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In this work we study the effect of static disorder on the growth of commutators—a probe of information
scrambling in quantum many-body systems—in a variety of contexts. We find generically that disorder slows the
onset of scrambling and, in the case of a many-body localized (MBL) state, partially halts it. In the MBL state,
we show using a fixed point Hamiltonian that operators exhibit slow logarithmic growth under time evolution and
compare the result with the expected growth of commutators in (de)localized noninteracting disordered models.
Finally, using a scaling argument, we state a conjecture on the growth of commutators in a weakly interacting
diffusive metal.
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Introduction. Understanding the nature of thermalization
in closed quantum systems is one of the great challenges
of modern many-body physics [1–4], especially in light of
many recent experiments probing thermalization in isolated
quantum many-body systems [5–12]. Of particular interest are
the time scales for various aspects of thermalization, from
early-time relaxation to scrambling at intermediate times to
the late-time buildup of complexity [13]. Given a many-body
Hamiltonian with local interactions, relaxation describes the
initial decay of local perturbations as measured by simple
autocorrelation functions. Scrambling describes the slower
spreading of quantum information across all the degrees of
freedom of the system, rendering such information invisible to
local probes [14–16]. Scrambling is distinct from relaxation,
with the time needed to scramble information over a set of
degrees of freedom typically scaling in some way with the
number of said degrees of freedom.

It is interesting to study the effects of static disorder on
the process of thermalization because disorder is common in
experimental systems and because it can lead to qualitatively
new physics. In the limit of noninteracting particles, weak
disorder in low dimensions or sufficiently strong disorder in
three or more dimensions causes localization [17,18], which
completely arrests thermalization. However, noninteracting
particles, being integrable, already fail to thermalize, even
when they remain delocalized. Thus it is particularly interest-
ing to study scrambling in interacting disordered systems. It
is known that the noninteracting delocalized limit can remain
metallic in the presence of interactions, and recent work has
shown that the localized limit is also stable to interactions
[19–23], resulting in many-body localization [24,25].

To probe scrambling in these systems, we study the
growth of commutators of local operators. The study of such
commutators is closely related to the physics of classical chaos
[26] and diagnoses a quantum version of the butterfly effect,
whereby a small local perturbation eventually spreads over
the entire system [27]. To set up the precise computations,
consider two local unitary operators, V and W , along with time
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evolution specified by a many-body Hamiltonian H . Define the
squared commutator C(t) to be [28]

C(t) = 〈[W (t),V ]†[W (t),V ]〉 = 2(1 − Re[F (t)]), (1)

where W (t) = eiHtWe−iH t is a Heisenberg operator and where
F (t) is a so-called out-of-time-order (OTO) correlator

F (t) = 〈W †(t)V †W (t)V 〉. (2)

Here the average 〈· · · 〉 is taken over any quantum state ρ of
interest; a natural choice, which we focus on below, is to take
a product state or some short-range correlated state.

The OTO correlator F (t) is our primary object of study.
The physical picture is this: W is meant to correspond to a
simple local perturbation which grows in size and complexity
under time evolution. The commutator of W (t) with other
simple operators V diagnoses the growth of W (t). The squared
commutator is studied to prevent unwanted cancellations
and to diagnose typical matrix elements of the commutator.
The OTO correlator is a cousin of the Loschmidt echo, but
generally probes different physics (see, e.g., [29]). We will be
particularly interested in the disorder average of F as well as
the disorder average of |F |2. We emphasize that the system
(ensemble of systems) only really scrambles if, for a given
disorder realization (typical disorder realization), the OTO
correlator becomes small and remains small for an extended
period of time.

OTO correlators first appeared many years ago in the
context of semiclassical methods in superconductivity [30],
and they have received renewed attention in the context of the
AdS/CFT correspondence where they were shown to diagnose
quantum chaos in black hole physics [27,31,32]. Very recently,
it has been shown how to measure OTO correlators [33–35]
and hence scrambling. The broad relevance of scrambling in
quantum many-body dynamics has also been emphasized [33];
for example, scrambling diagnoses the growth of quantum
chaos [30–32] and the spread of entanglement [16].

In the spirit of investigating scrambling across a wide
variety of physical systems, we study the OTO correlator F (t)
in simple disordered local many-body models. In the presence
of interactions the physics of OTO correlators is typically
distinct from the physics of time-ordered correlation func-
tions [36], although for noninteracting particles everything is
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determined from two-point functions via Wick’s theorem. The
basic consequence of locality is approximate causality: If W

and V are local operators separated in space by a distance d,
then F (t) remains close to 1, meaning V and W (t) commute,
until the operator W (t) has grown in space to size d. Our
results are stated in terms of the the “operator radius” of W (t),
denoted RW (t), which is defined as the distance d such that
F (t) significantly deviates from 1 for operators V located less
than or equal to d away from the location of W . Because
of Eq. (1), this operator radius also defines the region within
which the square commutator C(t) is significantly different
from zero. Physically, the operator radius RW (t) defines the
region of space over which information in the initially localized
perturbation W has spread after time t .

In a localized noninteracting particle state, commutators
simply do not grow beyond the localization length ξ , so
RW (t) ∼ ξ . In a noninteracting diffusive metal, commutators
grow in space diffusively, with RW (t) ∼ √

Dt and D the
diffusion constant, but ultimately become small again at
late time (with recurrences in finite size systems). Including
interactions in the single-particle localized state gives a many-
body localized state, and using a simple fixed-point model
for the many-body localized state we show that RW (t) ∼
ξ log(�t) for nonconserved local operators, where � encodes
the typical strength of interactions. This is consistent with
Lieb-Robinson bounds [37–40]. Finally, we give a scaling
argument that in a diffusive metal weak interactions lead
to a ballistic growth, RW (t) ∼ vBt , with a small “butterfly
velocity” [41,42], vB ∼ √

D� where � is a small interaction-
induced inelastic scattering rate.

Noninteracting particles. To orient the discussion, we first
recall the behavior of commutators in noninteracting particle
models. As stated above, it is sufficient to study just the
anticommutator, Ar r ′(t), of the underlying fermion field for
noninteracting models, Ar r ′(t) = 〈{cr (t),c†r ′ }〉, where cr (c†r )
represents a fermionic annihilation (creation) operator at site r ,
satisfying the usual anticommutation algebra: {cr ,c

†
r ′ } = δr r ′ .

When A is small, then commutators of localized unitary
operators built from the cr will also be small. As a concrete
model, consider the tight-binding model [17] of noninteracting
(NI) fermions on an infinite d-dimensional lattice, with
nearest-neighbor hopping and a static random on-site potential.
In one and two dimensions, an infinitesimal disorder induces
localization of the eigenstates [17,18]; in three dimensions a
critical amount of disorder is required to drive localization.
The anticommutator in any noninteracting fermion model is
simply

Ar r ′(t) =
∑

α

e−iEαtφα(r)φ∗
α(r ′), (3)

where φα(r) are the single-particle energy eigenstates and
Eα are the single-particle energies. Note that Ar r ′(t) is state
independent, and is simply the single-particle propagator, i.e.,
the amplitude for a particle to move from site r to site r ′ in
time t . We will consider two cases, the localized state and the
delocalized state, and leave a discussion of critical points for
future work.

In the case of the localized phase, the anticommuator never
grows large. Because A is a sum over single-particle states,

it follows that if every single-particle state is localized, then
A remains exponentially small. Ignoring the oscillating (time-
dependent) phases, which can only make A smaller, we may
estimate the size of A by assuming that every state φα is
exponentially localized around some site rα , so that the sum
over α becomes [43]

Ar r ′ �
∑

α

e−|r−rα |/ξ−|r ′−rα |/ξ ei	α (r,r ′), (4)

where 	α(r,r ′) represents the phases associated with the
overlap of φα(r)φ∗

α(r ′). The disorder average of Ar r ′ (denoted
Ar r ′) is zero as a result of averaging over the phases. However,
assuming that the rα are distributed roughly uniformly in
space, it immediately follows that |Ar r ′ |2 � e−|r−r ′|/ξ .

In the case of the delocalized phase, the resulting many-
body state is a diffusive metal. Conduction of charge and heat
take place, and the density-density response function exhibits
a diffusion pole [44]. Within the Born approximation, we have
Ar r ′ = Aclean

r r ′ exp(− t
2τ

), with the simplifying assumption of
an energy-independent scattering rate τ . However, as is well
known, this quantity is not a good measure of the fermion
motion. A better picture of the dynamics is obtained by |Ar r ′ |2.
This calculation is closely related to the disorder average of the
density-density response function [44], and exhibits diffusive
behavior, |Ar r ′(t)|2 ∼ exp(−|r−r ′|2

2Dt
)/td/2.

Many-body localized state. We now consider the effects
of interactions, first on the localized state. Assuming that the
interacting state is a many-body localized state, we study a
standard “fixed-point” Hamiltonian [45–49] of N spin-1/2 of
the form

HMBL =
∑

r1

Jr1Zr1 + 1

2

∑
r1 �=r2

Jr1 r2Zr1Zr2

+ 1

3!

∑
r1 �=r2 �=r3

Jr1 r2 r3Zr1Zr2Zr3 + O(Z4), (5)

where Zr is the z Pauli operator of spin r . The couplings
Jr1 , Jr1 r2 , . . . , are assumed to be drawn at random from Gaus-
sian distributions of mean zero and variance �2

n(r1, . . . ,rn) for
the n-spin coupling Jr1,...,rn

. The variances �2
n are assumed

to decay with n and with the separation between the r i .
Such a Hamiltonian can be viewed as arising from HNI by
adding interactions and taking the limit w → 0. As discussed
in [45,48], this fixed-point Hamiltonian is expected to be
sufficient to describe the coarse-grained physics of an entire
many-body localized phase.

The time evolution of any local spin operator is given by
precession about the z axis in an effective field,

hr = Jr +
∑
r1 �=r

Jr r1Zr1 + 1

2

∑
r2 �=r1 �=r

Jr r1 r2Zr1Zr2 + O(Z3),

(6)

which is itself an operator that depends on the z components
of all other spins. The time evolution of any operator Or on
site r is given by Or (t) = eithrZr Ore

−ithrZr . A basis of local
operators is provided by the Pauli operators {Xr ,Yr ,Zr}; in
terms of these operators, the Zr are exactly conserved in time,
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while Xr and Yr rotate into each other at a rate determined
by hr .

To build intuition, assume first that Jr1 r2 r3 and all higher-
order terms are zero. Then a significantly nonzero commutator
will develop between two operators Or1 (t) and Or2 after a
time t of order 1/Jr1 r2 . In a many-body localized phase,
where Jr1 r2 is expected to decay exponentially with distance
(Jr1 r2 ∼ �e−|r1−r2|/ξ ), it follows that a nonzero commutator
will develop only after a time exponentially long in the
distance between the operators. Phrased in terms of the
operator radius, we have RW (t) ∼ ξ log(�t), representing a
slow logarithmic growth of nonconserved operators. This
feature is also responsible for the logarithmic growth of
entanglement in the MBL phase [47,50]; these are in fact
related statements [16]. Note, however, that without including
higher spin interactions, the commutator is exactly periodic in
time with period 2π/Jr1 r2 , so a fixed realization of disorder
only weakly scrambles.

Now consider including the neglected multispin interac-
tions. It is useful to define an effective J eff

r1 r2
= ∂hr1

∂Zr2
by

J eff
r1 r2

= Jr1 r2 +
∑

r3

Jr1 r2 r3Zr3

+ 1

2

∑
r3 r4

Jr1 r2 r3 r4Zr3Zr4 + · · · , (7)

because this quantity is an operator that depends on the
environment of other spins and can lead to dephasing.

For concreteness, consider the squared commutator C(t)
introduced in Eq. (1) above with the identification, W ≡
Xr = S+

r + S−
r and V ≡ Xr ′ = S+

r ′ + S−
r ′ , where S±

r = (Xr ±
iYr )/2 are spin ladder operators. With this special choice, W

and V are unitary and Hermitian. The time development of S±
r

is simple: S±
r (t) = e±ihr t S±

r , so the OTO correlator is

F (t) = 〈(
S+

r eihr t + S−
r e−ihr t

)
Xr ′

(
S+

r eihr t + S−
r e−ihr t

)
Xr ′

〉
,

(8)

F (t) = 〈
S+

r S−
r eiJ eff

r r′ t + S−
r S+

r e−iJ eff
r r′ t

〉
. (9)

In the last equality we have used Xr ′hr (. . . ,Zr ′ , . . .) =
hr (. . . , − Zr ′ , . . .)Xr ′ , (S±

r )2 = 0, and X2
r ′ = 1 to simplify

F (t). Noting that J eff
r r ′ must remain inside the expectation

value since it is an operator, the physics of F (t) will thus
be controlled by an average of a phase e±iJ eff

r r′ t over different
spin configurations. Such an average will generically lead to
dephasing.

We now give some quantitative formulas for the case
where Jr1 r2 r3 is nonzero, with mean zero and variance
�2

3(r1,r2,r3), but all higher-order multispin interactions are
set to zero. The general case involves a trivial extension of
the reported formulas and should only enhance dephasing.
With only Jr1 r2 r3 nonzero, the effective coupling is J eff

r r ′ =
Jr r ′ + ∑

s �=r,r ′ Jr r ′sZs.
There are two sources of randomness in J eff

r r ′ : the random
couplings themselves and the quantum operators Zs. We first
analyze the effects of the quantum operators. For illustrative
purposes, assume for the remainder of the calculation that
the Zs are uncorrelated. We believe similar results will hold

for generic short-range entangled states because it should be
possible to use a coarse-graining procedure to produce local
spin blocks which are effectively decoupled. Since the many-
body localized state is a stable phase, this coarse-graining
procedure should not alter the basic physics. We emphasize
that we are not in general considering a thermal state, because
thermal states are not privileged in models which fail to
thermalize.

Viewing the J ’s as fixed and again assuming the spins are
in a product state, the quantum expectation value and quantum
variance of J eff

r r ′ are

〈
J eff

r r ′
〉 = Jr r ′ +

∑
s

Jr r ′s〈Zs〉, (10)

〈(
J eff

r r ′
)2〉 − 〈

J eff
r r ′

〉2 =
∑

s

J 2
r r ′s(1 − 〈Zs〉2). (11)

If we compute the quantum average of eiJ eff
r r′ t by keeping only

the first two cumulants, then we find

〈
eiJ eff

r r′ t
〉=exp

(
it

〈
J eff

r r ′
〉− t2

2

{∑
s

J 2
r r ′s(1−〈Zs〉2)

})
. (12)

Let us now consider the disorder average of F (t). Taking
again W = Xr1 and V = Xr2 , the first moment is trivial,

F (t) = exp
[− 1

2�2
2(r1,r2)t2 + · · · ], (13)

where we have shown only the contribution from Jr1 r2 and
· · · denotes higher-order terms. In chaotic systems, F (t) can
typically be expanded at early times like F (t) = 1 − εeλt +
· · · ; the analog of this early time expansion in the many-body
localized state is

F (t) = 1 − 1
2�2

2(r1,r2)t2 + · · · . (14)

By comparing the chaotic and localized early-time expansions
we learn that while scrambling grows exponentially fast in
chaotic systems, it only grows polynomially fast in localized
systems. Furthermore, for operators at r1 and r2 both ε and �2

are expected to be exponentially small in |r1 − r2|, leading to
a scrambling time linear in |r1 − r2| for chaotic systems and
exponential in |r1 − r2| for localized systems.

The second moment of F (t) is more interesting, since we
do not obtain trivial dephasing from disorder averaging the
two-spin interaction. The key point is that the second moment
involves two quantum averages over ρ, and hence can be
thought of as a single quantum average over a two-copy system
in the state ρ ⊗ ρ. Then, analogous to the standard replica trick,
the disorder average couples observables in the two copies
together. The result is

|F (t)|2 = 2 exp
[−2�2

2(r1,r2)t2]

× tr

⎧⎨
⎩ρ ⊗ ρS+

r S−
r ⊗ S−

r S+
r

∏
s �=r1,r2

G+
s

⎫⎬
⎭

+tr

⎧⎨
⎩ρ ⊗ ρS+

r S−
r ⊗ S+

r S−
r

∏
s �=r1,r2

G−
s

⎫⎬
⎭
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+tr

⎧⎨
⎩ρ ⊗ ρS−

r S+
r ⊗ S−

r S+
r

∏
s �=r1,r2

G−
s

⎫⎬
⎭, (15)

with G±
s = exp

[
−�2

3(s)t2

2
(Zs ⊗ I ± I ⊗ Zs)

2

]
(16)

and �3(s) = �3(r1,r2,s). If the Zs are uncorrelated and if
Zs = 1 with probability qs, then

|F (t)|2 ∼
∏

s �=r1,r2

[
q2

s + (1 − qs)
2 + 2qs(1 − qs)e

−2�2
3(s)t2]

,

(17)

where we have dropped the faster decaying terms. One can
obtain similar expressions for F 2 and other higher moments
of F [43]. Provided all the disorder averaged moments of F

decay at late time, the commutator C(t) will concentrate in
probability around a late time value of 2.

The physics of |F (t)|2 is as follows. At early times, the
exponentials in Eq. (17) are close to 1 and |F (t)|2 is also close
to 1. As time passes, more and more of the exponentials decay
towards zero and hence the product in Eq. (17) decays due
to the multiplication of many numbers smaller than 1. To say
more, we must specify the form of the variance, which we take
to be

�3(s)=�3 exp

(
−|r1−r2|

ξ
− |r1−s|

ξ
− |r2−s|

ξ

)
. (18)

A little geometry shows that contours of constant u in
the equation |r1 − s| + |r2 − s| = u|r1 − r2| are ellipsoids,
|r1 − r2|2u2(u2 − 1) = 4(u2 − 1)s2

‖ + 4u2s2
⊥, where s‖ and s⊥

denote the parallel and perpendicular components of s relative
to r1 − r2. Note that u � 1 is required to have a solution. The
d-dimensional volume of the ellipsoid is

vol ∼ |r1 − r2|du(u2 − 1)(d−1)/2

2d
. (19)

The equation �3(s)t = 1 denotes the rough boundary within
which the exponentials in Eq. (17) have substantially decayed;
in terms of the u parameter just discussed, the solution is

u(t) = ξ

|r1 − r2| log(�3t) − 1. (20)

This gives a complex pattern of decay of |F (t)|2; to illustrate
the basic physics, we make the simplifying assumption that
qs = 1/2 and focus on late times, which gives

|F (t)|2 ∼ exp[−aξd logd (�3t)], (21)

a quasipolynomial decay in general spatial dimension d and a

is a constant.
This result was derived for a particular kind of uncorrelated

Gaussian disorder. For generic short-range correlated disorder,
we expect that the central limit theorem applied to sufficiently
large spin blocks will lead to an effective disorder distribution
which is approximately Gaussian and uncorrelated. It would
be interesting to extend our results to cases in which the initial
state is correlated with the disorder, e.g., a thermal state, or
where the disorder itself has long-range correlations. It would

also be interesting to investigate the effects of bounded vs
unbounded disorder distributions.

Interacting diffusive metal. We now turn to the effects of
interactions on the disordered but delocalized metallic state.
In the noninteracting limit of a diffusive metal, commutators
grow diffusively and then decay as a power law at late time.
Now we sketch a simple argument that including interactions
significantly modifies this behavior, leading to a commutator
which grows ballistically, albeit with a small velocity in the
limit of weak interactions, and which remains nonzero at late
times.

We first note that ballistic growth is the generic case,
and the fastest growth allowed by the Lieb-Robinson bound
[37,41]. In the noninteracting limit, all operator growth is tied
to the motion of particles (i.e., Wick’s theorem); physically
it is the statement that energy, charge, and entanglement
are only carried by the single-particle modes. When we
include interactions, then the transport of energy, charge, and
entanglement decouple and we expect more generic behavior
for the motion of entanglement even if charge motion remains
diffusive [51]. Since operators must grow for entanglement
to be generated, we also expect to obtain ballistic growth for
generic operators. This is a physical argument, but below we
sketch a simple ansatz giving ballistic growth.

Now the question is how to estimate the butterfly velocity
vB . First, the butterfly velocity should vanish in the limit that
the interaction-induced inelastic scattering rate � goes to zero.
Second, the butterfly velocity must be constructed from a ratio
of the relevant length and time scales, including the mean free
path �, the elastic scattering rate γ , and the inelastic rate �.
Assuming no other scales are relevant, dimensional analysis
gives vB ∼ �γf (�/γ ). Further assuming that vB depends on �

and γ only through the diffusion constant D ∼ �2γ then fixes
the scaling function to be f (x) ∼ √

x and gives vB ∼ √
D�.

To better understand this form for vB , let us imagine a
pertubative calculation of the squared anticommutator (or the
commutator of some local bosonic operators) in the presence
of interactions. The bare result is just |A|2 which when
disorder averaged gives the previously discussed diffusive
form. Interactions lead to other terms involving integrals over
powers of A and other Green’s functions. Assuming these
interaction terms can be resummed [52] at early time to give
exponential growth at roughly the inelastic rate �, then the
interacting early time growth of the anticommutator will be

C(r,t) ∼ exp(�t)exp(−r2/2Dt). (22)

Solving for C(RW (t),t) ∼ 1 gives R2
W ∼ D�t2, which is

ballistic growth with butterfly velocity vB ∼ √
D�. Based on

this scaling argument, we conjecture that a full perturbative
calculation will yield the same result.

Discussion. In this work we studied the growth of operators
under time evolution in disordered models using squared
(anti-)commutators and OTO correlators. Two directions
for future work are a systematic perturbative calculation of
scrambling in the interacting diffusive metal and a study
of the behavior of scrambling at the transition from a
many-body localized phase to an ergodic phase [53,54].
Another interesting direction concerns scrambling in glassy
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models, including long-range models [35,55], where we may
study the interplay of glassy physics and scrambling.

Our study has focused on various disorder averaged
OTO correlators, but one could ask about rare-region effects
[53,54,56,57] as well. For example, can rare thermalized
regions in the localized phase effectively give a shortcut
to faster scrambling? Alternatively, in one dimension, rare
localized regions in the ergodic phase should slow the growth
of operators, leading to slower scrambling.

Experimentally, the effects of static disorder can be induced,
for example, using laser speckle [58] or by modulating
an optical lattice with incommensurate wavelengths, and
experiments observing some of the physics of many-body
localization have recently been carried out [7–11]. There
have been recent proposals focusing on measurements to
probe the collective dephasing [59,60]; we have shown that

OTO correlators also access the slow logarithmic growth of
dephasing which is characteristic of the many-body localized
state. Some of the experimental methods for adding disorder
are compatibile with the time-reversal requirements of [33],
so measurements of scrambling might be possible. It would
be particularly interesting to make measurements of OTO
correlators at the transition between localized and ergodic
states, where the growth of operators may diagnose the onset
of ergodicity across the transition.

Note added. Recently, other studies [61–64] of OTO
correlators in many-body localized states appeared.

Acknowledgments. B.S. is supported by the Simons Foun-
dation and the Stanford Institute for Theoretical Physics. D.C.
is supported by a postdoctoral fellowship from the Gordon and
Betty Moore Foundation at MIT, under the EPiQS initiative,
Grant No. GBMF-4303.

[1] J. M. Deutsch, Quantum statistical mechanics in a closed system,
Phys. Rev. A 43, 2046 (1991).

[2] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[3] H. Tasaki, From Quantum Dynamics to the Canonical Distribu-
tion: General Picture and a Rigorous Example, Phys. Rev. Lett.
80, 1373 (1998).

[4] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum systems,
Nature (London) 452, 854 (2008).

[5] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J.
Schmiedmayer, Local emergence of thermal correlations in
an isolated quantum many-body system, Nat. Phys. 9, 640
(2013).

[6] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, Quantum thermalization through
entanglement in an isolated many-body system, Science 353,
794 (2016).

[7] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M.
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of Loschmidt echoes and fidelity decay, Phys. Rep. 435, 33
(2006).

[30] A. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the
theory of superconductivity, Sov. J. Exp. Theor. Phys. 28, 1200
(1969).

[31] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos,
J. High Energey Phys. 08 (2016) 106.

[32] A. Kitaev, Hidden correlations in the Hawking radiation and
thermal noise, Talk given at the Fundamental Physics Prize
Symposium (2014), Vol. 10.

[33] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Measuring the scrambling of quantum information, Phys. Rev. A
94, 040302(R) (2016).

[34] G. Zhu, M. Hafezi, and T. Grover, Measurement of many-body
chaos using a quantum clock, Phys. Rev. A 94, 062329 (2016).

[35] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-
Kurn, J. E. Moore, and E. A. Demler, Interferometric approach
to probing fast scrambling, arXiv:1607.01801.

[36] R. Nandkishore, S. Gopalakrishnan, and D. A. Huse, Spectral
features of a many-body-localized system weakly coupled to a
bath, Phys. Rev. B 90, 064203 (2014).

[37] E. H. Lieb and D. W. Robinson, The finite group velocity of
quantum spin systems, Commun. Math. Phys. 28, 251 (1972).

[38] I. H. Kim, A. Chandran, and D. A. Abanin, Local integrals of
motion and the logarithmic lightcone in many-body localized
systems, arXiv:1412.3073.

[39] C. K. Burrell and T. J. Osborne, Bounds on the Speed of
Information Propagation in Disordered Quantum Spin Chains,
Phys. Rev. Lett. 99, 167201 (2007).

[40] E. Hamza, R. Sims, and G. Stolz, Dynamical localization in
disordered quantum spin systems, Commun. Math. Phys. 315,
215 (2012).

[41] D. A. Roberts and B. Swingle, Lieb-Robinson Bound and the
Butterfly Effect in Quantum Field Theories, Phys. Rev. Lett..
117, 091602 (2016).

[42] D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks,
J. High Energy Phys. 03 (2015) 051.

[43] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.95.060201 for more details.

[44] A. Altland and B. D. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, MA, 2010).

[45] R. Vosk and E. Altman, Many-Body Localization in One
Dimension as a Dynamical Renormalization Group Fixed Point,
Phys. Rev. Lett. 110, 067204 (2013).

[46] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology
of fully many-body-localized systems, Phys. Rev. B 90, 174202
(2014).
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