
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel

Lawrence Livermore National Laboratory Technical Report UCRL-JC-144257

Volume 21 (2002), Number 3

Slow Growing Subdivision (SGS) in Any Dimension:

Towards Removing the Curse of Dimensionality

V. Pascucci
✁

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory, Livermore, CA

Abstract

In recent years subdivision methods have been one of the most successful techniques applied to the multi-resolution

representation and visualization of surface meshes. Extension these techniques to the volumetric case would enable

their use in a broad class of applications including solid modeling, scientific visualization and mesh generation.

Unfortunately, major challenges remain unsolved both in the generalization of the combinatorial structure of the

refinement procedure and in the analysis of the smoothness of the limit mesh.

In this paper we mainly tackle the first part of the problem introducing a subdivision scheme that generalizes

to 3D and higher dimensional meshes without the excessive vertex proliferation typical of tensor-product refine-

ments. The main four qualities of our subdivision procedure are: (i) the rate of refinement does not grow with

the dimension of the mesh, (ii) adaptive refinement of the mesh is possible without introducing special temporary

cell decompositions, (iii) the cells of the base meshes can have virtually unrestricted topology, and (iv) “sharp”

features of different dimensions can be incorporated naturally.

We use a narrow averaging mask that is applied to the vertices of the mesh and/or to eventual functions defined

on the mesh. The general study of the limit smoothness of the approach requires new analysis techniques that are

beyond the scope of this paper.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and

object representations. Volumetric meshes, recursive subdivision methods.

1. INTRODUCTION

Modern scanning devices, modeling systems, and computer

simulations gives rise to surface and volume meshes of ever

increasing resolution. Real-time display and transmission of

this sheer amount of data is a challenging task requiring

to generate approximations of minimal size with respect to

given error bounds. Great progress has been made in the case

of surface meshes, with the use of multi-resolution repre-

sentations based on subdivision surfaces. Unfortunately the

generalization of such methods to the volumetric case is not

straightforward in general, and remains almost entirely lim-

ited to the case of tensor-product generalization of 1D sub-

divisions. The excessive rate of refinement of tensor product
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schemes and the lack of good extensions to general unstruc-

tured meshes limits severely the use of such techniques in

fundamental application areas like solid modeling, scientific

visualization and mesh generation.

One trend in multi-resolution surface generation is the

design of methods based on wavelet functions 3 ✄ 14 ✄ 22 ✄ 24.

The wavelet analysis has the advantage of generating di-

rectly a multi-resolution data-structure with guaranteed error

bounds. The basic ingredient needed for wavelet analysis is

the construction of nested function spaces which are best as-

sociated with the connectivity of subdivision surfaces. This

restricts the class of meshes that can be processed, requiring

eventual re-meshing of the input. Hybrid approaches can be

designed to take advantage of the quality of wavelet analysis

while using a more general simplification scheme 11.

The general framework of wavelet analysis is formalized

independently of the intrinsic/embedding dimension of the
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geometric object. This enables multi-resolution representa-

tion and analysis for volumetric data 17 ✄ 21 ✄ 23. The definition

of subdivision connectivity in the case of general case of un-

structured meshes will allow a more extensive use of wavelet

representation schemes.

Solutions similar to subdivision methods have been de-

signed in the meshing community for adaptive refinement of

triangular meshes 2. Rivara’s edge bisection approach is one

of the simplest and most flexible of these 20. A unique sub-

division template is used to subdivide the cells of a 2D mesh

until a given resolution is achieved. The approach general-

izes to 3D tetrahedralizations 18 ✄ 20 and to higher dimensions

by performing the refinement process successively from the

lower dimensional simplices (edges) to the higher dimen-

sional ones. This scheme is is combinatorially equivalent to

our Slow Growing Subdivision (SGS from now on) for a par-

ticular tetrahedralization of rectilinear grids.

Recursive subdivision schemes automatically produce hi-

erarchical multi-resolution representations. This enables, for

example, multi-resolution editing techniques 29. The quality

of the mesh generated by subdivision schemes depends on

the averaging masks used. For triangulated domains Loop 13

provides an approximating subdivision scheme converging

to a surface that is C2 almost everywhere, with exception of

the extraordinary vertices (degree not equal to six) where the

surface is C1. The butterfly subdivision scheme 7 converges

to an interpolating surface that is C1 everywhere, except for

extraordinary points with degree three or higher than seven.

A modified version has been proposed 30 that converges to a

C1 surface everywhere. For subdivision of piecewise quadri-

lateral domains, one can use the Catmull-Clark scheme 5 or

the interpolating scheme by Kobbelt 9 to build smooth ap-

proximations of a coarse mesh. Biermann et al. 4 have im-

proved the normal control mechanism 8 for Catmull-Clark

and Loop subdivisions.

Kobbelt 10 has been the first to address the problem of ex-

cessive proliferation is a refinement procedure by introduc-

ing the ✆ 3-subdivision scheme that increases the number of

vertices in the mesh at slower rate than previous approaches.

This approach has been improved by Vehlo et al. 28 ✄ 27 ✄ 25 ✄ 26

and independently by Ducheneau et al. 6 with an edge bi-

section refinement that can be categorized as ✆ 2 subdivi-

sion scheme (the 2D case of our SGS ). This problem gets

worse as the dimension d of the mesh increases. The ten-

sor product generalization of the surface subdivision tech-

niques 1 ✄ 15 ✄ 19 leads to prohibitive refinement rate since a uni-

form smoothing step requires increasing the number of ver-

tices by a factor that grows exponentially with the dimension

d of the mesh. This rapid increase of the model complex-

ity can quickly make the use of such schemes impractical.

Adaptive refinement also requires special rules to temporar-

ily partition any cell that connects regions at different levels

of resolution.

The SGS introduced here roughly doubles the number of

(a’) (b’) (c’) (d’) (e’)
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(d’)

(e)

Figure 1: 4-8 recursive subdivision. (a-e) Classical longest

edge bisection of a rectilinear grid. (a’-e’) Equivalent ✆ 2

subdivision where pairs of adjacent triangles are merged

into one square.

vertices independently of the intrinsic dimension of the in-

put mesh. In 3D, for example, each SGS refinement doubles

the number of vertices instead of increasing them by a fac-

tor of eight (as in a tensor product scheme). Linsen et al.

show in 12 how to define a wavelet hierarchy on the basis

of this subdivision scheme. Four major characteristics make

SGS attractive for a practical purposes:

Slow The rate of refinement (new vertices introduced in the

mesh) is nearly independent of the dimensionality of the

mesh.

General. The scheme applies for any complex of poly-

hedral cells such that each cell is topologically a ball.

This includes tetrahedral meshes, curvilinear hexahedral

meshes and any mesh with convex elements.

Adaptive. The scheme naturally includes a mechanism for

locally adapted refinements and for handling lower di-

mensional “sharp” features. There is no need to introduce

separate classes of cells to connect regions at different

level of resolution.

Small support. The masks that we use for the basic

smoothing scheme are as small or smaller than those of

the Catmull-Clark subdivision.

2. REVIEW OF THE SURFACE SUBDIVISION

SCHEME

The ✆ 2 recursive subdivision scheme, also known as 4-8

subdivision surface 28, follows the edge bisection refinement

rules introduced by Rivara in 20. Figure 1 (a-e) shows the

subdivision scheme for a rectilinear grid. The base mesh is a

square divided into two triangles. At any refinement each tri-

angle bisected at the middle of its longest edge. The 4-8 sub-

division rule follows these combinatorial rules and adds an

averaging step that repositions the vertices on the surface. To

maintain the same combinatorial subdivision structure one

has to use the “oldest bisection” rule. In each triangle one

has to bisect the edge that was unaltered in the previous re-

finement (there is only one).

Figure 1(a’-e’) shows the equivalent subdivision strategy

for quadrilateral elements 6. Each refinement is performed
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Figure 2: 3D cell refinement from tier 0 to tier 1. (a) The two

cells c1 and c2 in tier 0. Their centers p1 and p2 are marked

with two crosses. Their adjacency facet f is highlighted in

gray. (b) The cell F of tier 1 (in gray) is the union of the

pyramids p1 ✝ f and p2 ✝ f .

by inserting a point at the center of each diamond and split-

ting the diamond into four triangles. Then each pair of tri-

angles adjacent along an old edge are merged into a new

diamond.

The advantage of this scheme is that doubling the res-

olution of a rectilinear grid is performed in two steps in-

stead of one. In the following sections we show how the

SGS generalizes this procedures to meshes of any dimen-

sion and with cells of virtually any type. The resolution of

a d-grid is doubled in d subdivision steps with an averaging

mask applied at each step.

3. SLOW GROWING SUBDIVISION

We organize the subdivision process of the SGS scheme into

levels and tiers. Each level l has four tiers, from 0 to 3, where

tier 3 of level l is coincident with tier 0 of level l ✞ 1. This

naming convention is used to maintain the comparison with

classical tensor product subdivisions that would refine di-

rectly a mesh from tier 0 one level l to tier 0 of level l ✞ 1.

In the SGS scheme each refinement is a transition form tier

i to tier i ✞ 1. At tier 3 the level is increased by one and the

tier is reset to 0. We denote cells, facets, edges and vertices

of the with the symbols ci, fi, ei and vi respectively.

3.1. Basic Subdivision Rules

In the present context we consider only the combinatorial

structure of the scheme. For example we qualify a vertex

as the “center” of a cell/face just to give an intuitive no-

tion of the relation between the point and the cell but we do

not refer necessarily to its actual geometric location, which

may change depending on the choice of the averaging coef-

ficients.

From tier 0 to tier 1 For each cell ci in the input mesh

its center pi is selected. The cell ci, having n facets, is de-

composed into n pyramidal cells by connecting the center pi

with all its facets. Let’s denote by p ✝ f the pyramid built

by connecting p with a facet f . For each pair of cells ci ✟ c j,

adjacent along a facet f , a new cell F is created by merging

the pyramid pi ✝ f with the pyramid p j ✝ f :

F ✠ ✡ pi ✝ f ☞ ✌ ✡ p j ✝ f ☞ ✟ with f ✠ ci ✏ c j ✑

Figure 2 shows the construction of F form c1 and c2.

From tier 1 to tier 2. Consider a cell F of tier 1 and its

center q. Let gi be the facets of F that do not belong to tier 0

(for non-sharp F all the facets are of tier 1). We decompose

F into a set of pyramids each given by q ✝ gi. If F is a sharp

cell, its center qk is coincident with the center of its facet f

of tier 0. In this way we handle directly boundary cases and

2-dimensional sharp features.

Note that each pyramid q ✝ gi contains exactly one edge

e j of tier 0. After each tier-1 cell is split all the pyramids

incident to the same edge e are merged into a cell E. All the

cells built in this way form the mesh of tier 2. Figure 3 shows

the construction of one cell of tier 2. The coarse mesh has

four cells all incident to an edge e (Figure 3a). Four cells of

tier 1 are built by merging pairs face pyramids (Figure 3b).

Each tier-1 cell is then decomposed into four pyramids, of

which we select only two incident to e Figure 3(c). The eight

pyramids selected (two per cell) are finally merged into one

cell E of tier 2, (Figure 3d).

From tier 2 to tier 3. As in the previous two steps one

determines the center r of any cell E. Each cell E is then

partitioned by joining r with each facet of E. As usual, for

sharp cells the point r should be considered as the center of

e and is shared among all the cells around e.

The last merging step is among cells that are incident

both to a vertex v and a cell center p. Note that, during this

last merging step, one must remove any spurious edge in-

troduced during the refinement procedure. In particular any

edge connecting two vertices introduced in tiers that differ

by more than one are removed. Figure 4 shows one cell of

tier 0 (a) and one of its descendants of tier 3 (b). Figure 4(c)

shows the refined cell with the spurious edges (facet diago-

nals) connecting the vertex of tier 0 with vertices of tier 2 or

the vertex of tier 1 with vertices of tier 3.

3.2. Adaptive Refinement, Sharp Features and

Boundary Cells

We handle in a unified way sharp features, boundary cells

and adaptive refinements, simply by not performing the

merge stage of the subdivision procedure.

For example in the refinement form tier 0 to tier 1 the

boundary cases allow to build only one half of the cell F ✑
Similarly, for 2-dimensional sharp features (surfaces that

need to be preserved during the refinement) we build two

halves F ✒ ✠ pi ✝ f and F ✒ ✒ ✠ p j ✝ f without merging them.

In such cases the boundary pyramid F (or the two halves F ✒
and F ✒ ✒ ) are called “sharp” since they maintain the facet f

from tier 0. One can also build only one half of F to achieve

adaptive refinement. In fact, F ✒ is both adjacent to c j (of tier

0) and adjacent to other cells of tier 1. There is no need for

special temporary decomposition to transition between tier

0 and tier 1. F ✒ is marked “non-refinable” until merged with

F ✒ ✒ .
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Figure 3: Cell refinement from tier 1 to tier 2. (a) Four cells c1 ✟ c2 ✟ c3 and c4 of tier 0 share, in pairs, the facets f1 ✟ f2 ✟ f3 and f4.

The edge e is shared by all facets f1 ✟ f2 ✟ f3 and f4. (b) Each facet fi generates a cell Fi. (c) Each cell Fi is decomposed into four

pyramids only two of which are selected. The selected pyramids are those containing the edge e. (c) All the pyramids containing

e are merged together to form the cell E of tier 2.

(a) (b) (c)

Figure 4: Cell refinement for tier 3. (a) Cell from the mesh

of tier 0. (b) The cell of tier 3 (in gray) is shown overlapped

with its ancestor cell of tier 0. (c) The same refined cell with

the face diagonals that are introduced during the refinement

procedure.

In the refinement from tier 1 to tier 2 we deal with sharp

features of dimension one. In particular, if the merge edge e

is part of a sharp feature then the pyramids around e j are not

merged but are marked as “sharp”. Moreover if some of the

tier-1 cells incident to e j where not generated because of an

adaptive refinement, then the pyramids are not merged but

are marked as non-refinable. They are used for connecting

cells of different resolution.

3.3. Characterization of the Refinement Mesh

A simple characterization can be provided for the cells gen-

erated by the SGS refinement.

Definition 1 A diamond is a cell that can be combinatorially

partitioned into a set of simplices all sharing an edge, called

axis of the diamond.

We show that all the cells generated by the SGS procedure

are diamonds. To satisfy this property we only need each

facet of the base mesh to be a polygon (a simple loop of

edges).

Proposition 1 Consider a complex C where all the 2D cells

are simple loops. The SGS procedure using C as a base mesh

generates only diamond cells.

Proof. Since all the facets of the cells in C are simple loops,

all the cells generated at the first tier of the subdivision pro-

cedure are either pairs of pyramids or single pyramids (for

sharp features). In the first case the axis of the diamond is

the the edge connecting the apices of the two pyramids. In

the second case the axis connects the apex of the pyramid

with the center of its base.

At the second tier the cells are diamonds by construction

since they are just a set of tetrahedra merged along a com-

mon edge: the axis of the diamond.

At the third tier each cell is the set of tetrahedra sharing

the edge connecting the center of a coarse cell with one of

its vertices. This edge is the axis of the diamond. ✔

Figure 5 shows the scheme applied to a base mesh con-

sisting of a single dodecahedron.
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(a) (b) (c) (d)

Figure 5: Successive subdivision stages of a dodecahedron.

(a-c) Mesh elements, (d) boundary.

4. SUBDIVISION IN ANY DIMENSION

Consider a d-dimensional mesh M with m cells c0 ✟ ✑ ✑ ✑ ✟ cm ✖ 1.

The complex is subdivided in d ✞ 1 tiers. As in the 3D case,

tier d of level l is coincident with tier 0 of level l ✞ 1. We

denote Ml
p the mesh of level l and tier p. In the refinement

from tier p to tier p ✞ 1, one adds a vertex at the center of a

✡ d ✗ p ☞ -dimensional face of Ml
0.

From tier p to tier p ✞ 1 (with p ✘ d ✗ 1). Each d-cell c

in Ml
p is refined by inserting a vertex q at its center. The cell c

is partitioned into pyramids by connecting each of its facets

to q. All the pyramids containing a common ✡ d ✗ p ✗ 1 ☞ -

dimensional face of Ml
0 are merged together. If one ✡ d ✗ p ☞ -

dimensional face f of Ml
0 belongs to the boundary of c (there

can be at most one), then q is placed at the center of f and

the pyramids partitioning c are built by connecting q to all

the facets of c that do not contain f .

From tier d ✗ 1 to tier d. Each cell c of Ml
d ✖ 1 is split by

inserting a vertex q at the center of the edge e of Ml
0 con-

tained in c. For sharp/boundary cells, e is on the boundary

of c, otherwise q is also the center of c itself. The cell c is

partitioned into pyramids by connecting q to the facets that

do not contain e. The new cells are built by merging all the

pyramids containing the same vertex of Ml
0 and center of a

cell of Ml
0.

Both refinement rules handle adaptivity and sharp features

simply by not performing the merge step. Similarly to the

3D case we provide a simple characterization of the cells

produced by the subdivision scheme.

Proposition 2 All the non-boundary/non-sharp cells gener-

ated by the subdivision scheme after the first d ✗ 1 tiers are

d-diamonds.

Proof. The proof of follows from the equivalence of the

SGS scheme with the d-dimensional edge bisection of

Maubach 16.

First partition each cell into tetrahedra by joining each

edge of the cell with the center of each incident face

of higher dimension (in decreasing dimension order). If

one edge e has vertices ✡ v0 ✟ v1 ☞ then one builds simplices

✡ v0 ✟ v1 ✟ v2 ✟ ✑ ✑ ✑ ✟ vd ☞ . Here v2 is the center of a d-cell, v3 is the

center of a ✡ d ✗ 1 ☞ -cell, ✑ ✑ ✑ , and vd is the center of a 2-cells,

all incident to ✡ v0 ✟ v1 ☞ . Call the first edge ✡ v0 ✟ v1 ☞ of the sim-

plex the oldest edge. By merging all the simplices sharing

the same oldest edge one obtains the d-diamond that is cre-

ated after the first d ✗ 1 refinements of the SGS .

From this stage on, the SGS is combinatorially equivalent

to the oldest edge bisection of the simplicial complex just

built. In particular each refinement is obtained by replac-

ing the simplex ✡ v0 ✟ v1 ✟ v2 ✟ ✑ ✑ ✑ ✟ vd ☞ with ✡ v0 ✟ v2 ✟ ✑ ✑ ✑ ✟ vd ✟ v ✚ ☞
and ✡ v1 ✟ v2 ✟ ✑ ✑ ✑ ✟ vd ✟ v ✚ ☞ where v ✚ is the midpoint of ✡ v0 ✟ v1 ☞ .

Merging all the cells with the same oldest edge one obtains

the same cells as the SGS refinement. diamond

5. DIRECT AND INDIRECT SMOOTHING

The combinatorial rules defined in the previous section need

to be coupled with some averaging rules to determine the

actual position of the vertices of the mesh. We propose the

following simple stationary rule.

✜ At tier p a new vertex v inserted at the center of a cell c

is the weighted average of the vertices of c, with weights

dependent on their tiers:

v ✠
p

∑
i✢ 0

np

∑
j✢ 1

αiwi ✣ j ✑

Here np is the number of vertices of c that has been cre-

ated at tier p in the same level of subdivision. To repro-

duce the subdivision scheme of 1 it is sufficient to set

α0 ✠ 1 ✤ n0 and all other αi ✠ 0. In our examples we set

instead all αi ✠ 1 ✤ ∑
p
i✢ 0 ni.

✜ Each old vertex v is repositioned by linearly combining

its old position vold with the average w of the vertices that

are edge-connected to it.

v ✠ vold ✥ β ✞ ✡ 1 ✗ β ☞ w

To reproduce the subdivision scheme of 1 one needs to set

β ✠ 0 ✑ In most of our examples we use β ✠ 1 ✤ 2.

In the 2D case this rule is equivalent to those reported

in fig. 4 of 28 since in the vertex masks the edge-connected

vertices with weight 0 are exactly those that are removed by

the merge stage of the recursive subdivision defined here.

For lower dimensional features (boundary cases and sharp

features) the weights of the terms outside such features are

set to 0.

Figure 6 shows the mesh elements generated by repeat-

edly applying the SGS scheme starting from a base mesh

composed of eight cubes. This subdivision is performed with

an averaging coefficient β ✠ 0 ✑ 5. The parameter β can be

used to alter the behavior of the smoothing mask. Figure 7

shows the successive refinements of the same mesh using

two different values of β ✠ 0 ✑ 89 (left columns) and β ✠ 0 ✑ 5
(right column).

Velho and Zorin proved 28 that in the 2D case β ✠ 0 ✑ 5
yields a C1 continuous surface with C4 continuity at the reg-

ular points. The proof is based on the Zwart-Powell element
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(a) (b) (c) (d) (e) (f)

Figure 6: Interior elements generated by the SGS scheme. (a) Base mesh formed by eight cubes. (b-e) Internal structure of the

mesh in successive tiers of the SGS scheme. The pictures show only the mesh elements whose centroid has negative z coordinate.

(f) Subdivided boundary mesh.

box spline basis. Here we generalize the scheme to dimen-

sions higher than two. This allows us to smooth the functions

defined on the mesh. A more sophisticated analysis is neces-

sary to determine the smoothness of the scheme, especially

at the extraordinary points. Note that in 2D the extraordinary

points can be characterized simply by their degree. In 3D,

this is not sufficient since one has to analyze the local con-

nectivity structure at the vertex (vertices with same degree

can have different behavior.) Figure 8 shows the combined

refinement of a mesh (in green) and isosurface (in orange) of

a scalar field defined by linearly interpolating function val-

ues at the vertices of the mesh. The linear interpolation is

based on a decomposition of the diamonds into tetrahedra.

6. RATE OF REFINEMENT

Consider a d-dimensional rectilinear grid, where the

SGS scheme is equivalent to a simplicial longest edge bi-

section 16. In particular, consider a rectilinear grid whose

cubes are decomposed into d! simplices by splitting each

face along one longest diagonal. In this case, d successive

steps of refinement insert a vertex at the center of each face.

This is equivalent to splitting the longest edge of the simpli-

cial decomposition d consecutive times. In particular all and

only the edges of the initial simplicial decomposition are bi-

sected. Using the terminology from Kobbelt 10, the scheme

is a
d✆ 2 subdivision scheme. This would mean that on av-

erage the number of points in a d-grid is doubled at each

refinement. To be more precise we consider an axis-aligned

infinite rectilinear grid (for simplicity we do not consider

boundary effects).

For 1 ✧ h ✧ d, one can associate an h-dimensional face

with its vertex closest to the origin. At the refinement from

tier p to tier p ✞ 1, one vertex is added at the center of each

of the d
p faces of dimension d ✗ p. Therefore, the rate of

refinement is:

1 ✞ ∑
p
h✢ 0

d
p

1 ✞ ∑
p ✖ 1
h✢ 0

d
p

where we assume by convention that ∑
✖ 1
h✢ 0

d
p ✠ 0. For ex-

ample, Figure 9 shows the 3D case. For each vertex in the

original grid a new vertex is inserted at the center of a cube,

doubling the total number of vertices. At the second tier

three vertices are inserted at the face centers, increasing the

number of vertices by a factor of 5
2 ✠ 2 ✑ 5. At the third tier

three vertices are used to bisect three edges, increasing the

number of vertices by a factor of 8
5 ✠ 1 ✑ 6.

The analysis of the grid case is simplified by the fact that

the total number of cells is linear in the number of vertices.

This is not true in general. In particular it is known that the

total number N of cells in a simplicial complex (worst case

scenario) with n vertices can be as large as N ✠ O ✡ n ★ d ✩ 2✪ ☞ ✑
The total number of vertices inserted in d tiers is O ✡ N ☞ . If

after one refinement the number of vertices increases from n

to βn then we obtain βdn ✠ n ★ d ✩ 2✪ which implies that β ✠
O ✡ d✆ n ★ d ✩ 2✪ ✖ 1 ☞ . For d ✠ 2 we have β ✠ O ✡ 1 ☞ confirming that

in the worst case there is a constant rate of vertex increase.

Even in 3D we have β ✠ O ✡ 1 ☞ guaranteeing a constant rate of

refinement in the worst case. Interestingly for regular grids β
is a small constant 2 independently of d. Note that for d ✬ 3

β may not be a constant in the worst case. For example for

d ✠ 4 we have β ✠ O ✡ 4✆ n ☞ ✑

7. ADAPTIVE REFINEMENT AND LOWER

DIMENSIONAL FEATURES

The flexibility of the SGS derives from its independent treat-

ment of cells with different dimensions. This allows one to

solve two problems: (i) easy the construction of adaptive

meshes, and (ii) provide explicit representation of lower-

dimensional features embedded in the mesh.

The mesh adaptation between regions at different levels of

resolution does not require the introduction of special tem-

porary partitions such those required for adaptive Catmull-

Clark subdivision. During the refinement procedure one sim-

ply does not perform some of the merging steps. This auto-

matically creates the necessary adaptation. Figure 10 shows

an example of mesh adaptation. The element density in the

mesh increases along the positive direction of the z-axis.

A similar argument holds for lower dimensional features

embedded in the mesh that the scheme automatically handles

6



(a)

(b) (c)

(d) (e)

(f) (g)

Figure 7: Subdivision of the same shape with different

smoothing coefficient. (a) Base mesh. (b,d,f) Intermediate

steps and smooth boundary for a subdivision with smooth-

ing coefficient β ✠ 0
✑
89. (c,e,g) Same subdivision steps with

β ✠ 0
✑
5

in separated stages. Figure 11 shows the application of the

SGS to a base meshes with user-defined sharp features.

For the same reason, the scheme presents no problem

in handling non-manifold features as shown in Figures 12

and 13.

8. CONCLUSIONS

In this paper we have introduced the SGS scheme, that al-

lows gradual refinement of a very general class of volumetric

meshes. The SGS scheme addresses the issue of lowering the

vertex proliferation rate, which is a critical problem arising

(a) (b)

(c) (d)

(e) (f)

Figure 8: Combined refinement of mesh domain and embed-

ded isosurface. (a) Base mesh. (b) Base isosurface. (c-e) In-

termediate subdivision steps. (f) Refined boundary surface

and isosurface.

(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Figure 9: (a-d) Rate of vertex increase for each refinement

in a 3D rectilinear grid. For each initial vertex (marked with

a black disk) one new vertex is added in the first refinement

(square), three new vertices in the second refinement (cir-

cles) and three are added in the third refinement (crosses).

(a’-d’) Corresponding refinement of the cells in the cube.

in the practical use of subdivision methods for volumetric

meshes both for scientific visualization and geometric mod-

7



(a) (b)

(c)

Figure 10: Adaptive refinement of a 3D mesh. (a) Base

mesh. (b-c) Exterior and interior refined mesh elements.

eling. Figure 14 shows how few refinements are sufficient to

produce a good meshing of a mechanical piece.

The SGS allows one to produce adaptive refinements of

a mesh without needing special subdivision rules for cells

connecting regions at different resolutions. Moreover, the

scheme naturally embodies rules for handling sharp vertices,

edges, and faces.

We have experimented with a very simple averaging rule

that has been proven visually smooth for the 2D case and

extends naturally to the volumetric and higher dimensional

cases. In the 3D case we can reproduce, as a special case, the

smooth subdivision of 1. A complete analysis for the general

volumetric case remains to be done as future work since it

requires analysis techniques more sophisticated than those

currently available.
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