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Abstract
For non-Hermitian Hamiltonians with an isolated degeneracy (‘exceptional

point’), a model for cycling around loops that enclose or exclude the

degeneracy is solved exactly in terms of Bessel functions. Floquet solutions,

returning exactly to their initial states (up to a constant) are found,

as well as exact expressions for the adiabatic multipliers when the

evolving states are represented as a superposition of eigenstates of the

instantaneous Hamiltonian. Adiabatically (i.e. for slow cycles), the multipliers

of exponentially subdominant eigenstates can vary wildly, unlike those

driven by Hermitian operators, which change little. These variations are

explained as an example of the Stokes phenomenon of asymptotics. Improved

(superadiabatic) approximations tame the variations of the multipliers but do

not eliminate them.

PACS numbers: 02.30.Gp, 02.30.Tb, 03.65.Vf, 03.65.Xp, 31.50.Gh

1. Introduction

In the quantum mechanics of systems where some freedoms are ignored, or in more general

wave phenomena involving absorption or gain, the Hamiltonian operator governing the

evolution of states is not Hermitian [1, 2]. Along with the obvious fact that the eigenvalues

need not be real (except in special cases such as operators with PT symmetry [2]) has come a

growing focus on the deeper phenomena associated with degeneracies. The simplest situation

concerns degeneracies of two states. For a Hermitian operator, a degeneracy is a diabolical

point [3], at which the two eigenvalues, regarded as functions of parameters on which the

Hamiltonian depends, are connected at the intersection point of a surface in the form of a

double cone [4], and the two eigenstates are always orthogonal. By contrast, a degeneracy of a

non-Hermitian operator, while still typically of codimension 2, is a branch-point (commonly

called an exceptional point [5]), around which each eigenstate transforms into the other

(‘flip’ [6]); at the branch-point, the two eigenstates are parallel and each is self-orthogonal
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(see chapter 9 of [1]). Reflecting this mathematical distinction, a number of physical

phenomena have been identified ([1, 7] and references therein).

Here we will concentrate on the evolution of states driven by a time-dependent non-

Hermitian Hamiltonian which is cycled, by forcing it round a loop in the space of its

parameters so as to return to its original form. For the Hermitian case there is the adiabatic

theorem [8, 9]: if the cycle is slow, evolving states cling to eigenstates of the instantaneous

Hamiltonian, so the probability of transitions between eigenstates is small. For non-Hermitian

operators, the situation is more subtle. As has recently been pointed out [6], in addition to

the eigenstate ‘flip’ associated with the degeneracy if the loop encloses it, it is common for

occupation amplitudes to change drastically around the cycle, in way that is different for the two

states.

Our aim is to examine the evolution in the context of an exactly solvable model,

which illustrates how the drastic occupancy changes are a consequence of the general

Stokes phenomenon [10–12] of asymptotics: variation of the multiplier of a function that

is exponentially smaller than its companion. The model (section 2) concerns a cycle involving

a single isolated degeneracy. Our model operator is non-symmetric, because for symmetric

non-Hermitian operators the degeneracies appear in pairs. Pairs of degeneracies are also

inevitable for a non-Hermitian operator generated by perturbing a Hermitian one: an isolated

diabolical point splits into two branch-points (a familiar phenomenon in crystal optics, for

example [13]—and see section 9). Nevertheless, cycling round an isolated degeneracy seems

the simplest case and we learn much by studying it in detail, both for its own sake and as a

local model when other degeneracies are far away. Mathematically, our study complements

the exactly solvable Rabi [14] and Landau-Majorana–Zener [15–17] models for Hermitian

operators.

Section 3 contains the exact solution for the Floquet states, that is, the states which return

exactly, up to a constant, after the cycle. The solution corresponds to circular parameter-space

loops, but these need not be centred on the degeneracy and need not enclose it. In section 4,

we consider evolving states that start in each of the two instantaneous eigenstates, and derive

an exact formula for the adiabatic multipliers that describe how closely the evolving states

cling to the eigenstates during the evolution and especially at the end of the cycle.

Section 5 contains computations for the simplest case, of parameter-space loops with the

degeneracy at the centre. The adiabatic multipliers can vary drastically, and this is connected to

the Stokes phenomenon. Section 6 shows how the drastic changes get progressively smoothed

when the evolving states are represented by successive higher order (‘superadiabatic’)

approximations to the evolution [18–20], rather than the instantaneous eigenstates. The change

in one of the multipliers can however not be eliminated completely, and for the optimal

superadiabatic approximation, whose order is inversely proportional to the slowness, this

is described by the universal error function [21, 22] that characterizes asymptotics more

generally.

For excentric loops, the asymptotic analysis is more complicated, and depends on whether

the loop encloses (section 7) or excludes (section 8) the degeneracy. In the latter case, we

concentrate on the limit of small loops.

The brief section 9 shows that the instantaneous eigenstates of our Hamiltonian with an

isolated degeneracy are exact evolving states of a slightly modified Hamiltonian—that is, the

adiabatic multipliers remain constant. This ‘transitionless driving’ is an application of recent

more general ideas [23–26].

The concluding section 10 contains some suggestions for further theoretical study, and a

suggestion for an experiment in which these non-Hermitian adiabatic evolutions could appear

as physical phenomena. There are three technical appendices.
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2. Model for non-Hermitian degeneracy

The model is the obviously non-Hermitian Hamiltonian

H(θ ) = i

(

0 1

z(θ ) 0

)

, z(θ ) = x(θ ) + iy(θ ), z(θ + 2π) = z(θ ), (2.1)

cycled round a loop in the z plane, parameterized by the angle θ . The eigenvalues are

λ±(θ ) = ±i
√

z(θ ). (2.2)

The origin z = 0, for which H is a Jordan normal form, corresponds to the degeneracy on

which our attention will focus. (The limit z → ∞ also corresponds to a Jordan form, but in

the analysis to follow we will not need to emphasize this ‘degeneracy at infinity’.)

The time variable will also be θ , representing cycles that are traversed uniformly.

Therefore, states

|ψ(θ )〉 =
{

ψ1(θ )

ψ2(θ )

}

(2.3)

evolve according to the Schrödinger equation

i∂θ |ψ(θ )〉 = H(θ ) |ψ(θ )〉 . (2.4)

A scaling argument (appendix A) shows that slow cycling—the adiabatic case—corresponds,

for this Hamiltonian, to loops far from the degeneracy at z = 0.

In later sections, we will compare the states evolving according to (2.4) with the

instantaneous eigenstates of the operator H(θ ), in which θ is treated as a fixed parameter.

In appendix B, we show that these must take the form

|ad±(θ )〉 = |u±(θ )〉 exp

{

−i

∫ θ

θ0

dθ ′λ±(θ ′)

}

= |u±(θ )〉 exp{∓iγ (θ )}, (2.5)

in which the dynamical factor involves the exponent integrals

γ (θ ) = i

∫ θ

θ0

dθ ′
√

z(θ ′), (2.6)

θ0 is a constant, corresponding to an overall θ -independent factor multiplying the state, and

the vectors |u± (θ )〉 are

|u±(θ )〉 =
{

z(θ )−1/4

±z(θ )+1/4

}

. (2.7)

The branch-point at z = 0 implies that around a loop that encloses the degeneracy the two

eigenvalues (2.2) have exchanged, and so (up to a constant factor) have the eigenvectors

(2.5)–(2.7) (the ‘flip’ [6]).

Before making the adiabatic connection with the instantaneous eigenstates, we will study

exact solutions of the evolution equation (2.4). This can be written in terms of the individual

components of the state vector:

∂2
θ ψ1(θ ) = z(θ )ψ1(θ ), ψ2(θ ) = ∂θψ1(θ ). (2.8)

Thus, exactly solvable second-order ordinary differential equations can potentially represent

loops for which the evolution (2.4) is exactly solvable. An example is polygonal loops, whose

segments generate solutions in terms of Airy functions. It would be interesting to explore them

further, but here we will concentrate on a different class of exact solutions.

We remark that since H(θ ) in (2.1) is traceless, Liouville’s formula ([27], pp 134–5)

implies that the evolution operator K(θ ), defined by

|ψ(θ )〉 = K(θ ) |ψ(0)〉 , (2.9)
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Figure 1. Geometry of loop and degeneracy. (a) Notation; (b) degeneracy-centred loop (sections 5

and 6); (c) and (d) degeneracy-enclosing loops (section 7); (e) and ( f ) degeneracy-excluding loops

(section 8).

which we will calculate explicitly in section 4, satisfies

det [K(θ )] = K11(θ )K22(θ ) − K12(θ )K21(θ ) = 1. (2.10)

A consequence, which can also be derived using (2.4), is the following conservation law for

any two evolving states |ψA(θ )〉, |ψB (θ )〉:
ψA1(θ )ψB2(θ ) − ψA2(θ )ψB1(θ ) = constant. (2.11)

3. Excentric circular loops: exact solution and Floquet states

We choose

z(θ ) = ρ exp (iθ ) − R, (3.1)

corresponding (figure 1(a)) to a circular loop with radius ρ. The degeneracy, which lies at

the origin of the z plane, is offset by R (positive or negative) from the centre of the loop.

ρ > |R| corresponds to loops that enclose the degeneracy, and ρ < |R| to loops that exclude it.

Figures 1(b)–( f ) illustrate the different cases, to be considered in more detail in later sections.

The exact solutions of (2.8) can be written in terms of Bessel functions. From formula

(10.13.6) of [28], there follow the solutions

|ψ(θ )〉 =
{

Cν (ζ (θ ))

∂θCν (ζ (θ ))

}

=
{

Cν (ζ (θ ))
1
2
i[−ζ (θ )Cν+1(ζ (θ )) + νCν (ζ (θ ))]

}

, (3.2)

4



J. Phys. A: Math. Theor. 44 (2011) 435303 M V Berry and R Uzdin

in which Cν represents any of

Jν (ζ (θ )), J−ν (ζ (θ )), Yν (ζ (θ )), Y−ν (ζ (θ )), H (1)
ν (ζ (θ )), H (2)

ν (ζ (θ )), (3.3)

with order and argument

ν = 2
√

R, ζ (θ ) = 2
√

ρ exp
(

1
2
iθ

)

. (3.4)

At the beginning of the cycle (θ = 0), the argument ζ is positive real, at the end (θ = 2π )

it is negative real, and during the cycle it is complex. The order of the Bessel functions is real

for positive offsets R, and purely imaginary for R < 0. We do not consider the more general

case of complex R, in which the centre of the loop, as seen from the degeneracy, lies in an

arbitrary direction. Nevertheless, the exact formulas above apply for arbitrary complex ν.

Among the solutions, the two Floquet states are fundamental. These are the states that

return to their original form after the cycle, apart from a complex factor. Continuation formulas

for Bessel functions ((10.11.1) of [28]) enable these to be identified as

|F±(θ )〉 =
{

J±ν (ζ (θ ))

∂θJ±ν (ζ (θ ))

}

, (3.5)

with continuations

|F±(2π)〉 = exp(±iνπ )|F±(0)〉. (3.6)

Thus, for positive offsets (ν real) the Floquet eigenvalues are pure phase factors, and for

negative offsets (ν imaginary) they are purely real exponentials.

The Floquet states are biorthogonal eigenvectors of the (nonunitary) cycle evolution

operator: the left eigenvectors (row vectors which are the eigenvectors of the transposed cycle

evolution operator) are

〈F±(θ )| = {∂θJ∓ν (ζ (θ )) − J∓ν (ζ (θ ))} , (3.7)

so

〈F∓(θ ) | F±(θ )〉 = 0. (3.8)

The corresponding biorthogonal normalization,

〈F+(θ ) | F+(θ )〉 = − 〈F−(θ ) | F−(θ )〉 =
1

2
iζ (JνJ′

−ν − J−νJ′
ν ) = −i

sin(νπ )

π
, (3.9)

follows from the Bessel Wronskian relation ((10.5.1) of [28]).

It is clear from (3.6) that the Floquet states are degenerate whenever ν is an integer n, that

is, for positive offsets

R = 1
4
n2. (3.10)

Then (3.9) shows that the two states |F± (θ )〉 are self-orthogonal as well as biorthogonal.

This degeneracy of the Floquet states is a degeneracy of the evolution operator, and should

be distinguished from the unrelated degeneracy of the instantaneous eigenstates at z(θ ) = 0.

More generally, the formal expressions for the exact evolving states (3.2) give no immediate

indication of whether the loop encloses the degeneracy at z = 0. We will see that this distinction

is an adiabatically asymptotic emergent phenomenon, associated with the different behaviour

of the Bessel functions when their order is less than or greater than their argument.
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4. Exact solutions from adiabatic initial conditions

Alternative to the Floquet states are the states that start in each of the instantaneous eigenstates,

namely

|ψ±(0)〉 = |ad±(0)〉 . (4.1)

As measures of how closely the evolving states continue to cling to the instantaneous

eigenstates, we define the adiabatic multipliers a± (θ ), b± (θ ) in

|ψ+(θ )〉 = a+(θ ) |ad+(θ )〉 + b+(θ ) |ad−(θ )〉
|ψ−(θ )〉 = a−(θ ) |ad+(θ )〉 + b−(θ ) |ad−(θ )〉. (4.2)

The multipliers can be calculated using biorthogonality. We define the adiabatic left

eigenvectors as the instantaneous row eigenvectors corresponding to the transpose operator

HT(θ ), namely

〈ad±(θ )| = A±(θ ) 〈u±(θ )| , (4.3)

where

〈u±(θ )| = {∓z(θ )+1/4 − z(θ )−1/4}, (4.4)

and A± (θ ) are arbitrary scalar functions that will cancel from the adiabatic multipliers. Then

a+(θ ) =
〈ad+(θ ) | ψ+(θ )〉
〈ad+(θ ) | ad+(θ )〉

, b+(θ ) =
〈ad−(θ ) | ψ+(θ )〉
〈ad−(θ ) | ad−(θ )〉

,

a−(θ ) =
〈ad+(θ ) | ψ−(θ )〉
〈ad+(θ ) | ad+(θ )〉

, b+(θ ) =
〈ad−(θ ) | ψ−(θ )〉
〈ad−(θ ) | ad−(θ )〉

.

(4.5)

Obviously, these satisfy the initial conditions corresponding to (4.1):

a+(0) = 1, b+(0) = 0

a−(0) = 0, b−(0) = 1.
(4.6)

We can calculate the multipliers, in particular their values at the end of the cycle

(θ = 2π ), from the evolution operator K(θ ), defined by (2.9), applied to the states we are

interested in, defined by (4.1), that is,

|ψ±(θ )〉 = K(θ ) |ad±(0)〉 . (4.7)

To find K(θ ), we write any exact evolving state as a superposition of Floquet states with

constant coefficients, namely

|ψ(θ )〉 = α |F+(θ )〉 + β |F−(θ )〉 , (4.8)

with the constant coefficients determined by applying the biorthogonality relations (3.7)–(3.9)

at θ = 0. Thus,

α =
〈F+(0) | ψ(0)〉
〈F+(0) | F+(0)〉

, β =
〈F−(0) | ψ(0)〉
〈F−(0) | F−(0)〉

, (4.9)

giving

K(θ ) =
|F+(θ )〉 〈F+(0)|
〈F+(0) | F+(0)〉

+
|F−(θ )〉 〈F−(0)|
〈F−(0) | F−(0)〉

. (4.10)

To write explicit formulas for the multipliers at the end of the cycle, we use the Floquet

continuations (3.6). Thus,

K(2π) = exp (iπν)
|F+(0)〉 〈F+(0)|
〈F+(0) | F+(0)〉

+ exp (−iπν)
|F−(0)〉 〈F−(0)|
〈F−(0) | F−(0)〉

. (4.11)
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Then, with the abbreviations

ζ = ζ (0) = 2
√

ρ, ν = 2
√

R, J±ν = J±ν (ζ ) , J′
±ν = ∂ζ J±ν (ζ ) , (4.12)

a short calculation gives the matrix form for the evolution operator as

K(2π) =
(

D − iA B

C D + iA

)

, (4.13)

where

A = 1
2
πζ (JνJ−ν )

′ , B = 2πJνJ−ν,

C = 1
2
πζ 2J′

νJ′
−ν, D = cos (πν) .

(4.14)

These expressions are valid for all ν, including ν integer for which the Floquet states are

degenerate. (These formulas confirm that K satisfies the Liouville relation (2.10).)

Finally, using formulas (2.7) and (4.4) for the vectors |u±(θ )〉, 〈u± (θ )|, from which

〈u±(θ ) | u∓(θ )〉 = 0, 〈u±(θ ) | u±(θ )〉 = ±2, (4.15)

and using (2.5), we obtain the multipliers (4.5) in the following convenient form:

a+(2π) = − 1
2
〈u+(2π)| K(2π) |u+(0)〉 exp {i(γ (2π) − γ (0))}

b+(2π) = 1
2
〈u−(2π)| K(2π) |u+(0)〉 exp {−i(γ (0) + γ (2π))}

a−(2π) = − 1
2
〈u+(2π)| K(2π) |u−(0)〉 exp {i(γ (0) + γ (2π))}

b−(2π) = 1
2
〈u−(2π)| K(2π) |u−(0)〉 exp {i(γ (0) − γ (2π))} .

(4.16)

A consequence of the analogous relations for general θ , together with (2.7) and the

Liouville formula (2.10), is the following conservation law, for any loop, circular or not and

degeneracy-enclosing or not:

a+(θ )b−(θ ) − a−(θ )b+(θ ) = det [K(θ )] = 1. (4.17)

A word about normalization. It is obvious from (4.5) that the multipliers are independent

of the normalization of the left eigenvectors (A± (θ ) in (4.3)). And the exponential factors

in (4.16) show that the multipliers a+ and b−, that is, the ones with initial values unity

(cf (4.6)), are independent of the constant θ0 in the exponent (2.6). But the multipliers a− and

b+, that is, the ones with initial values zero, representing the initially unoccupied states,

are not independent of θ0. Alternatively stated, if in definitions (2.5) |ad+ (θ )〉 is multiplied

by C+ and |ad− (θ )〉by C−, this leaves a+ and b− unchanged, but changes b+ by C+/C− and

a− by C−/C+. This underdetermination also occurs in the Hermitian case, where it is commonly

eliminated (up to phase) by the convention of normalizing the instantaneous eigenstates by the

Hermitian conjugate—a procedure that would be artificial here, where the dynamical factors

accompanying the eigenstates vary in modulus as well as phase and there seems to be no

natural normalization. In each of the cases to follow (corresponding to figures 1(b)–( f ), we

will state the form of γ (θ ) that is being used.

5. Degeneracy-centred loop

This is R = 0 (figure 1(b)). From (3.1) and (2.5)–(2.7), we can choose

γ (θ ) = 2
√

ρ exp
(

1
2
iθ

)

= ζ (θ ), (5.1)

so the adiabatic states are

|ad±(θ )〉 =
{

exp
(

− 1
4
iθ

)

ρ−1/4

± exp
(

1
4
iθ

)

ρ+1/4

}

exp {∓iγ (θ )} . (5.2)
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Figure 2. Adiabatic multipliers for R = 0, ρ = 4.2 (section 5), for (a) a+(θ ); (b) b+(θ ); (c) a−(θ );

(d) b−(θ ). Full curves: real part; dotted curves: imaginary part. Note the very different values of

the multipliers. The inset in (b) shows the final value of b+(θ ), close to 2i.

At the beginning and end of the cycle, the instantaneous eigenstates are related by

(cf (4.12))

|ad±(0)〉 =
(

ρ−1/4

±ρ+1/4

)

exp (∓iζ ) , |ad±(2π)〉 = −i |ad∓(0)〉 . (5.3)

The second equation exemplifies the flip [6] associated with loops enclosing the degeneracy.

Its coefficient −i represents the geometric phase, with the state returning exactly only after

four cycles; the sign change after two cycles corresponds to that around a diabolical point of a

Hermitian operator, which can be regarded as two coincident degeneracies of a non-Hermitian

operator.

Figure 2 shows the evolution of the corresponding adiabatic multipliers, as computed either

from (4.5) with the states |ψ± (θ )〉 computed numerically from the Schrödinger equation (2.4),

or analytically using the evolution operator (4.10). As expected on the adiabatic assumption

that the evolving states cling close to the instantaneous eigenvectors, the multiplier a+(θ ) of the

initially occupied eigenvector in the state |ψ+ (θ )〉 remains close to unity, and the multiplier

a−(θ ) of the initially unoccupied eigenvector in the state |ψ− (θ )〉 remains close to zero. But

the multiplier b+(θ ) of the initially unoccupied eigenvector in the state |ψ+ (θ )〉 does not

remain close to zero as expected. Instead, it fluctuates enormously, and settles down to a final

value, at θ = 2π , close to 2i (inset in figure 2(b)). And although the final value of the multiplier

b−(θ ) of the initially occupied eigenvector in the state |ψ− (θ )〉 is close to the expected value

unity, there are large fluctuations during the cycle.

As a first step in explaining these phenomena, consider figure 3(a), which shows Re γ and

Im γ (equation (5.1)). Because Im γ > 0 during the cycle, the eigenstate |ad+ (θ )〉 in (5.2) is

exponentially dominant over |ad− (θ )〉. Now, the Stokes phenomenon of asymptotics [11, 12]

is the change in multipliers of exponentially small contributions to a function when masked

by exponentially large ones. This explains why the multiplier b+ can vary during the cycling

of the state |ψ+ (θ )〉. In the state |ψ− (θ )〉, the corresponding subdominant multiplier b− also

fluctuates, but less strongly than b+ because the eigenstate |ad+ (θ )〉 that would dominate it is

largely unoccupied, so the masking is weaker.
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Figure 3. Re γ (θ ) (full curves) and Im γ (θ ) (dotted curves) for (a) degeneracy-centred loop ρ

= 10, R = 0; excentric degeneracy-enclosing loops (b) ρ = 10, R = 4.3, (c) ρ = 10, R = −4.3;

excentric degeneracy-excluding loops (d) ρ = 1.5, R = 2.3, (e) ρ = 1.5, R = −2.3.

At the end of the cycle, the exact multipliers are given by (4.16), in which the evolution

operator K(2π ) in (4.13) simplifies because orders of the Bessel functions in (4.14) are zero

or unity. A short calculation gives

a+(2π) = [b−(2π)]∗ = 1
2
iπζ exp (−2iζ ) (J0 + iJ1)

2

b+(2π) = 1
2
i
(

2 + πζ
(

J2
0 + J2

1

))

a−(2π) = 1
2
i
(

2 − πζ
(

J2
0 + J2

1

))

.

(5.4)

Adiabatically, that is for large cycles, the Bessel functions can be approximated by their

large-argument asymptotic forms ((10.17.3) of [28]), leading to

a+(2π) → 1, b+(2π) = 2i, a−(2π) → 0, b−(2π) → 1. (5.5)

Of these final multipliers, a+, a− and b− conform to the naive adiabatic expectation that slowly-

cycled evolving states will return to the instantaneous eigenstates at the end of the cycle. But

b+ does not; again this is an example of the Stokes phenomenon, with the subdominant

multiplier having changed irrevocably. As Stokes himself put it [29] (reprinted in [30]),

‘ . . . the inferior term enters as it were into mist, is hidden for a little from view, and comes

out with its coefficient changed . . . ’.

In the next section, we examine this in more detail.

6. Superadiabatic approximations for degeneracy-centred loops

One might expect that the exact evolving states will cling more closely to approximate

states that include higher order (superadiabatic [19, 20]) corrections to the instantaneous

9
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Figure 4. As figure 2, for superadiabatic coefficients (section 6) a+(θ ). (a) n = 0; (b) n = 1.

eigenstates. For degeneracy-centred cycles, we can find these corrections by observing that

the eigenstates (5.2) involve the lowest-order large-argument approximations to the Hankel

functions H (1)

0 , H (2)

0 and their derivatives, and these functions are exact solutions of the

Schrödinger equation (cf (3.2) and (3.3)). This enables nth-order approximations to the

evolving states to be identified from known asymptotic expansions of the Hankel functions

(e.g. (10.17.5), (10.17.6), (10.17.11) and (10.17.12) of [28], or (8.451.3) and (8.451.4) of [31]).

These superadiabatic approximations are

|ad+ (n, θ )〉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
(

− 1
4
iθ

)

ρ−1/4
n
∑

k=0

ck

(2iζ (θ ))k

exp
(

1
4
iθ

)

ρ+1/4
n
∑

k=0

dk

(2iζ (θ ))k

⎫

⎪

⎪

⎬

⎪

⎪

⎭

exp {−iζ (θ )}

|ad− (n, θ )〉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
(

− 1
4
iθ

)

ρ−1/4
n
∑

k=0

(−1)k ck

(2iζ (θ ))k

− exp
(

1
4
iθ

)

ρ+1/4
n
∑

k=0

(−1)kdk

(2iζ (θ ))k

⎫

⎪

⎪

⎬

⎪

⎪

⎭

exp {iζ (θ )} ,

(6.1)

where the coefficients are

ck =
Ŵ

(

k + 1
2

)

k!Ŵ
(

−k + 1
2

) , dk =
Ŵ

(

k + 3
2

)

k!Ŵ
(

−k + 3
2

) . (6.2)

(This corresponds to the adiabatic perturbation series method of [20], rather than the iterative

renormalization method used in [19].)

The corresponding superadiabatic multipliers are defined by analogy with (4.5), with

|ad+ (n, θ )〉 replacing |ad+ (θ )〉, etc, and can easily be computed numerically. Figure 4

illustrates how for the multiplier a+(θ ) even the first superadiabatic correction substantially

improves the clinging to the exact evolving state.

Figure 5 shows the most interesting case, of the multiplier b+(θ ) for increasing

superadiabatic orders n. For all n, this multiplier changes from its initial value, 0, to its

final value, close to 2i (cf (5.5)). But the manner of the change depends dramatically on n:

the fluctuations reduce rapidly as n increases, up to an optimal value (n = 8 in the example in

figure 5(e)), after which they start to grow again.

This behaviour is an example of a common asymptotic phenomenon [21, 22]: across

a Stokes line, at which one exponential maximally dominates another, the subdominant

multiplier, when the dominant asymptotic series is truncated near its least term (‘optimal

truncation’), increases rapidly but smoothly, according to an error function. A brief summary

of how the theory works in the present case is given in appendix C. Maximal domination occurs

10
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Figure 5. As figure 4, for b+(θ ). (a)–(i) n = {0,2,4, . . . ,16}. Note how the increase of the

coefficients from 0 to 2i (in (a) shown as inset) gets smoother as the optimal order n = 8 (figure

(e)) is approached, and fluctuates again thereafter.

at θ = π (cf figure 3(a)), where the difference of the exponents of the two exponentials—the

‘singulant’ [10]—is purely real. The singulant is

σ (ρ, θ ) = −2iζ (θ ) = −4i
√

ρ exp
(

1
2
iθ

)

. (6.3)

For θ near π , where σ (ρ, π ) = 4
√

ρ, optimal truncation occurs near

n∗ = int(4
√

ρ), (6.4)

(for figure 5(e), n∗ = 8). At this order, the general theory gives the multiplier

b+optimal(θ ) = i erfc

(

−
Im σ (ρ, θ )

√
2Re σ (ρ, θ )

)

. (6.5)

As figure 6 shows, this asymptotic theory describes evolution of the multiplier very accurately,

even for small values of ρ. The only slightly non-standard feature of the present example is that

the ‘Stokes constant’, giving the multiplier after the Stokes line has been crossed, is 2i rather

than i as in elementary examples [21, 32]; this reflects the well-understood Stokes constants

associated with Bessel’s equation [11] for ν = 0, and we will encounter it again in the next

section in the more general context of excentric cycles. (For non-standard Stokes constants in

Hermitian evolution, see [33].)

For the remaining multipliers a− and b−, corresponding to the evolving state |ψ− (θ )〉, no

Stokes phenomenon is expected, because the dominant eigenstate is initially unoccupied. And

indeed figures 7 and 8 show that increasing n makes these multipliers keep more closely to

their initial values—that is, the superadiabatic approximations cling more closely to the exact

evolving state.
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Figure 6. Comparison of exact optimally-truncated superadiabatic b+(θ ) coefficients (dotted

curves) with universal Stokes-line-crossing error-function approximation (6.5) (smooth curves),
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n = 4); (d) ρ = 4 (optimal order n = 8).
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7. Excentric degeneracy-enclosing loops

Loops enclose the degeneracy excentrically if ρ > |R| > 0 (figures 1(c) and (d)). To avoid

phase ambiguity, it is convenient to write the fourth roots in the instantaneous eigenstates (2.5)

and (2.7) as

z(θ )1/4 = exp
(

1
4
iθ

)

(ρ − R exp (−iθ ))1/4 . (7.1)

Similarly, the integrals (2.6) in the dynamical factors can be written

γ (θ ) = 2

⎡

⎣

√

ρ − R exp (−iθ ) exp

(

1

2
iθ

)

−
√

R cos−1

(

exp

(

−
1

2
iθ

)

√

R

ρ

)

+
1

2
π

√
R

]

.

(7.2)

With this implicit choice of θ0, γ (θ ) is real at the beginning and end of the cycle and

antisymmetric about θ = π , as illustrated in figures 3(b) and (c), with explicit forms

conveniently written separately for R > 0 and R < 0 as

γ (0) = −γ (2π)

=
2
[√

ρ − R−
√

R cos−1
(√

R
ρ

)

+ 1
2
π

√
R
]

(R > 0)

2
[√

ρ + |R|−
√

|R| sinh−1
(√

|R|
ρ

)]

(R < 0)

⎫

⎬

⎭

(7.3)

(the derivations use cos−1 (ix) = 1
2
π − i sinh1 x and cos−1 (−x) = π − cos−1 x).

These ingredients enable the explicit calculation of the final multipliers (4.16). After some

reduction, the result is
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a+(2π) =
[

b−(2π)
]∗ =

1

2
iπ exp (−2iγ0)

(

−iζ (JνJ−ν )
′ +

√

ζ 2 − ν2JνJ−ν −
ζ 2J′

νJ′
−ν

√

ζ 2 − ν2

)

b+(2π) =
1

2
i

(

2 cos νπ + π
√

ζ 2 − ν2JνJ−ν + π
ζ 2J′

νJ′
−ν

√

ζ 2 − ν2

)

(7.4)

a−(2π) =
1

2
i

(

2 cos νπ − π
√

ζ 2 − ν2JνJ−ν − π
ζ 2J′

νJ′
−ν

√

ζ 2 − ν2

)

.

These exact formulas satisfy

b+(2π) + a−(2π) = 2 i cos πν

a+(2π)b−(2π) − a−(2π)b+(2π) = 1.
(7.5)

The first equation is obvious, and the second is a special case of the conservation law (4.17).

To establish the adiabatic asymptotic forms of these multipliers, it is convenient to consider

offsets R > 0 (i.e. ν real) and R < 0 (i.e. ν imaginary) separately.

7.1. ρ > R > 0 (figure 1(c))

In this case, the order of the Bessel functions is real, and we eliminate the negative orders

using

J−ν (ζ ) = Jν (ζ ) cos νπ − Yν (ζ ) sin νπ. (7.6)

Then use of standard Debye asymptotics (large order, argument > order, see (10.19.6) and

(10.19.7) of [28]) in lowest approximation, leads to

a+(2π) → 1, b+(2π) = 2 i cos νπ= 2 i cos(2π
√

R),

a−(2π) → 0, b−(2π) → 1.
(7.7)

This is similar to the behaviour (5.5) for degeneracy-centred cycles, except that the

asymptotic form b+(2π ) is 2 i cos νπ rather than 2i, reflecting the Stokes constants associated

with the Bessel equation for arbitrary order [34]. An interesting special class is offsets

R = 1
16

(2n + 1)2, for which the Bessel order ν is half-integer. Then, b+(2π ) is zero, that

is, the initially unoccupied state is again unoccupied at the end of the cycle. This happens

because Bessel functions of half-integer order are represented exactly in terms of trigonometric

functions (sections 10.47 and 10.49 of [28]): the asymptotic series terminates, so there is no

divergence and no Stokes phenomenon.

Figure 9 shows the evolution of the multipliers, for a case where the Stokes constant is i.

The behaviour is similar to that for degeneracy-centred cycles (cf figure 2). And figure 10

shows the final multipliers for increasing adiabaticity, that is, as ρ increases with ρ/R fixed, in

good agreement with the asymptotic forms (7.7). Note in particular figure 10(b), which shows

the variation with the Stokes multiplier cos(2π
√

R), in dramatic contradiction of the naive

intuition that for slow cycling the initially unoccupied state would remain so.

7.2. ρ > –R > 0 (figure 1(d))

To find the adiabatic approximations to the final multipliers (7.4) in this case, it is convenient

to connect Bessel functions of positive and negative imaginary order and real argument using

Ji|ν|(ζ ) = [J−i|ν|(ζ )]∗. (7.8)
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Figure 10. Final coefficients for excentric degeneracy-enclosing loops R = ρ/2, for (a) a+(2π );

(b) b+(2π ); (c) a−(2π ); (d) b−(2π ) (full curves: real part; dotted curves: imaginary part), showing

approach to adiabatic asymptotic values (7.7). Part (d) also illustrates the relation b−(2π ) =
a+(2π )

∗
.

The relevant large-order Bessel asymptotics is less familiar, and the lowest-order leading

asymptotic expressions are insufficient. We need the formulas, which can be obtained from
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results in [35],

Ji|ν| (ζ ) =
exp

{

i
(
√

|ν|2 + ζ 2 − |ν| sinh−1
( |ν|

ζ

)

− 1
4
π
)

+ 1
2
π |ν|

}

√
2π(|ν|2 + ζ 2)1/4

×
(

1 − i
U1(|ν|/

√

|ν|2 + ζ 2)

|ν|
−

U2(|ν|/
√

|ν|2 + ζ 2)

|ν|2
+ · · ·

)

(7.9)

and

J′
i|ν|(ζ ) =

exp
{

i
(
√

|ν|2 + ζ 2 − |ν| sinh−1
( |ν|

ζ

)

+ 1
4
π
)

+ 1
2
π |ν|

}

√
2πζ

× (|ν|2 + ζ 2)1/4

(

1 − i
V1(|ν|/

√

|ν|2 + ζ 2)

|ν|
−

V2(|ν|/
√

|ν|2 + ζ 2)

|ν|2
+ · · ·

)

,

(7.10)

in which U1,2(p) and V1,2(p) are polynomials listed in (10.41.10) and (10.41.11) of [28].

Substitution of these approximations into (7.4) requires care, because although leading-

order exponentials cancel, suggesting limiting multipliers a+ and a− analogous to those in (7.7)

for R > 0, corrections to these exponentials (requiring the polynomials U1,2(p) and V1,2(p)) do

not cancel and lead to uncompensated large exponentials. After some reduction, we obtain the

leading-order asymptotic final multipliers

a+(2π) = [b−(2π)]∗ → −
ρ exp(2π

√
|R|)

8 (ρ + |R|)3/2

× exp

(

−4i

[

√

ρ + |R|−
√

|R| sinh−1

(
√

|R|
ρ

)])

b+(2π) → 2i cosh(2π
√

|R|) (7.11)

a−(2π) → −i exp(2π
√

|R|)
ρ2

64(ρ + |R|)3
.

The result for b+(2π ) is the Stokes constant for the Bessel function of imaginary order 2i
√

|R|.
Figure 11 illustrates the evolution of the multipliers for this case. The curves are very

different from those for R � 0, with the enormous variations, again contradicting naive

adiabatic intuition, arising from the large real exponentials in the Bessel functions of imaginary

order, though the Stokes variation in the subdominant multipliers b+ and b− is still evident.

Figure 12 shows the final multipliers for increasing adiabaticity, that is as functions of ρ for

fixed ρ/|R|. The large variations require logarithmic plots; the discrepancy between the exact

and asymptotic multipliers is invisible over the range illustrated.

8. Excentric degeneracy-excluding loops

Loops do not enclose the degeneracy if |R| > ρ (figures 1(e) and ( f )). Then there is no flip of

the instantaneous eigenstates, because (with a convenient choice of phase)

z(θ )1/4 = exp

(

−
1

4
iπ

)

(R − ρ exp (iθ ))1/4 (R > 0)

(|R| + ρ exp (iθ ))1/4 (R < 0)

⎫

⎬

⎭

(8.1)

is singlevalued round the loop. An important limiting case, which we will concentrate on

here, is ρ ≪ |R|, that is, very small loops. For these, the eigenvectors and eigenvalues are

16



J. Phys. A: Math. Theor. 44 (2011) 435303 M V Berry and R Uzdin

-400

-200

0

0

5000

10000

15000

-10

-4

0

-400

-200

0

200

θ

co
ef

fi
ci

en
ts

2π0 π 2π 0 π

2π0 π 2π 0 π

(a)

(c) (d)

(b)

Figure 11. As figure 2, for excentric degeneracy-enclosing loop ρ = 4.2, R = −2.3.

almost constant, so we expect the adiabatic multipliers to change very little during the cycle:

no Stokes phenomenon and almost perfect clinging. In this section we will show how the

limit follows from our general formulas. This might seem just a reassurance exercise, but we

will see that the approach to the limit can be extremely slow. It will be convenient to give the

explicit formulas for positive and negative offsets.

Convenient general forms for the exponent integrals (2.6), illustrated in figures 3(d) and

(e) are

γ (θ ) =

θ
√

R − 2i

[

√

R − ρ exp (iθ ) −
√

R − ρ

−
√

R log

(

√

R − ρ exp (iθ ) +
√

R
√

R − ρ +
√

R

)]

(R > ρ > 0)

iθ
√

R + 2

[

√

|R| + ρ exp (iθ ) −
√

|R| + ρ

−
√

|R| log

(

√

|R| + ρ exp (iθ ) +
√

|R|
√

|R| + ρ +
√

|R|

)]

(−R > ρ > 0) .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8.2)

For ρ ≪ |R|, approximate expressions are

γ (θ ) ≈
θ
√

R − ρ sin θ

2
√

R
− i ρ√

R
sin2 1

2
θ (R ≫ ρ > 0)

iθ
√

|R| + i ρ sin θ

2
√

|R| − ρ√
|R| sin2 1

2
θ (−R ≫ ρ > 0)

}

. (8.3)

Thus, as ρ → 0, the instantaneous eigenstates approach

|ad±(θ )〉 =
(

exp
(

1
4
iπ

)

R−1/4

exp
(

− 1
4
iπ

)

R1/4

)

exp(∓iθ
√

R) (R ≫ ρ > 0)

|ad±(θ )〉 =
(

|R|−1/4

|R|1/4

)

exp(±θ
√

|R|) (−R ≫ ρ > 0) .

(8.4)
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Figure 12. Final coefficients for excentric degeneracy-enclosing loop R = –ρ/2, for
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(c) log|Im(a−(2π ))|; the curves are indistinguishable from the adiabatic approximations (7.11).

(b− = (a+)∗ so we do not plot this multiplier.)

For positive offset, the dynamical factor acquires a pure phase during the evolution, and for

negative offset there is gain for the + state and loss for the – state.

Calculation of the final multipliers from (4.16) requires the evolution operator given by

(4.13) and (4.14). The limit ρ → 0 requires the small-argument limiting form of the Bessel

functions ((10.7.3) of [28]). Using this, and the reflection formula for the gamma function,

leads to

K(θ ) =

(

cos(θ
√

R) sin(θ
√

R)/
√

R

− sin(θ
√

R)
√

R cos(θ
√

R)

)

(R ≫ ρ > 0)

(

cosh(θ
√

|R|) sinh(θ
√

|R|)/
√

|R|
sinh(θ

√
|R|)

√
|R| cosh(θ

√
|R|)

)

(−R ≫ ρ > 0)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (8.5)
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Figure 13. As figure 2, for excentric degeneracy-excluding loop ρ = 4.5, R = 9.4.

With this formula, and (8.4), a calculation based on (4.16) confirms that the final adiabatic

multipliers are exactly equal to their initial values (4.6): a+(2π) = 1, b+(2π) =
0, a−(2π) = 0, b−(2π) = 1.

Figure 13 shows the evolution of the adiabatic multipliers for a degeneracy-excluding loop

with positive offset R = 9.4 and radius ρ = 4.5; they remain fairly close to their initial values,

even for these loops for which ρ is not very small. Figure 14 shows the rapid convergence of

the final multipliers to these initial values as the loops get smaller.

For negative offset, the behaviour is less simple. Figure 15 shows the evolution of the

multipliers for offset R = −2.4 and radius ρ = 0.5. a+(θ ) and a−(θ ) cling close to the initial

values as expected, but b+(θ ) and b−(θ ) veer dramatically away near the end of the cycle.

This is because these are the multipliers of the exponentially small evolving instantaneous

eigenstate (cf. (8.4)), so their contribution to each of the exact evolving states is masked by

that of the exponentially dominant eigenstate. Because of this, and as figures 16(b) and (c)

illustrate, convergence of the final multipliers b+(2π ) and b−(2π ) to the initial values is very

slow, perhaps over scales ρ ∼ exp(4π
√|R|) (we have not pursued the asymptotics to the degree

required to establish the precise convergence rate).

9. Transitionless non-Hermitian evolution

We have discussed the inevitable changes in the adiabatic multipliers—transitions between

instantaneous eigenstates—for time-dependent Hamiltonians. But it is worth noting briefly

that within the slightly different framework in which H(θ ) given by (2.1) is replaced by a

different Hamiltonian H̃(θ ), we can ensure that there are no transitions at all between the

adiabatic states (2.5) of (2.1). This ‘transitionless driving’ (a kind of reverse engineering) is

the subject of recent work [23–25] on Hermitian evolutions, which originated in a study of

reflectionless potentials [36] and applies also in the non-Hermitian case [26]. To find the new

Hamiltonian H̃ (θ ), we first write (2.1) in terms of the Pauli matrices, that is,

H(θ ) = i

(

0 1

z(θ ) 0

)

= R(θ ) · σ, (9.1)
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Figure 14. Final coefficients for excentric degeneracy-excluding loops with R = 2, showing

convergence to asymptotic values—the same as initial values (4.6)—as the loop radius ρ gets

smaller: (a) a+(2π ); (b) b+(2π ); (c) a−(2π ) (full curves: real part; dotted curves: imaginary part).

(b− = (a+)∗ so we do not plot this multiplier.)

where

R(θ ) · σ = 1
2
(i(1 + z(θ ))σx − (1 − z(θ ))σy). (9.2)

Then we use result (3.8) of [25], to get

H̃(θ ) = H(θ ) +
R(θ ) × R

′(θ ) · σ

2R(θ ) · R(θ )

= i

(

− ∂θ z(θ )

4z(θ )
1

z(θ ) ∂θ z(θ )

4z(θ )

)

=
(

(z(θ )+R)

4z(θ )
i

iz(θ ) − (z(θ )+R)

4z(θ )

)

. (9.3)

The second equality applies to any Hamiltonian of the form (2.1), and the third applies to the

special case (3.1) that we have concentrated on. It can be checked explicitly that under H̃(θ )

the exact evolving states are the adiabatic states (2.5), that is,

i∂θ |ad±(θ )〉 = H̃(θ ) |ad±(θ )〉 . (9.4)
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Figure 15. As figure 2, for excentric degeneracy-excluding loop ρ = 0.5, R = –2.4.
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Figure 16. Final coefficients for excentric degeneracy-excluding loops with R = −1, showing

convergence to asymptotic values—the same as initial values (4.6)—as the loop radius ρ gets

smaller: (a) a+(2π ); (b) b+(2π ); (c) b+(2π ) for smaller loops; (d) a−(2π ); (e) b−(2π ); ( f ) b−(2π )

for smaller loops (full curves: real part; dotted curves: imaginary part). The slow convergence is

illustrated in (c) and ( f ).

This implies a+ (θ ) = 1, b+ (θ ) = 0, a− (θ ) = 0, b− (θ ) = 1 for all θ . (Note that the

behaviour of b+(θ )—constant for all R and ρ as well as θ—is to be distinguished from that
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for the special values of R discussed after (7.7), for which b+ is transitionless only the end of

the cycle.)

This holds independently of any adiabatic approximation. But when the evolution is slow,

the problem arises of why the Stokes asymptotics, associated with the degeneracy at z = 0,

does not apply, particularly for b+(θ )—that is, why does H̃(θ ) suppress the transitions that

occur for H(θ )? The reason (too complicated too go into in detail here but previously discussed

in related contexts [25, 36]), is that the additional term in H̃ (θ ) splits the degeneracy at z = 0

into three, given by the solution of

−(∂θ z)2 = (R + z)2 = 16z3. (9.5)

For transitionless Hamiltonians, the combined effect of the cluster of degeneracies is to make

the asymptotic series terminate, so there is no divergence and no Stokes phenomenon. Another

way to see this is to note that the second-order differential equation satisfied by ψ1 (after

eliminating ψ2) is satisfied by Bessel functions of half-integer order (cf the remarks in the

paragraph following (7.7)).

10. Concluding remarks

The analysis reported here has explored, with the aid of an exactly solvable model, the

occupancies (adiabatic multipliers) of the instantaneous eigenstates of evolving vectors as

they are driven round a loop in the space of parameters of a non-Hermitian Hamiltonian.

As was noted before [6], some of the multipliers behave very differently from those driven

by a Hermitian Hamiltonian: even in the adiabatic regime of slow cycling, these multipliers

can vary enormously, violating naive adiabatic intuition. We have shown how these variations

exemplify the Stokes phenomenon of asymptotics, and the exactly solvable model has the

advantage that precise explicit formulas to be obtained using known properties of Bessel

functions.

But the study presented here is far from complete, and we now list some directions for

future work. We described the Floquet solutions and also the solutions that start in instantaneous

eigenstates (and, in section 6, in superadiabatically corrected states). But there at least two

alternative evolutions which deserve further study and which we have begun to explore. First

are the ‘periodic modes’[6], in which the adiabatic multipliers return to their original values,

up to a constant. And second, there are the evolutions of states whose asymptotics are pure

exponentials to all orders; for degeneracy-enclosing loops with positive offset, these are the

states (3.2) involving the Bessel functions H (1,2)
ν (ζ ) (this option is only possible for exactly

solvable models).

For degeneracy-excluding loops (section 8), our analysis was restricted to very small loops.

For larger loops, precise description of the exponentially large variations on the multipliers,

while not involving flip, requires delicate control of the Bessel asymptotics. We have made

some progress in this direction but results are not definitive.

The offsets we have considered are those in which R is positive real or negative real, for

which the eigenvalues at the beginning and end of the loop are purely real or purely imaginary.

The more general possibility is complex R, for which the centre of the loop is offset from

the degeneracy in an arbitrary direction, corresponding to initial and final eigenvalues that are

complex. Studying these would require asymptotics of Bessel functions of arbitrary complex

order (and of course complex argument), not just purely real as for real positive offset or purely

imaginary as for real negative offset. One result would be that the Stokes constant 2 i cos(πν)

giving the large R asymptotic value of the coefficient b+(2π ) can take any complex value.
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As mentioned in section 2, there are different exactly solvable cycles, corresponding

to Schrödinger equations (2.8) representing exactly solvable one-dimensional quantum

potentials. As well as polygonal loops for which the solutions involve the Airy function, these

include loops around one or two degeneracies, involving confluent hypergeometric functions.

It would be helpful to have a systematic classification.

Finally, we suggest that a promising area in which the evolutions studied here could be

explored experimentally is the paraxial optics of space-varying crystals or liquid crystals.

In a spatially uniform material that is biaxially anisotropic and both chiral and absorbing,

the operator governing the evolution of light fields is a direction-dependent degenerate

nonsymmetric 2 × 2 matrix derived from Maxwell’s equations [37, 38]. For certain

propagation directions (‘singular axes’), the matrix is degenerate, and sufficiently close to

a singular axis the matrix has the form studied here [13]. When such a material, with a singular

axis slightly inclined relative to the direction of a propagating light wave, is twisted through a

complete turn, the evolution of the wave is paraxial if the twist is gentle (i.e. adiabatic). The

cycled operator that governs the evolution depends on the medium’s local singular axis, turning

relative to the propagation direction. The adiabatic multipliers we have studied correspond to

the changing distribution of the light between the two local polarization states (instantaneous

eigenstates of the propagation matrix). This idea has been elaborated very recently [39] in a

detailed study of the evolving polarization state of the light during such a degeneracy-enclosing

cycle.
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Appendix A. Adiabatic scaling

The time-dependent Schrödinger equation, for a cycle over time T round a loop in the Z plane,

can be written

i�∂t

(

φ1(t)

φ2(t)

)

= i

(

0 E0

Z
(

2π
T

t
)

0

)(

φ1(t)

φ2(t)

)

, (A.1)

in which E0 is an energy parameter. With the (non-standard) scaling

2π

T
t = θ, Z

(

2π

T
t

)

=
1

E0

(

h

T

)2

z(θ ),

(

φ1(t)

φ2(t)

)

=

⎛

⎝

√

T E0

h
ψ1(θ )

√

h
T E0

ψ2(θ )

⎞

⎠ , (A.2)

this becomes (2.1). Then the exact solutions (3.2) become

|ψ(t)〉 =
{

D

∂tD

}

, (A.3)

where

D = C 1
ω

2
√

R

(

2

ω

√
ρ exp

(

1

2
iωt

))

, ω =
2π

T
, (A.4)

and Cν is given by (3.3).

The adiabatic regime (slow cycling) corresponds to large T with the loop Z(θ ) fixed, and

therefore to large z(θ ), that is, according to (A.2), large loops in (2.1), as claimed. In the
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solutions (A.4), large T corresponds to Bessel functions whose order and argument are both

large, except for centred loops, for which the order is zero.

Appendix B. Right and wrong adiabatic solutions

This is a nonrigorous argument justifying (2.4). The instantaneous eigenstates of H(θ ) satisfy

H(θ ) |ad±(θ )〉 = ±i
√

z(θ ) |ad±(θ )〉 . (B.1)

This eigenequation leaves the eigenstates undetermined by a scalar factor which can depend

on θ . This must be fixed (up to a θ -independent constant of course) by requiring that the

adiabatic states satisfy the evolution equation (2.4) to lowest order.

Substituting (B.1) into (2.4), we must have

∂θ |ad±(θ )〉 ≈
(

0 1

z(θ ) 0

)

|ad±(θ )〉 = ±
√

z(θ ) |ad±(θ )〉 . (B.2)

The adiabatic approximation of ignoring transitions between the + and – states requires

projection onto the adiabatic subspace to which each solution is restricted. We do this by

introducing the biorthogonal bra vectors 〈ad± (θ )|, giving

〈ad±(θ )| ∂θ |ad±(θ )〉 ≈ ±
√

z(θ ) 〈ad±(θ ) | ad±(θ )〉 . (B.3)

Obviously, this implies that the dynamical factor involving γ (θ ) defined in (2.7) must be

incorporated, in order to eliminate the ±
√

z(θ ) term. But this is not enough: for if we substitute

|ad±(θ )〉 = exp

(

±
∫ θ

dθ ′
√

z(θ ′)

)

|u±(θ )〉 (B.4)

into (B.3), we get that the vectors |u± (θ )〉, as well as being instantaneous eigenstates of H(θ ),

must also satisfy

〈u±(θ )| ∂θ |u±(θ )〉 = 0, (B.5)

that is, they must be parallel-transported.

An example of a pair of vectors that does not satisfy this condition is

∣

∣u1,±(θ )
〉

=
(

1

±
√

z(θ )

)

, (B.6)

because

〈u1,±(θ )|∂θ |u1,±(θ )〉 = (∓
√

z(θ ) − 1)∂θ

(

1

±
√

z(θ )

)

= ∓
∂θ z(θ )
√

z(θ )
�= 0. (B.7)

By contrast, (2.7) does satisfy (B.5), as is easily checked:

〈u±(θ )| ∂θ |u±(θ )〉 =

(∓(z(θ ))+1/4 − (z(θ ))−1/4)∂θ

(

(z(θ ))−1/4

± (z(θ ))+1/4

)

= 0.
(B.8)

Ignoring condition (B.5) would correspond, in Hermitian quantum mechanics, to ignoring

the geometric phase. Forgetting this in the non-Hermitian situation would be more serious,

because the error would not correspond simply to a phase.
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Appendix C. Stokes smoothing for degeneracy-centred solution

It will suffice to consider just the series in (6.1) with the coefficients ck defined in (6.2). As a

function of θ , the series with upper limits n are truncations of the formal infinite series

S(θ ) =
∞
∑

k=0

ck

(2iζ (θ ))k
, (C.1)

in which ζ (θ ) is defined in (3.4). Successive application of the reflection formula and an

asymptotic relation for the gamma function ((5.5.3) and (5.11.12) of [28]) give the high-order

coefficients as

ck =
Ŵ

(

k + 1
2

)

k!Ŵ
(

−k + 1
2

) = (−1)k
Ŵ

(

k + 1
2

)2

πk!
≈ (−1)k (k − 1)!

π
. (C.2)

Thus, the series S(θ ) can be separated into a ‘head’, in which the exact form of the

coefficients is retained, and a ‘tail’, in which the approximation is used:

S(θ ) ≈
N

∑

k=0

ck

(2iζ (θ ))k
+

1

πσ (ρ, θ )

∞
∑

k=N

k!

σ (ρ, θ )k
, (C.3)

where σ (ρ, θ ) is the singulant (6.3). The series diverges: from Stirling’s formula ((5.11.3)

of [28]), the terms get smaller and then increase, with the minimum near k = n∗ defined by

(6.4). As recognized by Stokes himself [40], the divergence is most severe on the Stokes line,

because when σ is real and positive, all terms in the series have the same sign. For truncation

near the least term, that is N ≈ n∗, a variant of Borel summation ([21], see also [41]) enables

the tail to be summed, with the result

1

πσ (ρ, θ )

∞
∑

int(F(θ )+ 1
2 )

k!

σ (ρ, θ )k
≈

2i
√

π

∫ Imσ (ρ,θ )

2
√

Reσ (ρ,θ )

−∞
dt exp(−t2), (C.4)

from which (6.5) follows.
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