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Abstract : In the resonance ratio control, which we proposed for vibration suppression and

disturbance rejection in torsional system, the estimation speed of the disturbance observer should

have been much faster than the resonance frequency of the controlled system. However, too fast

disturbance observer sometimes causes implementation problem. In this paper, we give the optimal

speed of the disturbance observer and propose a novel technique named "slow resonance ratio

control". It does not have any fast part in the controller. It also enables us to design the speed

control and the vibration suppression control almost completely independently.
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I. INTRODUCTION

Vibration suppression and disturbance rejection control in torsional system is an important problem

in the future motion control. As the newly required speed response is very close to the primary

resonant frequency of such systems, conventional techniques based only on P&I controller is not

effective enough. To overcome the problems, various control strategies have been proposed mainly

for controlling 2-inertia system, the simplest model of the flexible system.[1][2][3][7][12][13][14]

In this paper, we will focus our discussion onto the disturbance observer-based techniques. We

proposed "resonance ratio control" several years ago and showed its excellent performance by

numerical simulation.[4][9] By feeding back the torsional torque estimated by the disturbance

observer, the virtual motor inertia moment can be changed to an arbitrarily value. This means that we

can change the resonance frequency and then the resonance ratio.

However, the estimation speed of the disturbance observer used in the resonance ratio control was

assumed fast enough compared to the resonant frequency of the controlled object.[9] Too fast

disturbance observer causes implementation problem. We clarified that slower disturbance estimation

degrades various control performances.

In this paper, we propose a novel technique, "slow resonance ratio control", whose advantages are
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as follows:

(1) The optimal speed of the disturbance estimation is given by an explicit formula. It is relatively

slow in most cases.

(2) The speed controller can be designed independently from the vibration suppression control.

Finally, we explain the specially designed experimental setup using two motors and adjustable

inertia moments connected by a flexible shaft. We can adjust not only the inertia moments and the

stiffness of the shaft but also the backlash and friction. We confirm the effectiveness of the proposed

method by experiments.

II. STEEL ROLLING MILL AND 2-INERTIA MODEL

Fig.1 illustrates the typical configuration of steel rolling mill system. This system is basically a

distributed parameter system. By using the modal analysis, it can be modeled as a system having

several inertia moments and springs.[12] For example, 12 inertia moments are used for simulation but

it is too complicated for controller design. 2-inertia system given by Fig.2 is its simplest model.

Fig.3 gives its block diagram representation.

In Fig.2, we assume

JM0 + JL = 1 ,   Ks = 1 (1), (2)

for comparative analysis and controller design. These equations mean that the total inertia moment of

the motor and the load, and the spring coefficient are fixed to 1, respectively. Various 2-inertia

systems with different inertia ratios will be investigated under these relations.

As frictional effect is usually very small in most industrial systems, by putting BM=BL=0 in Figs.2

and 3, the transfer function from TM to M, can be approximated by

G11(s) ≈   1s  JLs 2+Ks

JM0JLs 2+Ks(JM0+JL)
  = 1

 JM0s 
  s

2+ a
2 

 s 2+ r0
2  

(3)

This transfer function, the most important one for the closed loop characteristics design, has two

particular frequency points: the resonant and anti-resonant frequencies given by

r0 =  Ks 
JL

 1+  JL 
 JM0 

 (4)

a
  =  Ks 

JL
 (5)

where R0 is the inertia ratio of the original system given by R0=JL/JM0. At these frequencies, phase

characteristics change drastically, too.
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III. SLOW RESONANCE RATIO CONTROL AND ITS DESIGN METHOD

Fig.4 depicts our new technique: "slow resonance ratio control". Using this configuration, we

will explain its idea.

A. Ideal Fast Resonance Ratio Control [9][11]

When we put Tq=0 in Fig.4, it gives the ideal "resonance ratio control" based on the fast

disturbance observer. In usual disturbance observer applications, 100% of the estimated disturbance

is fed back to the motor torque, but in this case, 1-K of the estimated disturbance is fed back. By

doing this, we can change the virtual motor inertia moment to any value as

 JM =  JM0 K (6)

The inertia ratio can be changed to

R  = JL

 JM 
 = JL

 JM0 K 
 = KR0  (7)

The resonant frequency is then changed to

r =  Ks 
JL

 1+  JL 
 JM 

 (8)

The anti-resonant frequency does not change. In the resonance ratio control, by setting the new

resonance ratio H= r/ a to be 2～ 5, effective vibration suppression is achieved.[4][9][11] However,

the estimation speed of the disturbance observer can not be infinite in actual systems. From some

simulations, it is known that the estimation should be performed much faster than the resonant

frequency of the controlled object.

B. Slow Resonance Ratio Control

When the estimation speed of the observer is finite, i.e., Tq>0, the ideal resonance ratio control

becomes impossible. Generally by using Q(s) as the low-pass filter part: 1/(Tqs+1) in Fig.4, the

following two important transfer functions can be obtained.

M

 TM
 '  

 = 1+R
 s  s 2+ a

2

 s 2+ 1+{1-Q(s)}R0+Q(s)R a
2 

(9)

L

 TM
 '  

 = 1+R
 s  a

2

 s 2+ 1+{1-Q(s)}R0+Q(s)R a
2 

(10)

We pay more attention to L/TM' .  Its characteristics are as follows.
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■ When the observer is very fast, i.e., Tq=0 if Q(s)=1/(Tqs+1),

by putting Q(s)→1, eq.(11) is obtained.

L

 TM
 '  

 = 1+R
s  a

2

 s 2+(1+R) a
2 

 = 1s  r
2

 s 2+ r
2 

(11)

■ When the observer is very slow, i.e., Tq=∞ if Q(s)=1/(Tqs+1),

by putting Q(s)→0, eq.(12) is obtained.

L

 TM
 '  

 = 1+R
s  a

2

 s 2+(1+R0) a
2 

 = 1s  r
2

 s 2+ r0
2  

(12)

These two curves have the intersection point at

0 = 1+ R+R0
2

 a (13)

and the amplitude there is given by

L

 TM
 '  

 = 1+R
 0 

 2
 R-R0 

(14)

Interestingly, all curves having any Tq pass this point. Hence, if Tq is selected so that this point is

the local maximum, vibration suppression can be realized most effectively. Such Tq is given by

Tq =
1+ R+3R0

4

 1+ 3R+R0
4

 1+ R+R0
2

 
 1
 a 

(15)

This is the optimal estimation speed (the optimal time constant) of the disturbance observer when

we use the first order observer.

For reference, the optimal estimation speed given by Iwata in Umida's slow disturbance observer

is given by [5][6]

Tq = 1+ R0
2

 1
 a 

(16)

This value is close to one when we put R=0 in eq.(15). In other word, Umida's slow disturbance

observer is the special case putting R=0 in the slow resonance ratio control.

C. Design of K

K is the ratio of R (the new inertia ratio that the resonance ratio control aims to realize) to R0 (the

original inertia ratio), i.e., R=KR0. a is also the function of R0. When R0 is given as a parameter
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of the original system, from eqs.(14) and (15), the optimal estimation speed Tq and the peak

amplitude at 0 are the functions of only K .

Fig.5 draws the peak amplitude at 0 as the function of K . The peak at 0 decreases when K

increases. On the other hand, from Fig.6, we can see that q(=1/Tq) becomes bigger when K

increases, which means that faster estimation is required. It must cause implementation problem.

Hence we need a compromise.

From Figs. 5 and 6, if we select K=5～10, the peak is relatively small while keeping q not so big

for a wide range of R0. For smaller K , q becomes much smaller, which reduces implementation

problem, because the controller has no fast parts.

On the contrary, we can consider the method to optimize K by evaluating | L/Tm'| for a given Tq

and R0. These three parameters K , Tq and R0 have close inter-relation. It is also possible to know

the optimal K from Fig.6 but we did not give its clear formula. In most industrial applications, Tq is

not chosen to be the possible smallest value. Its lower limit was determined by realistic experimental

factors like sampling period, noise suppression ability and so on. It may vary according to many

factors, e.g., inertia ratio, P&I controller parameters, backlash, and so on. In other word, it is

usually difficult to determine the minimum value of Tq beforehand. This is the reason why we did not

determine Tq first.

D. Design of the Speed Controller

In eqs.(9) and (10), L/TM' converges to 1/s when s→0, because we designed so as to keep their

DC gains to be the same value regardless of R0. It means that, in all cases with any R0, the 2-inertia

system can be seen 1-inertia system having JM0+JL=1 as the total inertia moment.

It is very convenient if we can use the fixed coefficient P&I speed controller designed for 1-inertia

system. Here, we put

Kp = 1
T

  ,    Ki = 
Kp

2.5T
(17), (18)

T is the specified response time of speed control. Here, we put T =1/ a hoping to realize the

command response as fast as the anti-resonant frequency. Eq.(18) means that we selected the integral

time constant to be 2.5 times of the speed control response. In simulation, two-degree-of-freedom

P&I controller is used to reduce the overshoot in command response. It can be realized simply by

putting b=0.5 in Fig.4.

E. Summary of the Design Procedure

We summarize the design procedure of "slow resonance ratio control" proposed above.

(1) Put K=5～10, i.e., R=5R0～10R0.

(2) Put the disturbance observer's estimation speed by eq.(15).

(3) Design the speed controller by eqs.(17) and (18).

(4) If the designed q is proved too small by experiment, back to (1) and chose smaller K .
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IV. SIMULATION RESULTS OF THE SLOW RESONANCE RATIO CONTROL

Fig.7 shows one example of the time response simulation of "slow resonance ratio control" At

t=5, *=1 is given as the speed reference to observe its command response characteristics. At t=25,

step disturbance of TL=-0.5 is given to see the disturbance response.

In this simulation, we made the system parameters to include 10~20% errors, backlash (+/-0.01),

and torque limiter (+/-1.2). We can know that the performances of the proposed method are same or

superior to other methods proposed until now, e.g., the fast resonance ratio control, the optimal PID

control, and even the state feedback control.[10][11][15]

The speed controller is designed for 1-inertia system without any consideration on vibration

suppression. Such an independent design has a great advantage in actual industrial application

systems.

V. EXPERIMENTAL RESULTS OF DISTURBANCE OBSERVER BASED CONTROLLERS

A. Experimental Setup

Fig.8 illustrates "Torsional Vibration System Experimental Setup" specially made by Mitsubishi

Heavy Industry based on our design. It consists of two brushless DC (BLDC) motors, changeable

backlash and friction mechanism, the load equipment and so on. The generated torques of BLDC

motors are controlled fast and precisely enough by two high performance motor drivers.

Sensor information from shaft encoders and tacho-generators are read into the microcomputer via

the counter boards and A/D converters. After some control calculations, the torque commands are

outputted to the motor drivers via D/A converters. Control algorithm is written by C language. We

developed some more useful programs, e.g., frequency response measurement program using M-

series test signal.

TABLE I gives the experimented control methods and their controller parameters. The inertia

moments are given by the load-side (i.e. the torsional shaft side) quantities. We implemented

(1) original disturbance observer designed for 1-inertia system,

(2) fast resonance ratio control using fast disturbance observer,

and

(3) slow resonance ratio control proposed in this paper. 

The speed controllers of (1) and (3) are designed for 1-inertia system, and in (2) we used Manabe

Polynomial method.[8] In all experiments, I-P speed controllers are used by putting b=0 in Fig.4.

In the experiments of the command response shown in Fig.9(a)～(c), the speed reference

ref=10[rad/s] is given at t=0. In experiments of the disturbance response, at t=0 the disturbance

torque of 2[Nm] is added from the loadside motor.

In the experiments here, sL is the load speed, sg the gear speed (We used the gear of 1/2 gear

ratio.), m the motor speed and Tm the motor torque. We tried to set the gear backlash to be 0, but

there still remains a small backlash. Also, note that the motor torque is limited by +/-3.84[Nm]. In
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the figures, the torque commands are drawn instead of the actual torques.

B. Experimental Results and Discussion

The original disturbance observer in Fig.9(a) designed for 1-inertia system just suppresses the

disturbance injected into the motor axis, which is the torsional torque in this case. As the result, big

vibration was induced in the load speed and it considerably affected to the motor speed, too.

In the fast resonance ratio control shown in Fig.9(b), we implemented the disturbance observer

whose estimation speed was designed as fast as possible. It was decided experimentally by control

period, noise suppression characteristics, stability problem and so on. q (= 1/Tq )=3.0 a was the

top speed of the disturbance observer. This is not fast enough to realize the ideal fast resonance ratio

control aiming to K=3.025. We can see that the low frequency vibration can be suppressed

effectively. However, the transfer function from TL to L has a harmful frequency peak around

200[rad/s]. Due to this peak, relatively big high frequency vibration remains in the motor torque.

In the slow resonance ratio control, we chose K=2.368. In this case, the observer's speed is q

=1.7 a, which is slower than that of the fast resonance ratio control. Although we recommended

K=5～10 in Chap. III, we did not need to use such a big K in the experimental system. This was

because vibrational effect was partly suppressed due to the original friction in the actual system.

Smaller K means slower disturbance observer. We took this advantage here. Fig.9(c) shows

sufficiently stable time responses without any high frequency vibration in motor torque waveform,

and frequency characteristics without any sharp peak. This is because there are no fast parts in the

proposed controller.

VI. CONCLUSION

In this paper, we proposed the "slow resonance ratio control" as an effective vibration suppression

and disturbance rejection control method of torsional systems. We gave the explicit formula of the

optimal estimation speed of the disturbance observer from the viewpoint of vibration suppression.

We confirmed its superior performances by simulation and real experiment. In the original "fast

resonance ratio control", we needed to design the speed controller considering the vibration

suppression, where we dealt with the total system's characteristics given by higher order state

equations. On the contrary, in the proposed slow resonance ratio control, we can use the speed

controller independently designed for 1-inertia system. This has a great advantage in most industrial

applications.
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Captions of Figures and Tables

Fig.1. Typical configuration of steel rolling mill system.

Fig.2. 2-inertia system model.

Fig.3. Block diagram of 2-inertia system

Fig.4. Configuration of the slow resonance ratio control.

Fig.5. The peak amplitude at 0 v.s. K .

(When K increases, the peak at 0 decreases.)

Fig.6. The optimal estimation speed of the disturbance observer.

(For bigger K , faster estimation is needed. Tq = 1/ q.)

Fig.7. Simulation results when K=5.
(a) R0=JL/JM0=0.2

(b) R0=JL/JM0=1

(c) R0=JL/JM0=5

Fig.8. Experimental setup of torsional vibration system.
(a) overview
(b) functions of components

Fig.9. Experimental results.
(a) Original disturbance observer
(b) Fast resonance ratio control
(c) Slow resonance ratio control.

TABLE I TESTED CONTROL METHODS AND PARAMETERS



2 / 12

roll
gear couplings

pinion
stand

motor

speed
sensor

Fig.1. Typical configuration of steel rolling mill system.
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Fig.7. Simulation results when K=5.
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Fig.8. Experimental setup of torsional vibration system.
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(a) Original disturbance observer. (b) Fast resonance ratio control.
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Fig.9. Experimental results.
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TABLE I
TESTED CONTROL METHODS AND PARAMETERS

controller
parameters

disturbance
observer
for 1 axis

fast
resonance

ratio control

slow
resonance

ratio control

system parameters

inertia moment of motor JM0=4.016X10-3[kgm2]

inertia moment of load JL=2.921X10-3[kgm2]

stiffness constant Ks=39.21 [Nm/rad]

resonant frequency
anti-resonant frequency r0=152.3[rad/s], a=115.9[rad/s]

inertia ratio
resonance ratio

R0=JL/JM0=0.7273, H0=1.314

control period Ts =1[ms]

parameters in speed control

Kp (proportional gain) 0.804 0.435 0.535

K i (integral gain) 26.6 14.26 17.71

parameters in vibration control

K ( = R/R0 ) -- 3.025 2.368

q ( = 1/Tq ) * 2.0 a 3.0 a 1.7 a

* Tq : time constant of the disturbance observer


