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The acoustic propagation in lined flow duct with purely reactive impedance at the wall is considered.

This reacting liner has the capability to reduce the speed of sound, and thus to enhance the

interaction between the acoustic propagation and the low Mach number flow (M ’ 0:3). At the
lower frequencies, there are typically four acoustic or hydrodynamic propagating modes, with three

of them propagating in the direction of the flow. Above a critical frequency, there are only two

propagating modes that all propagate in the direction of the flow. From the exact two-dimensional

formulation an approximate one-dimensional model is developed to study the scattering of acoustic

waves in a straight duct with varying wall impedance. This simple system, with a uniform flow and

with non-uniform liner impedance at the wall, permits to study the scattering between regions

with different wave characteristics. Several situations are characterized to show the importance

of negative energy waves, strong interactions between acoustic and hydrodynamic modes, or

asymmetric scattering.VC 2015 Acoustical Society of America.
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I. INTRODUCTION

Acoustic liners are widely used to reduce the sound

transmission in ducts with flow with applications in house-

hold appliances, ventilation systems in vehicles and build-

ings, IC-engines, power plants, and aircraft engines. The

mitigation due to these liners is based on two principles

that are generally mixed. The first action of the liners is to

dissipate acoustical energy by visco-thermal losses or by

exchange of energy between the acoustical field and flow,

like in the vicinity of a hole in a perforated plate with graz-

ing flow. The second type of action is the scattering of the

acoustical waves by the changes of acoustical impedance

occurring for instance at the entrance and exit of the liners.

This paper focuses on the second type of action called react-

ing effects and disregards the first type called dissipative

effects. To do this, a waveguide with an acoustically treated

wall is studied and the wall is considered as locally reacting

and without dissipation. When the liner consists of cavities

mounted flush to the wall (like small closed tubes in the

present case), those cavities act as springs in the low fre-

quencies limit. Then, the speed of sound is determined by

the square root of the ratio between the isentropic bulk mod-

ulus (which is a measure for the stiffness of the fluid) and

the mass density. The presence of small cavities decreases

the effective stiffness and, consequently, the speed of sound.

The propagative acoustical waves in such systems are called

“slow sound.” Recently, slow acoustic waves have attracted

attention for the potential to design new acoustic devices

such as metamaterials. They have been studied both in sonic

crystals1 and in one-dimensional (1D) systems.2,3 The origi-

nality of the present study is to introduce a mean flow with a

velocity of the same order as the effective speed of sound.

When the flow velocity is smaller than the speed of sound

the regime is called “subsonic” and “supersonic” on the

other case. In the subsonic regime, it will be shown that four

modes propagate at low frequencies (wavelength much

smaller than the transverse dimensions of the waveguide).

Two of these modes correspond to classical acoustical waves

in both directions. The two other modes do not exist without

flow and are thus called HydroDynamic (HD) modes in the

following. One of these HD modes has a group velocity and

a phase velocity in the opposite direction. The second HD

mode is a Negative Energy Wave (NEW). Globally, among

the four modes that propagate in the subsonic regime, three

of the modes propagate in the flow direction while one of the

acoustical modes propagates against the flow. In the super-

sonic regime, only two waves can propagate and they are in

the flow direction. The problem that we consider is close to

the response of fluid loaded finite plates with mean flow4–6

but it leads to a simpler analysis of interesting behaviors.

The plan of the paper is as follows. Section II of this

paper is devoted to the characterization of the modes propa-

gating in the low frequencies limit in a two-dimensional

(2D) duct. It will be shown that energy flux conservation can

be written in this case. Section III describes an approximate

1D model where the effects in the transverse direction of the

duct are taken into account by averaging. Albeit very simple,

this 1D model has the same richness of behavior as the 2D

model. In particular, as in the 2D model, energy flux conser-

vation is obtained and a NEW is present. In Sec. IV, the 1D

model is used to calculate the scattering proprieties of an

increase or decrease in the wall impedance. The transonic

cases (from supersonic to subsonic and vice versa) are of

particular interest because of the conversion of acoustical

waves into HD modes. A local transonic increase of thea)Electronic mail: yves.auregan@univ-lemans.fr
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compliance is also studied in Sec. V and shows an interest-

ing propriety of total transmission in flow direction and of

no transmission in the opposite direction corresponding to an

“acoustical diode.”

II. SOUND PROPAGATION IN A 2D DUCT WITH FLOW
AND COMPLIANT WALL

We consider the sound propagation in a 2D channel

with a uniform flow, see Fig. 1. The lower wall is rigid. The

upper wall is compliant and composed of small tubes of vari-

able lengths. All parameters are nondimensionalized in the

standard way to simplify the notation. Velocities are nondi-

mensionalized by the speed of sound c0, so that the uniform

mean velocity becomes the steady flow Mach number M.

Distances are nondimensionalized by the height of the chan-

nel H, time by H=c0, and pressure by q0c
2
0 where q0 is the

mean density. Neglecting all the dissipative effects, the

dimensionless equations governing the acoustic motion are

then

Dt p ¼ �$:v (1)

Dt v ¼ �$p; (2)

where p is the pressure, v is the velocity, and Dt ¼ @t þM@x
is the convective derivative. Next, the equations are written

in terms of the acoustic velocity potential (v ¼ $u).

Equation (2) leads to p ¼ �Dt u and Eq. (1) leads to the

classical convected wave equation:

D2
t u� $

2
u ¼ 0: (3)

On the rigid wall (y ¼ 0), the boundary condition is

@yu ¼ 0. On the compliant wall, we use the so-called

“Ingard-Myers Condition.”7 This condition states that the

pressure and the transverse displacement g (Dtg ¼ v ¼ @yu)
are continuous at the wall which leads to v ¼ DtðCðxÞpÞ
where CðxÞ is the compliance of the wall (ratio of transverse

displacement over the pressure). Hence the boundary condi-

tion at the wall y ¼ 1 is written:

@yu ¼ �DtðCðxÞDtuÞ: (4)

The compliance of the closed tubes of length bðxÞ at

y ¼ 1 is given by CðxÞ ¼ r tanðbðxÞxÞ=x where r is the

percentage of open area (POA, ratio between the surface of

the tubes and the total surface). In the very low frequencies

limit (xb � 1), the compliance is simply equal to the length

of the tubes bðxÞ multiplied by the POA. It means that in this

limit, the closed tubes act like springs of stiffness 1=rb. To
simplify the notation in the following r is supposed to be

equal to unity (it could be integrated very easily if it differs

significantly from unity) and the problem can be written

globally as

D2
t u� $

2
u ¼ 0

@yu ¼ 0 at y ¼ 0

@yu ¼ �DtðbðxÞDtuÞ at y ¼ 1:

8

>><

>>:

(5)

The impedance boundary condition with uniform flow is

questionable8 and more advanced models exist.9 The Ingard-

Myers condition has been used here for simplicity. In the

low frequencies limit, more complex models have been

tested without qualitative changes in the behavior.10

Furthermore, it could be noted that the low frequencies limit

used here leads to a “well posed” problem in the sense given

by Brambley.11

A. Dispersion equation in the 2D problem

For uniform compliance b, the solution is searched

under the form u ¼ A coshðayÞ expðið�xtþ kxÞÞ where

a
2 ¼ k2 � X

2 and X ¼ x�Mk. This leads to the dispersion

equation:

D x; kð Þ ¼ a tanh að Þ � tan bxð Þ
x

X
2 ¼ 0; (6)

which, in the very low frequency limit, becomes:

Dðx; kÞ ¼ a tanhðaÞ � bX2 ¼ 0: (7)

Without flow in the very low frequency limit, the disper-

sion equation (7) can be simplified to k2 ¼ ð1þ bÞx2. The

phase velocity

cb ¼
x

k
¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ; (8)

is always smaller than 1, meaning that cb is smaller than the

speed of sound in free space. Thus the acoustic wave propa-

gation can be significantly slowed down in a duct with a wall

which reacts locally like a spring. The phase velocity of this

slow sound can be decreased to become on the order of the

flow velocity in the duct. In this case, dramatic effects of a

flow with moderate Mach number (M ’ 0:3) are expected.
The dispersion curves are displayed in Fig. 2 and show

the effect of the flow. For x < xmax, Eq. (6) has four real solu-

tions corresponding to propagating modes. Two roots, labeled

S and A� in Fig. 2, approach each other when x ! xmax.

They coalesce for a frequency xmax above which they no lon-

ger exist as real roots, i.e., as propagating waves. It is shown in

Appendix A that when M > cb there are only two propagating

modes whatever the frequency (i.e., xmax ¼ 0).FIG. 1. (Color online) Geometry of the problem.
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In the subsonic regime, i.e., when M < cb and

x < xmax, two of the four modes have a vanishing wave-

number when x ! 0. These solutions are called acoustic

and, in the low frequencies limit, they propagate in both

directions with the speed of sound cb corrected by the

convective effects. The two other solutions do not exist

without flow and are called HD modes. The solution called S

in Fig. 2 has a negative phase velocity cU � x=k but a posi-

tive group velocity cg � dx=dk and thus propagates in the

flow direction. The last solution called N has both positive

phase and group velocities and propagates in the flow direc-

tion. It can be seen from Fig. 12 in Appendix A that X < 0

for this wave and it will be seen below that it corresponds to

a NEW. In the supersonic regime, i.e., when M > cb or

x > xmax, only the A
þ and N waves can propagate.

In summary, in the subsonic case four waves propagate.

Three of them propagate in the flow direction (Aþ; S; N) and

one propagates against the flow (A�). In the supersonic case,

only two waves (Aþ; N) can propagate and they are in the

flow direction. A NEW is always present. If M > 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
,

we are always in the supersonic case. If M < 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
, the

transition from subsonic to supersonic can be reached either by

increasing x at a given b or by increasing b at a given x. This

last possibility will be used in Secs. IV and V.

B. Energy flux conservation of slow sound waves
with flow

Thereafter the problem is studied in the frequency

domain (convention e�ixt) where @t � �ix and Dx ¼ �ix

þM@x. In order to find an “energy like” equation, Eq. (3) is

classically multiplied by �u (the complex conjugate of u) and

is integrated on the cross section to yield:

=m
ð1

0

�uð@2
xuþ @2

yu� D2
x
uÞ dy

 !

¼ =m @x

ð1

0

ð�u@xu�M�uDxuÞ dy
 !

þ ½�u@yu�10

 !

¼ @x =m
ð1

0

ð�u@xu�M�uDxuÞ dy�M�uðx; 1ÞbðxÞDxuðx; 1Þ
 ! !

¼ 0; (9)

where the relation

=mð�gDxðf ðxÞDxgÞÞ ¼ @xð=mðM�gf ðxÞDxgÞÞ ; (10)

valid for any function g and any real function f that had been

used. Thus the quantity

J ¼=m
 
ð1

0

�uð@xu�MDxuÞ dy

�M�uðx; 1ÞbðxÞDxuðx; 1Þ
!

(11)

is conserved along x. This expression is identical to the

expression of the energy flux proposed by M€ohring.12 This

energy flux can be computed for each mode m (normalized

by its value at y ¼ 1): um ¼ coshðamyÞeikmx=coshðamÞ
where am is one of the solutions of the dispersion equation,

a
2
m ¼ k2m � X

2
m and Xm ¼ x�Mkm:

Jm ¼ km þMXmð Þ sinh 2amð Þ þ 2am

4am cosh2 amð Þ
þMbXm

 !

:

The value of Jm is displayed in Fig. 3 for the four propa-

gating modes. The modes Aþ and S that propagate in the

flow direction have positive energy fluxes. The mode A�,
which propagates against the flow, has negative energy flux.

The mode N, which propagates in the flow direction, has a

negative energy flux. It means that this mode is a NEW.4

This last property will have important consequences in the

results presented afterwards.

III. 1D MODEL

A. 1D approximation

In order to simplify the analysis of the problem, we are

looking for a 1D model13 that conserves the main proprieties

of the 2D problem: The dispersion relation has to give the

same number of propagating modes as the 2D model and a

conserved energy flux has to be defined. For that, we integrate

the 2D equation (3) along y and we get the exact expression:

D2
t

ð1

0

u dy

 !

� @2
x

ð1

0

u dy

 !

� @yuðx; 1Þ ¼ 0; (12)

FIG. 2. (Color online) Propagative wave numbers k as a function of the fre-

quency x for b ¼ 4 and M ¼ 0:3. The two embedded boxes give the direc-

tion of the wave propagation.
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which is associated to the boundary conditions in Eq. (5). A

simplification can be achieved if we now assume that the y

derivative of u at the compliant wall can be written:

@yuðx; 1Þ ¼ a1VðxÞ þ a2FðxÞ; (13)

where a1 and a2 are two real constants and where V and F

are defined as the two functions appearing in Eq. (12) and in

the boundary condition at y ¼ 1 in Eq. (5):

VðxÞ ¼ uðx; 1Þ and FðxÞ ¼
ð1

0

u dy:

This leads to the system of two coupled ODEs

D2
t F� @2

xF ¼ a1V þ a2F (14)

DtðbDtVÞ ¼ �ða1V þ a2FÞ: (15)

(

The real constants a1 and a2 can be chosen freely. For

instance, for a parabolic approximation such as u ¼ C1

þC2y
2, the constants are a1 ¼ �a2 ¼ 3.

B. Dispersion relation

When b is constant, looking for a solution under the

form expðið�xtþ kxÞÞ leads to the dispersion equation

expressed as a function of the frequency in the moving frame

X ¼ x�Mk:

ðX2 � k2 þ a2Þ ðbX2 � a1Þ þ a1a2 ¼ 0: (16)

The solutions in term of x versus k are plotted in Fig. 4

and compared to the results of the 2D model. The agreement

between the two models is good when the coefficient

a1 ¼ �a2 is chosen in such a way that the value of k when

x ! 0 of the modes N and S are closed in the 1D and 2D

models. When a1 ¼ �a2, the wavenumbers for x ! 0 are:

kA6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
x

16M
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p and

kN; S ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 1�M2 1þ bð Þð Þ
bM2 1�M2ð Þ

s

: (17)

C. Evolution equations

A set of first order evolution equations can be derived

from Eqs. (14) and (15) by introducing G and W with G �
ðxþ ið1�MÞ@xÞF and ðxþ iM@xÞW � �ða1V þ a2FÞ. In
vectorial notation, the evolution equation is:

�i@xX ¼ QX where X ¼
F

G

V

W

0

B
B
@

1

C
C
A

(18)

and

Q¼
�x=ð1�MÞ 1=ð1�MÞ 0 0

a2=ð1þMÞ x=ð1þMÞ a1=ð1þMÞ 0

0 0 x=M 1=ðMbÞ
a2=M 0 a1=M x=M

2

6
6
4

3

7
7
5
:

The eigenvalues of the matrix Q are the four km solu-

tions of the dispersion Eq. (16) and the eigenvectors Xm give

a relation for each mode between the mean value of the ve-

locity potential over the section Fm and its value at the wall

Vm. Note that, at low frequencies, the Aþ and A� modes are

quasi plane while S and N are more localized along the com-

pliant wall.

D. Energy flux conservation in the 1D model

To obtain an energy flux conservation, we multiply Eq.

(14) by �F and Eq. (15) by �V and we make use of the relation

(10):

@xð=mð �F@xF�M �FDxFÞÞ ¼ �a1=mð �FVÞ ; (19)

@xð=mðMb �VDxVÞÞ ¼ �a2=mð �VFÞ : (20)

Thus the quantity

I ¼ =m �F @xF�MDxFð Þ þ a1

a2
Mb �VDxV

� �

(21)

FIG. 3. (Color online) Energy flux J as a function of the frequency x for

b ¼ 4 andM ¼ 0:3.
FIG. 4. (Color online) Propagative wave numbers k as a function of the fre-

quency x for a1 ¼ �a2 ¼ 4, b ¼ 4, and M ¼ 0:3. The solid lines represent

the solutions of the 1D model while the dashed lines represent the solution

of the 2D model (see Fig. 2).
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is conserved along x. It can be noticed that if a1 ¼ �a2, the

1D energy flux conservation (21) becomes very similar to

the exact energy flux conservation in 2D, see Eq. (11). In

this case, the energy flux of any mode (m ¼ Aþ; A�; S; N)

is given by:

Im ¼ ðkmð1�M2Þ þMxÞjFmj2 þMbðx� kmMÞjVmj2:
(22)

As in the 2D case, the modes Aþ and S have positive energy

fluxes while the modes A� and N have negative energy flux.

The mode N, propagating to the right, is thus a NEW, as in

the 2D model.

The 1D model reproduces correctly all the main physi-

cal ingredients (dispersion and energy flux conservation)

that are present in the 2D model. This model will be used, in

Sec. IV, to study the scattering induced by a change in the

wall compliance.

IV. SCATTERING BYA CHANGE IN THE WALL

COMPLIANCE

We consider the problem defined in Fig. 5: The compli-

ance of the wall is changing around x ¼ 0 from the value b1
(x < 0) to a value b2 (x > 0), the flow being in the positive x

direction. The four cases indicated in Fig. 5 will be

considered.

A. Subsonic case (case 1)

In case 1, the problem is subsonic everywhere.

Upstream, at left, there are three incoming and one outgoing

waves. Downstream, at right, there are one incoming and

three outgoing waves. The upstream and downstream propa-

gative field can be described by:

XjðxÞ ¼ aþj X̂
Aþ

j eik
Aþ
j x þ njX̂

N

j e
ikN

j
x

þ sjX̂
S

j e
ikS

j
x þ a�j X̂

A�

j eik
A�
j x; (23)

where j ¼ 1 or 2 labels the region, the hat indicates that the

modes have been normalized such that their energy flux is 1

for the modes Aþ and S and �1 for the modes A� and N

(X̂
m ¼ X

m=
ffiffiffiffiffiffiffi

jImj
p

).

The effect of the compliance variation is described by

the scattering matrix linking the four outgoing waves B to

the four incoming waves A:

B ¼ SA whereB ¼

aþ2
n2

s2

a�1

0

B
B
B
B
@

1

C
C
C
C
A

andA ¼

aþ1
n1

s1

a�2

0

B
B
B
B
@

1

C
C
C
C
A

; (24)

where the coefficients of S are classically given by Smn with

n the incident mode and m the outgoing mode.

The classical unitary relation14 for a conservative sys-

tem is replaced in our case (see Appendix B) by

�S
T
JS ¼ J; (25)

where J ¼ diagð1;�1; 1; 1Þ and the superscript T denotes

the transpose operation.

Even if the scattering matrix can be easily computed for

a continuous variation of bðxÞ by numerical integration,

for the sake of simplicity only the results for discontinuous

variation of b at x ¼ 0 will be presented. It can be seen from

Eq. (18) that the functions F, G, V, and W are continuous

when b is discontinuous while the slope of V is discontinuous

at x ¼ 0. The continuity of X at x ¼ 0 can be written in vecto-

rial form, separating the incoming and the outgoing waves:

FIG. 5. (Color online) Scattering prob-

lems by a change in the wall compli-

ance. The propagative waves are given

for the four cases considered. Case 1:

subsonic everywhere (the scattering

matrix S is 4� 4). Case 2: transcritical

variation of the compliance from su-

personic to subsonic (S is 3� 3). Case

2: transcritical variation of the compli-

ance from subsonic to supersonic (S is

3� 3). Case 4: supersonic everywhere

(S is 2� 2).
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½XAþ

2 ; X̂
N

2 ; X̂
S

2;�X̂
A�

1 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VO

aþ2
n2

s2

a�1

0

B
B
B
B
@

1

C
C
C
C
A

¼ ½X̂Aþ

1 ; X̂
N

1 ; X̂
S

1;�X̂
A�

2 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VI

aþ1
n1

s1

a�2

0

B
B
B
B
@

1

C
C
C
C
A

: (26)

The scattering matrix is then computed by:

S ¼ V
�1
O VI: (27)

As an example of the scattering matrix elements, the value

of the outgoing waves when the wave Aþ
1 is incident is plot-

ted in Fig. 6.

It can be seen that the wave Aþ
1 is mainly transmitted on

Aþ
2 and some acoustical reflection on A�

1 occurs. The acous-

tical transmission and reflection are nearly constant up to the

value xmax ¼ 0:1228 where the propagation becomes sonic

in the tube with the larger b. We can define the acoustical

transmission coefficients by Tþ
A ¼ Saþ

2
aþ
1
and the acoustical

reflection coefficients by Rþ
A ¼ Sa�

1
aþ
1
. It can be seen from

Fig. 6 that an energy-like conservation for the acoustical

waves can be written: jTþ
A j

2 þ jRþ
A j

2
is close and always

smaller than 1. There is some conversion from the acoustical

modes to the HD modes N and S. This conversion increases

linearly from 0 at x ¼ 0 but those modes are such that their

energies are opposite to fulfill the exact energy conservation,

from Eq. (21):

jTþ
A j

2 þ jRþ
A j

2 þ jSs2aþ1 j
2 � jSn2aþ1 j

2 ¼ 1:

When HD mode N1 or S1 are incident (not displayed), they

are mainly transmitted on the same mode N2 resp. S2 and

some extra transmission occurs on S2 resp. N2. The conver-

sion to acoustical modes is small.

The overall picture of the subsonic case is that both

the acoustical modes and the HD modes are rather inde-

pendent. Some small conversions exist between those two

families of modes. When the problem is near transonic, the

coupling between the different kinds of modes becomes

larger.

B. Transonic case (case 2)

In the transonic case 2, on the upstream side M >
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1

p
and the propagation is supersonic whatever x. In

this case, the modes S1 and A�
1 are no longer propagative but

they are transformed into two evanescent modes that are

complex conjugate: Eþ and E�. The Eþ mode is defined such

as it decreases when x increases (=mðkEþÞ > 0). In this tran-

sonic case, two incoming waves are present upstream and

one incoming and three outgoing waves are present down-

stream. Therefore the scattering matrix S is now a 3 � 3 ma-

trix. To apply the continuity of X at x ¼ 0, it is necessary to

take into account the evanescent mode that decays in the �x

direction (E�). The output matrix VO is transformed into

VO ¼ ½XAþ

2 ; X̂
N

2 ; X̂
S

2;�X̂
E�

1 � while the input matrix VI is

reduced to VI ¼ ½XAþ

1 ; X̂
N

1 ;�X̂
A�

2 �. The scattering matrix is

obtained from V
�1
O VI by removing the last line linked to the

evanescent mode. The coefficients of the scattering matrix

are now complex numbers and the absolute values of three of

these coefficients (when A�
2 is incident) are shown in Fig. 7.

The first striking point in Fig. 7 is the divergence of two

of the curves at x ! 0. When x ! 0, the energy flux, see

Eq. (22), for all the acoustical modes go linearly to 0 while

the energy of HD modes (with a non-zero value of k at

x ¼ 0) do not go to zero in the subsonic region. In the super-

sonic region, the energy of the N mode goes to 0 when

x ! 0. To ensure continuity in X, the amplitude of some of

the mode coefficients has to go to infinity (like x�1=2) while

the amplitudes of the eigenvectors go to 0 due to the

normalization.

When an acoustical wave is incident from the upstream

side, its transmission is close to 1 (not displayed).

Nevertheless, two HD modes with opposite energy flux are

FIG. 6. (Color online) Value of the outgoing waves when the wave Aþ
1 is

incident (aþ1 ¼ 1) for M ¼ 0:3, b1 ¼ 4, b2 ¼ 1, and a1 ¼ �a2 ¼ 4. The four

curves represent the four outgoing waves: —: Aþ
2 , þþþ: N2, ooo: S2, and �

� �: A�
1 . The thin dashed line represents the value of jTþ

A j
2 þ jRþ

A j
2
. The

embedded figure is a zoom around 1.

FIG. 7. (Color online) Absolute value of the outgoing waves when the wave

A�
2 is incident (a�2 ¼ 1) for M ¼ 0:3, b1 ¼ 12, b2 ¼ 4, and a1 ¼ �a2 ¼ 4.

The three curves are linked to the three outgoing waves: —: Aþ
2 , þþþ: N2,

and ooo: S2.
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created. When the mode N is incident upstream, this wave is

mainly transmitted with amplitude larger than 1 due to the

negative energy characteristic of the wave. The S wave is also

created but the conversion into the acoustical wave is weak.

Interestingly, when an acoustical wave is sent downstream

A�
2 , see Fig. 7, it is mainly converted into S and N waves and

the reflection on the acoustical wave Aþ
2 is weak (the absolute

value of the acoustical reflection coefficient is on the order of

0.15). Thus, most of the incident acoustical energy had been

transferred to the HD modes. This fact is also illustrated in

Fig. 8 where a temporal simulation of Eq. (14) is given. It can

be also remarked in this figure that the group velocity of the 2

HD modes are close (they are equal when x ! 0) and much

smaller than the group velocity of Aþ
1 (resp. 0.170, 0.185, and

0.747 in the present case).

The region x < 0 is a region which cannot be excited

from the outside, although waves can escape from it. In

particular, NEW can escape from this region. In this sense, it

can be seen as an acoustical analogous of a white hole in

general relativity.15

C. Transonic case (case 3)

The transonic case 3 can be treated with a method simi-

lar to case 2 except that the evanescent wave that had to be

taken into account is Eþ
2 . The output matrix VO is trans-

formed into VO ¼ ½XAþ
2 ; X̂

N

2 ; X̂
Eþ

2 ;�X̂
A�

1 � while the input

matrix VI is reduced to VI ¼ ½XAþ

1 ; X̂
N

1 ;�X̂
S

1�. The scattering
matrix is obtained from V

�1
O VI by removing the third line

linked to the evanescent mode.

When an acoustical mode is incident upstream, see

Fig. 9, its transmission is again close to 1 with a small

acoustical reflection. As a N wave is created, the acoustical

energy increases and jTþ
A j

2 þ jRþ
A j

2
is close and always

greater than 1. When an HD mode N or S is incident (not

displayed), it creates a transmitted N mode and a large part

is reflected as an acoustical mode. Only a small part is

transmitted as an acoustical mode.

The region x > 0 is a region from which no wave can

escape. This can be seen as a dumb hole, i.e., an acoustic

analogue of a black hole.16 The presence in this new ana-

logue system of effective horizons opens up new possibilities

to explore the black hole evaporation with experiments.17

D. Supersonic case (case 4)

When the problem is supersonic everywhere two incom-

ing waves are present upstream and two outgoing waves are

present downstream (Fig. 5). Then there is no reflection and

the scattering matrix is reduced to a 2� 2 matrix that can be

computed in the same way as previously, taking into account

an evanescent mode on both sides of the discontinuity. The

waves are mainly transmitted. Due to the characteristic of

the NEW, the transmission of the waves is always larger

than 1.

V. SCATTERING BYA LOCAL INCREASE IN THE WALL
COMPLIANCE

A local increase in the wall compliance is depicted in

Fig. 10. This configuration is computed as previously: the

continuity of X is applied at x ¼ 0 and at x ¼ L, the propaga-

tion of the two modes Aþ
2 and N2 is taken into account

between x ¼ 0 and x ¼ L and two decreasing evanescent

modes are present on each side of the compliance bump (Eþ
2

FIG. 8. (Color online) Temporal simulation of the variable F in case 2. The

different colors represent the absolute value of F in logarithmic scale for

M ¼ 0:3, b1 ¼ 12, b2 ¼ 4, and a1 ¼ �a2 ¼ 4. A A�
2 pulse is sent at t ¼ 0

with a central frequency xs ¼ 0:015. The slope of the black dashed lines is

determined by calculating the group velocity of each mode.

FIG. 9. (Color online) Absolute value of the outgoing waves when the wave

Aþ
1 is incident (aþ1 ¼ 1) for M ¼ 0:3, b1 ¼ 4, b2 ¼ 12, and a1 ¼ �a2 ¼ 4.

The three curves are linked to the three outgoing waves. —: Aþ
2 , þþþ: N2,

and � � �: A�
1 . The thin dashed line represents the value of jTþ

A j
2 þ jRþ

A j
2
.

The embedded figure is a zoom around 1.

FIG. 10. (Color online) Local increase in the wall compliance.
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and E�
2 ). There are eight unknowns C ¼ ½aþ3 ; n3; s3; a�1 ;

aþ2 ; n2; e
þ
2 ; e

�
2 ; �

T
and four input values: A ¼ ½aþ1 ; n1;

s1a
�
3 �

T
. From the eight continuity relations, a vectorial rela-

tion can be written as MCC ¼ MAA. The global 4� 4 S-ma-

trix is composed of the first four lines of the matrix

MC
�1MA. The absolute values of coefficients Tþ

A ¼ Saþ
3
aþ
1
,

Rþ
A ¼ Sa�

1
aþ
1
, T�

A ¼ Sa�
1
a�
3
, and R�

A ¼ Saþ
3
a�
3
are displayed in

Fig. 11.

The acoustic transmission in the flow direction Tþ
A is

close to 1 while acoustic transmission against the flow T�
A is

close to 0 because no wave can propagate against the flow.

In this low frequency range, some acoustic is transmitted by

the evanescent modes (tunneling effect). This system has

been completely asymmetrized by the flow and acts as an

“acoustical diode” for a large range of frequencies.

VI. CONCLUDING REMARKS

We have shown that the propagation of slow sound with

flow at moderate Mach number has interesting and

new properties. With such a system, it is possible to have

subsonic and supersonic propagation and to make transition

(soft or abrupt) from one regime to the other. The scattering

properties of those transitions are very similar to what hap-

pens to light near a white or a black hole.18 This analogy is

useful in two ways. For instance, an acoustical analogue of a

“black hole laser”19 can be studied as an inverse of the work

done in Sec. IV (Supersonic ! Subsonic ! Supersonic). On

the other hand, this new acoustical analogy opens opportuni-

ties to do simple experiments on these subjects.
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APPENDIX A: DISPERSION RELATION IN X VS k

The dispersion curves are displayed in Fig. 12 in terms

of X vs k. The thick continuous curves (X-curves) represent

Eq. (6):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � X
2

p
tanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � X
2

p
Þ � tanðbxÞX2=x ¼ 0. At

low frequencies, this curve depends only on b. The straight

line represents X ¼ x� kM and the solutions are found at

the intersection of the X-curves and of the straight line. In

the displayed case, Eq. (6) has four real solutions. When x

increases at fixed M (parallel translation of the straight line

toward larger X), two roots, labeled S and A� in Fig. 12,

become closer and closer. They coalesce for the frequency

xmax. The same phenomenon occurs when M increases at

fixed x (rotation of the straight line toward larger negative

slopes).

It can be also seen in Fig. 12 that if the slope of the

straight line (given by M) is larger than the slope of the dis-

persion relation at the origin [dX=dk ¼ cb where cb is the

slow sound velocity given by Eq. (8)], represented by dashed

lines in the figure, only two solutions can exist whatever x.

In the 1D model, the slope at the origin is equal to

61=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2b=a1
p

. In order to have the same slope at the ori-

gin in the 1D and 2D models, we must have a2 ¼ �a1.

The X vs k representation is also interesting because it

allows the determination of the group velocity in the moving

frame linked to the flow cMg ¼ dX=dk. In our case, three sol-

utions have a negative cMg (A�; S; N) and one has a positive

cMg (Aþ). Depending on the sign of the curvature of the

X-curve, the group velocity at high k can be larger or smaller

than the group velocity at low k. These cases are usually

referred to in the literature as “superluminal” and

“subluminal” dispersion relations.15 The slow sound analogy

has a subluminal dispersion relation.

APPENDIX B: MODIFIED UNITARY RELATION

When the wave is taken under the form of Eq. (23), the

energy flux conservation [Eq. (21)] between regions 1 and 2

can be written:

jaþ1 j
2 � jn1j2j þ js1j2j � jaþ1 j

2

¼ jaþ2 j
2 � jn2j2j þ js2j2j � jaþ2 j

2: (B1)

FIG. 11. (Color online) Absolute value of acoustical transmission and reflec-

tion coefficients in the flow direction Tþ
A and Rþ

A and against the flow T�
A

and R�
A forM ¼ 0:3, b1 ¼ 12, b2 ¼ 4, a1 ¼ �a2 ¼ 4, and L ¼ 5.

FIG. 12. (Color online) Solutions of the dispersion equation [Eq. (6)]

in terms of X versus k for b ¼ 4. The solution in terms of x vs k can be

found at the intersections between these X-curves and the straight line

X ¼ x� kM with x ¼ 0:05 and M ¼ 0:3. The thin dashed lines represent

the slope at the origin and the thick dashed lines is the X-curve of the 1D

model [Eq. (16) with a2 ¼ �a1 ¼ 4].
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Splitting the incoming and the outgoing modes leads to:

jaþ1 j
2 � jn1j2j þ js1j2j þ jaþ2 j

2

¼ jaþ2 j
2 � jn2j2j þ js2j2j þ jaþ1 j

2 ; (B2)

which can be written:

�A
T
JA ¼ �B

T
JB; (B3)

where the vectors A and B are given in Eq. (24) and

J ¼ diagð1;�1; 1; 1Þ. Using the definition of the scattering

matrix, it can be written:

�A
T
JA ¼ �A

T �S
T
JSA: (B4)

This relation, valid whatever A, leads to Eq. (25).
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