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Slow relaxation and compaction of 
granular systems
Granular materials are of substantial importance in many industrial and natural processes, yet their 

complex behaviours, ranging from mechanical properties of static packing to their dynamics, rheology 

and instabilities, are still poorly understood. Here we focus on the dynamics of compaction and its 

‘jamming’ phenomena, outlining recent statistical mechanics approaches to describe it and their 

deep correspondence with thermal systems such as glass formers. In fact, granular media are often 

presented as ideal systems for studying complex relaxation towards equilibrium. Granular compaction 

is defi ned as an increase of the bulk density of a granular medium submitted to mechanical 

perturbation. This phenomenon, relevant in many industrial processes and widely studied by the soil 

mechanics community, is simple enough to be fully investigated and yet reveals all the complex nature 

of granular dynamics, attracting considerable attention in a broad range of disciplines ranging from 

chemical to physical sciences.
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Granular materials are ubiquitous in nature and are the 
second-most manipulated material in industry (the fi rst 
one is water), encountered, for instance, in technological 
applications ranging from pharmaceutical, food, 
powders, mechanosynthesis and semiconductor 
industries up to geological granular fl ows, such as 
debris or pyroclastic fl ows and rock avalanches. 
Granular media, such as powders or sand, are very 
simple, made of discrete particles of size larger than 
100 µm often interacting with each other only through 
dissipative contact forces. Without an external drive 
their kinetic energy is rapidly lost and they are thus 
referred to as non-thermal systems. Despite this 
deceptive simplicity, granular matter exhibits many 
complex behaviours, such as size segregation, formation 
of arches, convection rolls, pattern formation and 
dynamical instabilities1–6. Thus, although individual 
grains are solid, it is inappropriate to classify their 
collective properties as entirely solid-like or liquid-like. 
Currently, no rheological laws exist for such materials 
and their industrial manipulations are mainly based on 
empirical observations.

This progress article deals with a simple, yet 
fundamental, phenomenon in the physics of granular 
materials: granular compaction, that is, the fact that, 
for instance, under gentle shaking the packing of 
grains in a vessel slowly gets more and more compact. 
Compaction is related to both practical and basic 
scientifi c problems, as the quest for effi cient packing 
or the investigation of fundamental theories to 
describe and predict general properties of granular 
packs and their dynamics. Compaction has been 
studied in different confi gurations, such as uniaxial or 
triaxial compression, which, for instance, are known 
to be less effi cient than compaction under gentle 
mechanical excitation, such as tapping, shaking and 
shearing. Here, we focus on ‘soft’ compaction, that is, 
compaction without sintering or crushing, from the 
physicist’s point of view, mainly restricting ourselves 
to the tapping and shearing mode.

What are the compaction mechanisms of grains 
subject to mechanical perturbations? What is the 
nature of compaction dynamics? Is it possible to 
predict the status attained by the system from a few 
control parameters? Here we discuss these issues, 
which, as a broader theoretical picture is emerging, 
have deep relevance in applications ranging from 
geophysics, to chemistry up to particle technologies1,2,5.

In the next section we overview experimental 
results on relaxation laws, annealing processes and 
memory effects in granular compaction, and we point 
out its connections with glassy relaxation of thermal 
systems. We also recall experiments suggesting it is 
possible to introduce ‘thermodynamic’ parameters 
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to describe the status of the system. In the following 
section we briefl y discuss theoretical models of 
compaction and Edwards’ extension of statistical 
mechanics to granular media7,8. In this framework, 
we discuss current theories about the glassy phase of 
granular media and their deep connections to thermal 
glass formers. In the last section we will try to outline 
some of the open questions ahead.

EXPERIMENTAL RESULTS ON GRANULAR COMPACTION

DENSITY RELAXATION LAWS

The fi rst quantity of interest in compaction is the 
packing fraction (or density) ρ, defi ned as the ratio of 
the volume of the grains to the total volume occupied by 
the packing. A few characteristic values of ρ for mono-
sized sphere packings have to be noted. The maximal 
packing fraction achieved in a random packing of 
spheres (the so-called random close-packing fraction) 
is ρRCP ≈ 0.64. This value is signifi cantly lower than the 
maximal packing fraction obtained for face-centred-
cubic (or hexagonal compact) packing (ρmax ≈ 0.74). 
Another limit is the so-called random loose packing 
corresponding to a mechanically stable packing with the 
lowest packing fraction (ρRLP ≈ 0.55).

In a pioneer paper, Knight et al.9 in Chicago 
fi rst considered density relaxation laws in 

granular compaction. They recorded that, starting 
from a loose packing of beads confi ned in a very thin 
and tall tube (diameter 1.88 cm and 87 cm height, 
see Fig. 1a), a succession of vertical taps induces a 
progressive and very slow compaction of the system. 
They observed (see Fig. 1b) that the relaxation law 
can be well fi tted by an inverse-logarithmic law, the 
so-called Chicago fi t (resembling ‘magnetic creep’ of 
type-II supercondutors): 

ρ(t) = ρf 1+B ln(1+t/τ)

 ρ0 – ρf–
      (1) 

The only control parameter for the dynamics 
was found to be the ratio Γ = a/g of the tap peak 
acceleration and gravity acceleration, that is, the 
fi tting parameters: ρf the fi nal packing fraction, ρ0 the 
initial packing fraction, τ a characterisitc time, and B 
a fi tting paramater, essentially depend on Γ. The small 
number of grains in a tube diameter (≈ 10) allows 
a local measurement of the packing fraction with a 
capacitive method and prevents any convection in 
the packing. Nevertheless, it induces strong boundary 
effects that may be responsible for crystallization 
(some packing-fraction values obtained are well above 
the random close-packing limit) visible in some of the 
Chicago group’s experiments10 and in the values of ρf 
obtained in ref. 9.
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Figure 1 Experimental set-ups 
and density relaxation laws.
a, Set-up for the experiments 
carried out in Chicago. 
The numbers 1–4 refer to 
capacitors used to measure 
the packing density (see 
ref. 9). b, Typical evolution 
of the packing fraction as 
a function of the number of 
taps, t, for experiments in 
Chicago for different values 
of the acceleration amplitude. 
Superimposed lines are 
logarithmic fi ts with equation 
(1). Each curve is an average 
of four to fi ve separate runs, 
and the error bars represent 
the r.m.s. variation between 
runs (for clarity, just a few error 
bars are reported). c, Set-up 
for the experiments carried out 
in Rennes. d, Typical evolution 
of the packing fraction for the 
experiments in Rennes. Here 
dashed lines are stretched 
exponential fi ts with equation 
(2). Parts a and b reprinted 
with permission from ref. 9. 
Copyright (1995) by the 
American Physical Society.

nmat1300.indd   122nmat1300.indd   122 10/1/05   3:04:59 pm10/1/05   3:04:59 pm

Nature  Publishing Group© 2005



 PROGRESS ARTICLE

nature materials | VOL 4 | FEBRUARY 2005 | www.nature.com/naturematerials 123

More recently, Philippe and Bideau11 carried out 
compaction experiments; in the following we will 
refer to these as the Rennes group’s experiments. 
The vessel used is a 10-cm-diameter cylinder and 
1-mm-diameter glass beads, which leads to 100 
grains between the side walls. This restricts the 
boundary effects but, contrary to the Chicago group’s 
experiments, allows convection. The packing fraction 
is measured using a γ-ray absorption set-up11. The 
relaxation laws obtained by these authors differ 
signifi cantly from those obtained by Knight et al.9, 
especially for the long-time behaviour. Indeed, 
whereas in previous experiments no clear steady-
state was reached, this is defi nitely established in 
Rennes group’s experiments, and may correspond 
to a dynamical balance between convection and 
compaction. The relaxation is better fi tted by the 
Kohlrausch–Williams–Watts law (KWW law) — a 
stretched exponential:

 ρ(t) = ρf – (ρf – ρ0) exp[–(t/τ)β]   (2) 

where ρf and ρ0 correspond respectively to the 
steady-state and to the initial packing-fraction value. 
The adjustable parameters τ and β correspond here 
respectively to the relaxation time and to the stretching 
of the exponential. This characteristic timescale is found 
to be well described by an Arrhenius behaviour τ = τ0 
exp [Γ0/Γ]. Such a relaxation law is also found for strong 
glasses (the dimensionless acceleration Γ plays the role 
of the temperature).

Another quantity of interest is the fi nal packing 
fraction obtained by the fi t: ρf. Here again there 
exists a strong discrepancy between the Chicago 
group’s experiments and the Rennes group’s work. 
In the former case this packing fraction is found to 
increase with the tapping intensity, Γ, whereas it is 
found to decrease in the latter. These discrepancies 
are related to the fact that the Chicago experiments 
are performed in a region where the system is far 
from stationary, whereas the Rennes experiments are 
focusing on the stationary regime. This is likely to 
originate from the difference of confi nement between 
the two experiments. Indeed, for the Chicago group’s 
work, the strong boundary effects lead to order 

creation at least close to the side walls and to packing 
fractions higher than 0.64. On the contrary, all the 
fi nal packing fractions obtained for glass beads and 
with a very low confi nement by the Rennes group 
are below this value. Nevertheless, these results are 
affected by convection. Indeed, a signifi cant change 
is observed in the dependence of ρf on Γ, which 
might correspond to different convective regimes11,12. 
Under a threshold Γc ≈ 2, the fi nal state of the free 
surface of the packing is an inclined 
plane and indicates a spontaneous breaking of 
symmetry. Above this value, the free surface takes a 
fl at conical shape.

It should be pointed out that all the studies 
reviewed above deal with isotropic granular 
media. Of course, most actual granular materials 
are far from being isotropic, and the grain shape 
may modify the behaviour of the system during 
compaction. Villarruel et al.13 have shown, using 
a Chicago set-up, that a nematic ordering can be 
observed for compaction of rods. Ribière et al. 
(ref. 14, and ibid, manuscript in preparation) carried 
out experiments of compaction of rice with the 
set-up in Rennes (low confi nement). They did not 
observe such an ordering and obtained compaction 
characteristics similar to those obtained with glass 
beads. Note that the aspect ratio of the grains is 
probably an important parameter of the problem.

ANNEALING AND MEMORY EFFECTS

Further insight into the understanding of the nature 
of the relaxation can be gained by allowing the tap 
intensity to vary in time. Nowak et al.10,15 (and later 
Philippe16 with the Rennes set-up) have reported 
annealing experiments. Using the Chicago set-up they 
proceeded as follows: starting from a loose packing of 
grains, the material is tapped at a given intensity Γ for 
a given time t (105 taps). Γ is then modifi ed and the 
compaction process continued for t taps (see Fig. 2a). 
The increase of Γ corresponds to an increase of the 
average packing fraction except for values larger than 
three for which a slow decrease can be observed. This 
slow decrease can be interpreted as void creation 
due to a too-large agitation. If Γ is then reduced, the 
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a b Figure 2 Annealing and 
aging during compaction. 
a, Annealing curve. The initial 
packing was prepared in a 
low-density initial confi guration 
(ρ ≈ 0.59) and then the 
acceleration amplitude Γ was 
slowly fi rst increased (solid 
circles) and then decreased 
(open circles). At each value 
of Γ the system was tapped 
105 times and Γ incremented 
by ΔΓ ≈ 0.5. The higher 
density branch (the upper 
one) is reversible to changes 
in Γ (see square symbols). 
Each curve is an average of 
separate experimental runs 
and the error bars represent 
the r.m.s. variations between 
runs. Reprinted from ref. 10, 
Copyright (1997), with 
permission from Elsevier. 
b, Time evolution of packing 
fraction for a system that was 
compacted to ρ0 = 0.613 at 
time t0 using three different 
accelerations: Γ1 = 1.8 (circles), 
Γ0 = 4.2 (triangles) and 
Γ2 = 6.3 (diamonds). 
After the packing fraction 
ρ0 was achieved (t = 0), 
the system was vibrated at 
acceleration Γ0. The evolution 
for t > t0 depended strongly 
on the previous history. 
Reprinted from ref. 18. 
Copyright (2000) by the 
American Physical Society.
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packing fraction, rather than following reversely 
the previous curve, still increases. This new curve, 
contrary to the previous is reversible: the points 
corresponding to a new increase of Γ (black squares 
in Fig. 2a) still follow the curve. It should be pointed 
out that the reversible branch may be recovered after 
more than one cycle. Note that such a behaviour also 
exists for granular materials under cyclic shear17. 
From a practical point of view, varying the tap 
intensity allows very dense packings to be reached 
more rapidly. From a physicist’s point of view, it 
allows the steady-state packing fraction (given by 
the reversible branch) to be reached for a given Γ, 
even if this Γ is very low. Note that these steady-
state packing fractions are different from those 
obtained by the long time fi t of Chicago logarithmic 
relaxation law. Such a distinction does not exist in 
the case of the Rennes group experiment, where the 
system is taken to a stationary state.

As mentioned previously, granular compaction 
has a glassy behaviour, so memory effects should 
also exist. For that aim, Josserand et al.18 carried 
out experiments on the response function of a 
granular packing undergoing compaction to sudden 
perturbation of the tapping acceleration (equivalent 
to the temperature for a classic glassy system). 
Using the Chicago set-up, these authors drive a 
granular packing to the same packing fraction ρ0 
with three different accelerations Γ0, Γ1 and Γ2. 
Then the system is tapped at the intensity Γ0 and 
for short time its behaviour depends on the 
previous value of the tapping acceleration (see 
Fig. 2b). The data show a short-time memory effect: 
the future evolution of the packing fraction depends 
not only on its initial value but also on its history.

JAMMING IN GRANULAR MEDIA

We pointed out previously that these materials 
display deep common physical features with out-
of-equilibrium systems such as glasses. This analogy 
can be surprising because granular materials are 
not thermal systems due to the irrelevance of their 
thermal energy in comparison with the energy needed 
to move a macroscopic grain. From a microscopic 
point of view this analogy is based on the idea that 
the geometry of the grains plays a major role, similar 
to ‘geometrical frustration’ in thermal glasses. 
Indeed, like glasses, a granular assembly can be 
trapped in a metastable confi guration unless an 
external perturbation such as shear or vibration is 
applied. This has suggested the idea that granular 
media can be a good experimental system to apply 
out-of-equilibrium statistical mechanics. Note that, 
unlike thermal energy, mechanical agitation of grains 
is, in general, neither stochastic nor isotropic.

If this analogy is correct, a granular material 
submitted to mechanical perturbation should display 
a critical slowdown in its dynamics, as glasses freeze 
when they reach the glass transition. This behaviour, 
called jamming, was shown experimentally in a 
quantitative way by D’Anna and Gremaud19,20. 
They use 1.1-mm-diameter glass beads in a cylinder 
of 150 mm height and 94 mm diameter fi lled to 
a height of 130 mm (Fig. 3a). Using a shaker, the 
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Figure 3 Experimental measurement of an effective temperature. a, Sketch of D’Anna’s 
experimental set-up. A torsion oscillator is immersed in a granular material perturbed by external 
vertical tapping or shaking. b, With this apparatus, an ‘effective temperature’ can be measured for 
different oscillators, which is here plotted as a function of the vibration amplitude Γ (see ref. 20). Black 
squares: the oscillator used was conical. Red circles: the oscillator used was conical with a triple 
moment of inertia. Both a and b reprinted with permission from ref. 20.

In usual statistical mechanics, at equilibrium, it is well known that the 
fl uctuation–dissipation theorem holds, linking, for instance, the system 
average energy, E, to its fl uctuations, ΔE2, by the bath temperature. It is 
straightforward to verify that in Edwards’ approach to granular media, similar 
relations are found where the bath is substituted by the ‘confi gurational’ 
temperature:
  
       (3) 
 

 ∂βconf

∂E = ∆E2.

    
Usefully, the integration of such an equilibrium fl uctuation–dissipation 
relation may provide the value of βconf from energy (or density) data measured 
at stationarity35,42: βconf (E) = β0

conf – ∫E
E0

 (ΔE2)–1 dE.
In thermal systems close to equilibrium, also dynamical fl uctuation–

dissipation relations (involving time-dependent quantities) hold, which 
are, in general, no longer valid far-from-equilibrium. Interestingly, in the 
aging dynamics of mean-fi eld glassy models generalized out-of-equilibrium 
fl uctuation–dissipation relations were discovered46,47 where the role of the bath 
temperature, Tbath, is played by a ‘dynamical temperature’, Tdyn, equal for all 
slow modes. This scenario was later extended to aging granular media23,38,40,44,48. 
For instance, generalized Einstein diffusion relations are found between two 
far-apart times t and tw (t >> tw)44,48:

       (4)
 

Tdyn
δ〈r (t) – r (tω)〉

δf
=〈[r (t) – r (tω)]2〉

  
where r(t) is a particle position at time t and f a constant small perturbing fi eld 
coupled to it. Interestingly in systems aging in contact with an infi nitesimal bath 
temperature, Tconf and Tdyn turn out to coincide23,44,48 (as Tdyn ≠ Tbath). In this way, 
out-of-equilibrium fl uctuation–dissipation relations open a way to measure 
Edwards’ confi gurational temperature in aging systems.

P. R., M. N., R. D., P. R. & D. B.

Box 1: Fluctuation–dissipation relations

nmat1300.indd   124nmat1300.indd   124 10/1/05   3:05:02 pm10/1/05   3:05:02 pm

Nature  Publishing Group© 2005



 PROGRESS ARTICLE

nature materials | VOL 4 | FEBRUARY 2005 | www.nature.com/naturematerials 125

whole is submitted to vertical continuous vibrations 
at the frequency fs (50 Hz < fs < 371 Hz) or to vertical 
taps. The perturbation intensity is measured using 
an accelerometer as the peak acceleration intensity 
normalized to the acceleration gravity Γ = a/g. 
To characterize the dynamics of the granular media 
the authors measure optically the motion of an 
oscillator (eventually submitted to an external torque) 
immersed in the media. The motion of this oscillator 
refl ects, at least partially, the dynamical behaviour 
of the packing. The study of its power spectrum 
(and thus of the diffusivity) shows that the partially 
fl uidized granular material displays a critical slowdown 
from a fl uid state to a glassy state where — as for 
supercooled liquid — the diffusivity approaches 
zero19. The authors used the same set-up to try to 
defi ne the equivalent of a temperature in this system. 
The fl uctuation–dissipation theorem (see Box 1) 
allowed them to introduce an acceleration-dependent 
‘effective temperature’ with the correct properties 
of a thermodynamic parameter (see Fig. 3b). In this 
respect, a quantitative analogy with thermal systems, 
such as glasses, appears, as further confi rmed by the 
observations reported above.

THEORETICAL MODELS

We have seen that despite the fact that granular 
media may form crystalline packings, in most cases 
they are found at rest in disordered confi gurations, 
and when gently shaken, they exhibit a strong 
form of ‘jamming’9–11,15,19 (that is, an exceedingly 
slow dynamics) with deep connections to ‘freezing’ 
phenomena observed in thermal systems such as glass 
formers21–23. These observations suggested the idea of 
a unifi ed description of ‘jamming’ in these different 
systems22,24, whose precise nature is an important 
issue that is currently being debated6. To face these 
topics, it’s necessary to solve another basic conceptual 
open problem, that is, the absence of an established 
theoretical framework to describe granular media. 
Edwards7,8,25 proposed a statistical mechanics solution 
to such a problem for compact (that is, not ‘fl uidized’) 
granular systems by introducing the hypothesis that 
time averages of a system, exploring its mechanically 
stable states subject to some external drive (for 
example, ‘tapping’), coincide with suitable ensemble 
averages over its ‘jammed states’ (see Box 2).

MODELS FOR THE DYNAMICS OF COMPACTION

Before discussing Edwards’ approach, it is interesting 
to mention that the slow compaction dynamics can 
be described by free-volume arguments as processes 
where a grain can jump into a hole in the pack only if 
the hole is empty. Mean-fi eld-like dynamical models 
emphasizing these ‘geometric frustration’ mechanisms 
appear indeed to capture the essence of the 
dynamics26,27. Schematic lattice models of hard grains 
under gravity were introduced to describe dynamical 
and stationary properties of granular assemblies in 
further detail22,28,29. Numerical simulations of lattice 
models21,30–35 and parking-lot models27,36,37 show slow 
compaction dynamics. In the region of large tap 
amplitudes, the system density as a function of the 
number of shakes can be well fi tted by exponentials. 
In the region of small tap amplitudes, the system 
gets ‘jammed’ and ‘memory’ and ‘aging’ phenomena 
are observed, along with ‘annealing’ effects as those 
described in previous experiments9,10,15. In this region, 
stationarity is typically not reached and logarithmic 
relaxation is found21,27. Correspondingly, the system 
relaxation time diverges approximately as an 
Arrhenius law21, resembling experimental results11,19, 
as the grains’ diffusion coeffi cient goes to zero.

EFFECTIVE TEMPERATURES FROM FLUCTUATION–DISSIPATION 
RELATIONS

Interestingly, models of grain assemblies subject to 
a drive (that is, tap or shear) were also used to test 
Edwards’ statistical mechanics approach31,33–36,38–44. 
In recent developments of glassy theory45, a notion of 
‘effective dynamical temperature’ can be introduced46, 
based on the out-of-equilibrium extension of the 
fl uctuation–dissipation theorem47 (see Box 1). 
In granular media the ‘glassy’ region can be entered 
in the limit of very small ‘shaking’ amplitudes, that 
is, by letting the system age in contact with an almost 
zero bath temperature, Tbath. In this way, an effective 
temperature, Tdyn (see Box 1), was measured in a 
model for granular media38. In particular, within 
lattice gas ‘glassy’ systems, Barrat et al.44,48 showed 
that the analogue of Edwards ‘confi gurational 
temperature’, Tconf (see Box 2), can be computed 
and, in the limit Tbath → 0, it exhibits a very good 
agreement with Tdyn. The link between this dynamical 
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collapse of the data obtained 
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by a single thermodynamic 
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excellent approximation. Inset: 
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to the energy, is plotted as 
function of TΓ for τ0 = 500; 10; 
5 Monte Carlo steps (from top 
to bottom). The straight line is 
the function Tfd = TΓ.
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temperature and Edwards’ temperature has been 
further studied in several numerical models of 
schematic ‘tapped’30,33,36,42 and ‘aging’34,38,44,48,49 systems 
or more realistic ‘sheared’ media40.

In a different perspective, the validity of Edwards’ 
approach can be tested, for any ‘shaking’ amplitude, 
by a technique based on dynamics as those used in 
experiments on granular compaction35,39,42. By some 
drive (such as ‘tapping’ or shearing) the system is 
allowed to explore the space of its blocked (‘jammed’) 
states. Once stationarity is reached, one has fi rst 
to check that the system properties do not depend 
on the dynamical history, that is, that a genuine 

‘thermodynamic’ description is indeed possible. 
In this case, a thermodynamic parameter 
characterizing the system, that is, a ‘temperature’ Tfd, 
can be defi ned by usual equilibrium fl uctuation–
dissipation relations (see Box 1). Then one could 
check whether time averages obtained using such 
dynamics compare well with ensemble averages as 
those proposed by Edwards (see Box 2). In such a 
case, the temperature Tfd coincides with Edwards’ 
confi gurational temperature Tconf. This scenario was 
found to be consistent for simple lattice models of 
granular media35,39,42,43.

THE STATIONARY STATES OF THE TAP DYNAMICS AND 
EDWARDS’ AVERAGES

In particular, in a very schematic theoretical model of 
Chicago and Rennes experimental set-ups — a lattice 
model of tapped hard spheres under gravity — it was 
shown35,42,43 by Monte Carlo simulations that Edwards’ 
approach appears to hold to a very good approximation. 
In such a lattice gas model, grains are subject to 
dynamics made of a sequence of ‘taps’21: a single ‘tap’ is 
a period of time, of length τ0 (the tap duration), where 
particles can diffuse laterally, upwards (with probability 
pup) and downwards (with probability 1 – pup). When 
the ‘tap’ is off, grains can only move downwards (that 
is, pup = 0) and the system evolves until it reaches a 
blocked confi guration. The parameter pup has an effect 
equivalent to keeping the system in contact (for a time 
τ0) with a bath temperature, TΓ ∝ 1/ln[(1 – pup)/pup] 
(called the Monte Carlo ‘tap amplitude’).

The model Monte Carlo dynamics is apparently 
schematic (not to mention that many important 
material properties, such as friction or dissipation, 
are only superfi cially considered), but for this same 
reason it is fully tractable. During the tap dynamics, in 
the stationary regime, the time average of the energy, 
E
–
, and its fl uctuations, 

–
ΔE2, are calculated on the 

blocked states. Figure 4a shows E
–
 (main frame) and –

ΔE2 (inset) as a function of the tap amplitude, TΓ, in 
the model (for several values of the tap duration, τ0). 
Sequences of taps, with same TΓ and different τ0, give 
different values of E

–
 and 

–
ΔE2, thus TΓ is not a correct 

thermodynamic parameter. On the other hand, when –
ΔE2 is parametrically plotted as function of E

–
, the data 

collapse onto a single master function (see Fig. 4b) 
showing that the stationary states can be indeed 
characterized by a single thermodynamic parameter, 
βfd, conjugated to the energy. T–1

fd (or T–1
fd ≡ βfd) 

can be derived by integrating the usual equilibrium 
fl uctuation–dissipation relation (see Box 1), and the 
functions βfd(E

–
) or, for a fi xed value of τ0, βfd (TΓ) 

obtained (inset of Fig. 4b)35,42,43.
To test Edwards’ hypothesis, time averages 

recorded during the taps sequences, E
–
(βfd), must then 

be compared with ensemble averages, 〈E〉(βconf), over 
Edwards’ distribution equation (5). Figure 4b shows 
that the function 〈ΔE2〉 (〈E〉), from the ensemble 
averages, collapses on the same master function of the 
time averaged data, 

–
ΔE2 (E

–
), discussed before (notice 

that there are no adjustable parameters). This implies 
that, for the present model, Edwards’ statistical 
mechanics holds to the current numerical accuracy 
and Tfd = Tconf.

In the statistical mechanics of powders introduced by Edwards7,8,25 it is 
postulated that a system at rest (that is, not in its ‘fl uidized’ regime) can be 
described by suitable ensemble averages over its blocked, ‘jammed’, states 
(related to ‘inherent structures’ of glass formers35,42,59). The probability, Pr, 
to fi nd the system in its blocked state r, can be found under the assumption 
that these mechanically stable states have the same a priori probability to 
occur (‘fl at measure’). The knowledge of Pr has the conceptual advantage to 
substitute time with ensemble averages, as in thermodynamics.

Pr can be obtained7,25,35,39,42 as the maximum of the entropy, S = –ΣrPrlnPr, 
under given macroscopic constraints. For instance, when the system volume 
is given V = ΣrPrVr (Vr is the volume of the blocked microstate r), one is lead 
to a Gibbs-like result: Pr ∝ e–Vr/λX, where X is a Lagrange multiplier, called 
compactivity, enforcing the constraint and λ is a constant. Analogously, when 
the system energy, E = ΣrPrEr, is given, that is, in the canonical ensemble, entropy 
maximization leads to: 

 Pr ∝ e–βconfEr     (5)

where βconf is a multiplier, called inverse confi gurational temperature, 
enforcing the energy constraint: βconf = ∂Sconf / ∂E. Here Sconf = lnΩ(E) is the 
‘confi gurational’ entropy and Ω(E) the number of blocked states with energy 
E. Thus, summarizing, the system at rest has Tconf = β–1

conf ≠ 0, but no kinetic 
energy (that is, Tbath = 0).

Consider, for defi niteness, a system of monodisperse hard spheres of mass 
m at rest in these blocked confi gurations. In Edwards’ approach, by use of 
equation (5), we can write a generalized partition function in the canonical 
ensemble as39,51: 

      (6)
 

Z = ∑ exp( – H HC – βconf mgH) . Пr  .
rєΩTOT    

Here ΩTOT is the system’s whole confi guration space, HHC is the hard core 
term in the Hamiltonian (that is, the interaction between grains preventing 
overlaps), mgH is gravity contribution (H is particle height) and the factor Πr is 
a projector on the space of ‘blocked’ states Ω: if rєΩ then Πr = 1 else Πr = 0.

Finally, it is important to stress that, in general, more than one 
thermodynamic parameter is needed to characterize the system43. Actually, a 
current matter of debate6 is the determination of the range of validity of the 
above hypotheses, as well as the number of ‘thermodynamic’ parameters needed 
in different cases and their theoretical a priori individuation

P. R., M. N., R. D., P. R. & D. B.

Box 2: Edwards’ statistical mechanics of 
granular media

nmat1300.indd   126nmat1300.indd   126 10/1/05   3:05:04 pm10/1/05   3:05:04 pm

Nature  Publishing Group© 2005



 PROGRESS ARTICLE

nature materials | VOL 4 | FEBRUARY 2005 | www.nature.com/naturematerials 127

We stress that no fl uid-like convective motion of 
the grains50, which might affect the general behaviours 
in real systems, are present in such a simple model.

More generally, the validity of Edwards’ approach 
to non-thermal systems is a current matter of debate6, 
where positive tests31,33,38–40,42,44 are accompanied by 
more complex situations34,36,41,43.

A MEAN-FIELD DESCRIPTION OF JAMMING

In Edwards’ scenario, the nature of a system’s 
properties and its ‘glassy’ region can be better 
understood by analytical calculation of the partition 
function, equation (6). This was accomplished in 
a Bethe–Peierls approximation for a monodisperse 
hard-sphere three-dimensional lattice system and its 
phase diagram derived51, as shown in Fig. 5a in the 
plane (Ns; Tconf) (here Ns is the number of grains per 
unit surface, that is, the number of grains for one 
layer and Tconf the ‘confi gurational temperature’). 
A phase transition is found from a fl uid-like to a 
crystal phase at Tm. When crystallization is avoided, 
at a lower point, TD, in the ‘supercooled’ fl uid also a 
purely dynamical transition is present at a mean-
fi eld level, which in a real system is thought to 
correspond just to a dynamical crossover (see refs 52 
and 53). Finally, at an even lower point, TK, the 
supercooled fl uid has a genuinely thermodynamic 
discontinuous phase transition to glassy phase. It 
is a currently debated issue whether TK is non-zero 
in real systems6. The analytically calculated number 
density, Φ, plotted as a function of Tconf (in a system 
with a given Ns) in Fig. 5b, has a shape very similar 
to the one observed in tap experiments along the 
‘reversible branch’ shown previously10,11,15, or in 
Monte Carlo simulations21,35.

The nature of this mean-fi eld glass transition, 
obtained in the framework of Edwards’ theory, 
is the same found in the glass transition of the 
p-spin glass and in other mean-fi eld models for 
glass formers23,52: a discontinuous one-step 
replica symmetry-breaking phase preceded by a 
dynamical freezing point. These analytical results 
on one side show precise correspondences with 
experimental fi ndings and, interestingly, on the other 
side may clarify the origin of the common ‘glassy’ 
features of granular media and thermal 
glass formers21–23.

THE FUTURE OF GRANULAR COMPACTION

In this progress article we have reviewed recent 
important results on granular compaction, but many 
questions remain open ahead. The next experimental 
step is to understand what happens on the grain 
scale to packing microstructure. Experiments on 
‘memory’ effects (see, for example, ref. 18) show the 
need for such information. As granular materials 
are opaque media, the main experimental diffi culty 
is the determination of grain positions during the 
relaxation. Very interesting recent attempts were made 
to access such data: X-ray microtomography54,55 and 
index-matching liquid imaging56. The experimental 
works in refs 54 and 55 are able to focus on structural 
quantities related to granular compaction (pore size 
distributions, pair correlation function ...) previously 
studied only numerically. In ref. 56 the authors found 
that during cyclic shearing of granular materials 
the grain motion is not just diffusive and exhibits a 
transient cage effect, similar to the one observed in 
glasses. They also started the exploration of the links 
between the macroscopic evolution of the packing 
fraction and the microscopic behaviour of grains. 
A study of the cage effect in two-dimensional 
granular media under cyclic shear can be found 
in a very recent work57. A current challenge is the 
generalization of these results to three-dimensional 
systems. These techniques can also shed light on a 
practical as well as on a theoretical issue: the role of 
the compaction mechanisms (tapping, shearing ...) 
on the system properties58.

Finally, an important open issue is the theoretical 
foundation and experimental test of statistical 
mechanics approaches. In practice, the general validity 
of Edwards’ scenario has just begun to be assessed and 
there are still many, crucial, open questions31,33–36,38–43. 
In some very schematic models, it turns out to be 
at least a good approximation, able to give a fi rst 
reference framework to understand the physics of 
granular media and their deep connections with 
thermal systems such as fl uids and glass formers. 
In this respect, the understanding of fl uid-like 
motion50, pattern formation5, mixing/segregation 
transitions3,4, will be of crucial importance. A deeper 
test of these theories and their consequences, the 
experimental determination of the described phase 
diagram of granular media23, the important role of 
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a b Figure 5 Phase diagram 
for a numerical model of 
granular material. a, The 
mean-fi eld phase diagram of 
a monodisperse hard-sphere 
model of granular media51 
treated by Edwards’ method 
is plotted in the plane of 
its two control parameters 
(Tconf;Ns): Tconf is Edwards’ 
‘confi gurational temperature’ 
and Ns the average number of 
grains per unit surface in the 
box. At low Ns or high Tconf, the 
system is found to be in a fl uid 
phase. The fl uid forms a crystal 
below a melting transition line 
Tm(Ns). When crystallization 
is avoided, the ‘supercooled’ 
(that is, metastable) fl uid 
has a thermodynamic phase 
transition, at a point TK(Ns), to 
a granular glassy phase with 
the same structure found in 
mean-fi eld theory of glass 
formers. In between Tm(Ns) and 
TK(Ns) a dynamical freezing 
point, TD(Ns), is located, where 
the system characteristic 
timescales diverge. b, For a 
monodisperse hard-sphere 
model of granular media with a 
given number of grains (that is, 
a given Ns), the overall number 
density, Φ, calculated in mean-
fi eld approximation51 is plotted 
as a function of Tconf; Φ(Tconf) 
has a shape very similar to the 
one observed in the ‘reversible 
branch’ of ‘annealing’ 
experiments (see Fig. 2a) and 
Monte Carlo simulations. The 
location of the glass transition, 
TK (fi lled circle), corresponds to 
a cusp in the function Φ(Tconf). 
The passage from the fl uid to 
supercooled fl uid is Tm (fi lled 
square). The ‘crystal’ branch is 
not shown here. The dynamical 
crossover point TD is found 
around the fl ex of Φ(Tconf) and 
approximately corresponds to 
the position of a characteristic 
shaking amplitude Γ* found 
in ‘annealing’ experiments 
where the ‘irreversible’ 
and ‘reversible’ branches 
approximately meet. a and b 
reprinted with permission 
from ref. 3.
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fl uid-like effects, are among relevant open research 
directions in this fi eld.

doi:10.1038/nmat1300
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