0
[β1 + β2kζ0]

(
1 +O(k1/2 ln k−1)

)
+O

(
1

J0

)
, (3.112)

J
(3)
2 = −A(ζ0)k

−3/2
(α1

3
+ α2kζ0 − γ

)(
1 +O(k1/2)

)
+O(k−1).

Thus, the Poincaré map F (µ) can be represented as

F (µ) :

(
ζ0
J0

)
7→
(

ζ(3)

J (3)

)
=

(
ζ0 + µζ

(3)
1 + µ2ζ

(3)
2 +O(µ3)

J0 + µJ
(3)
1 + µ2J

(3)
2 +O(µ3)

)
, (3.113)

where ζ
(3)
i and J

(3)
i are defined by (3.108) for i = 1 and (3.112) for i = 2.

4 Fixed points and period-doubling bifurcations

In this section we derive conditions on the parameters of the normal form which lead to
existence of a fixed point of the Poincaré map and its period-doubling bifurcation. If (ζ0, J0) ∈
S− is a fixed point then according to (3.40) the following condition should be satisfied:

ζ
(3)
1 = 0, J

(3)
1 = 0.

Taking into account (3.108), (3.54) and definition of the parameter k, one may rewrite these
conditions as

β2ζ0

ln J−1
0

[
1 +

ln ln J−1
0 + ln 4

2 ln J−1
0

]
+ β1

[
1

3
+

ln ln J−1
0 + ln 4− 2

2 ln J−1
0

]
= O

(
ln ln J−1

0

ln3/2 J−1
0

)
,

− 3

2
γ + α2ζ0 −

1

2
α1 − γ0 = O(J0 ln

2 J−1
0 ). (4.114)
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Note that the coefficient γ0 in (4.114) is the only one which depends on the ratio, δ/ε, of
parameters of the initial problem (1.6), namely:

γ0 = κσ + ν, κ =

√
2

−D
F ′′
xδ, ν =

√
2

−D

D′
x

F ′′
x2

, σ =
δ

ε
,

where the functions F ′′
xδ, F

′′
x2 , D,D′

x are evaluated at (x, y, z, δ) = (0, 0, 0, 0).
We solve the first equation with respect to ζ0 and substitute the solution into the second

one. Then the second condition (4.114) can be considered as an equation defining J0 in
terms of the parameter σ:

ζ0 = − β1

3β2

ln J−1
0

(
1 +

ln ln J−1
0 + ln 4− 3

ln J−1
0

)
+O

(
ln ln J−1

0

ln1/2 J−1
0

)
, (4.115)

σ = − α2β1

3β2κ
ln J−1

0

(
1 +

ln ln J−1
0 + ln 4− 3

ln J−1
0

)
− 3γ + α1 + 2ν

2κ
+O

(
ln ln J−1

0

ln1/2 J−1
0

)
.

We emphasize here that due to J0 ≪ 1 the ratio σ satisfies σ ≫ 1.
One may also note that due to smooth dependence of solutions on initial conditions

asymptotics (3.112) and (3.54) being differentiated with respect to (ζ0, J0) remain valid in
Uµ (O(ζ0, J0)). This leads to

TrD(ζ0,J0)F2 = −
√
πk−1/2

4J0
α2(β1 + β2kζ0)

(
1 +O(k1/2 ln k−1)

)
+O(k−5/2).

Substituting this into (3.43) and taking into account (4.114), one gets a condition for the
period-doubling bifurcation of the periodic trajectory corresponding to initial point (ζ0, J0):

1− µ2

√
πα2β1 ln

1/2 J−1
0

6J0
·
(
1 +O

( ln ln J−1
0

ln1/2 J−1
0

))
+O(µ2 ln−5/2 J−1

0 ) = 0,

where J0 satisfies (4.115).
We solve this equation with respect to J0 and substitute the solution into (4.115). Then,

taking into account the relation ε = µ2, one obtains that the first period-doubling bifurcation
occurs at

ζ∗0 = − β1

3β2

[
ln ε−1 +

1

2
ln ln ε−1 − ln

(√
π
α2β1e

3

24

)]
+O

(
ln ln ε−1

ln1/2 ε−1

)
,

J∗
0 =

√
π
α2β1

6
ε ln1/2 ε−1

(
1 +O

(
ln ln ε−1

ln ε−1

))
, (4.116)

δ∗ = − α2β1

3β2κ
ε

[
ln ε−1 +

1

2
ln ln ε−1− ln

(√
π
α2β1e

3

24

)]
−

− 3γ + α1 + 2ν

2κ
ε+O

(
ε
ln ln ε−1

ln1/2 ε−1

)
.
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It is to be noted that (4.115), (4.116) hold true provided κ ̸= 0, α2 ̸= 0, β1,2 ̸= 0. We
apply (2.16), (2.18), (2.23) to obtain:

β1 =

√
2

F ′′
x2

√
−D

G′
1x

∣∣∣∣∣∣
F ′′
x2 G′′

1x2 G′′
2x2

0 G′
1x G′

2x

F ′
y G′

1y G′
2y

∣∣∣∣∣∣+G′
2x

∣∣∣∣∣∣
F ′′
x2 G′′

1x2 G′′
2x2

0 G′
1x G′

2x

F ′
z G′

1z G′
2z

∣∣∣∣∣∣
 ,

α2 =

√
2

(−D)5/2

F ′
y

∣∣∣∣∣∣
F ′′
x2 F ′′

xy F ′′
xz

0 Fy Fz

G′
1x G′

1y G′
1z

∣∣∣∣∣∣+ F ′
z

∣∣∣∣∣∣
F ′′
x2 F ′′

xy F ′′
xz

0 F ′
y F ′

z

G′
2x G′

2y G′
2z

∣∣∣∣∣∣
 ,

β2 =

√
2

(−D)3/2

∣∣∣∣∣∣
0 F ′

y F ′
z

G′
1x G′

1y G′
1z

G′
2x G′

2y G′
2z

∣∣∣∣∣∣ .
If all coefficients κ, α2, β1,2 vanish then fixed point does not exist for small values of J0.
In other cases one needs to perform further asymptotic analysis to obtain conditions for
existence of a periodic orbit and its period-doubling bifurcation.

One may also remark that the distance between the fixed point and the fold is

ρ = δF ′′
xδ

√
F ′2
y + F ′2

z

(F ′
yF

′′
xz)

2 + F ′′2
x2 (F ′2

y + F ′2
z )

+O(δ2).

Thus, the cascade of period-doubling bifurcations occurs when the equilibrium is not very
close to the fold, but situated at a distance of the order O(ε ln ε−1).

5 Example: the FitzHugh-Nagumo system

We apply our results to the FitzHugh-Nagumo system (1.5). Let

δ = 1− a, a+ x =: x, y + a− a3

3
=: y.

Then the system takes the form:

εẋ = −1

3
x3 + x2(1− δ) + x(2δ − δ2)− y − z ,

ẏ = x , (5.117)

ż = x− z

and the functions F , G1 and G2 are

F (x, y, z, δ) = −1

3
x3+x2(1−δ)+x(2δ−δ2)−y−z, G1(x, y, z, δ) = x, G2(x, y, z, δ) = x−z.

Note that the conditions (1.7), (1.8) and (1.9) are satisfied.
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Make a rescaling of parameters

ε = µ2, δ = µ2σ,

and introduce new variables (ξ, η, ζ) by

x = µξ , y =
µ2

2
(η − ζ) , z =

µ2

2
(η + ζ) .

Then the inverse change gives µ =
√
ε, σ = δε−1 and

ξ =
1

µ
x , η =

1

µ2
(y + z) , ζ =

1

µ2
(−y + z) .

In terms of these variable the FitzHugh-Nagumo system takes the form

ξ′ = ξ2 − η + µ

(
2σξ − 1

3
ξ3
)
− µ2σξ2 − µ3σ2ξ ,

η′ = 2ξ + µ

(
−1

2
η − 1

2
ζ

)
, (5.118)

ζ ′ = µ

(
−1

2
η − 1

2
ζ

)
.

Then

γ0 = 2σ, γ = −1

3
, α1 = α2 = β1 = β2 = −1

2
, κ = 2, ν = 0

and condition (4.116) reads:

δ =
1

12
ε

[
ln ε−1 +

1

2
ln ln ε−1 − ln

(√
πe3

96

)]
+

3

8
ε+O

(
ε
ln ln ε−1

ln1/2 ε−1

)
.

We compare our results with numerical data obtained by M. Zaks and found sufficiently
good agreement.

ε anum aasym anum − aasym
1.e-2 0.99092058501692 0.99094938062714 2.879561021731e-5
1.e-4 0.99986818929447 0.99986822927480 3.99803325e-8
1.e-6 0.99999828100195 0.99999828163419 6.322363e-10
1.e-8 0.99999997885167 0.99999997885883 7.1557e-12
1.e-10 0.99999999974920 0.99999999974928 7.28e-14
1.e-12 0.99999999999710 0.99999999999710 7.e-16

Table 1: Comparison of numerical and asymptotic results: values of the parameter a at the
first period-doubling for several values of ε.
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