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Abstract. The hydrodynamic resistance of a buckled microvessel in the form of a tightly

would helix is approximated by studing the Stokes flow inside a torus. The unidirectional

flow is driven by a constant tangential pressure gradient. The solution is obtained by an

eigenfunction expansion in toroidal coordinates. The ratio of volume flow carried by the

torus to that carried by a straight tube is computed as a function of the vessel radius: coil

radius ratio. An asymptotic expansion for this flux ratio is also obtained. The results show

that the resistance of a moderately curved vessel is slightly less than the resistance of a

straight one, whereas the resistance of a greatly curved vessel is at most 3% greater than

the straight one.

1. Introduction. Blood vessels of all sizes often follow a tortuous path. It is of

physiological importance to determine to what extent this tortuosity influences the

resistance of a vascular bed, particularly in the microcirculation where the Reynolds

number is negligible. Buckling is often the cause of the varicosity. Capillaries that supply

cardiac and skeletal muscle run parallel to and are periodically attached to the muscle

fibers. When the muscle fibers shorten the capillaries buckle (1). Blood vessel growth can

be another cause of buckling (2). Two common forms of the buckled shape are the helical

mode and the sinusoidal mode. If the helix is tightly would such that adjacent coils are

close to each other (small pitch angle), then flow in a single coil should be closely

approximated by flow inside a torus. The flow is assumed to be driven by a constant

tangential pressure gradient. As the flow circulates once around the torus, the pressure is

less than the driving pressure, and the fluid can be thought of as being in the next coil of

the helix. Stokes flow external to a torus has been previously considered (3) using toroidal

coordinates, but not the internal Stokes flow considered here.
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2. Problem formulation and solution. We first consider an incompressible flow field

described by the velocity components (uR, ug, uz) and pressurep(R, 6, Z), with (R, 6, Z)

cylindrical coordinates. We further assume the properties

w« = Mz = °; ue ~ ue(R> Z),

dp dp dp (1)
0* = 9Z ; 00 = glVen constant.

This unidirectional, fully developed flow field identically satisfies the continuity equation,

and the R and Z momentum equations in Stokes flow. This leaves only the ^-momentum

equation to be satisfied.

2 1 1 dp
V'U° R2"" pRM' ^

We now introduce toroidal coordinates (£, 6, -q). A family of toroidal surfaces is

described by constant values of |. The tube radius is b csch £0 and the coil radius

(measured from the axis of revolution to the tube center) is b coth £0, where b is a scaling

constant. It is convenient to scale all lengths relative to the tube radius; hence we set

b = sinh £0. The ratio of coil radius to tube radius is = cosh £0, which is the primary

geometric parameter. The metrical coefficients are

1 / l > x , 1 1 (cosh | - cost?) ^
hx = h2 = -(cosh { - cos „); *3 = J = ~b —hj  (3)

Eq. (2) can then simply be written in toroidal coordinates

, , / 9 I 1 9 \ 9 I 1 9 \\ , 1 dP lA\
1 2\3£U3 ai) + 3t}U3 aTj]/"s 3U° n de

A standard device (Hobson [4, p. 434]), useful in obtaining separable forms, is to write

«„(£, tj) = (cosh £ - cost?) 1/21/(£, rj) (5)

Then after some reduction Eq. (4) takes the form

Uu + (coth £)U( + Ur]rt+[\ - —7771U
sinh £

(cosh {-cos (6)

The velocity must be periodic in rj, and by symmetry it must be an even function of tj. We

therefore look for solutions having the form

Um(£>V) = VmU)cosrrnt, m = 0,1,2.... (7)

For the homogeneous problem we obtain

(8)

where f = cosh£. The solutions are the ring functions P^_1/2(f) and Qlm_ 1/2(f)> which

are the associated Legendre functions of order one and of degree half an odd integer. The
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latter function is regular at infinity, which lies inside the torus (Hobson, p. 436). The

homogeneous solution can be written
00

V) = (? - cosrj)1/2 £ AmQl_1/2(£)cos mi) (9)
m = 0

with the A m being constants to be determined. We use a similar form for the particular

solution
00

= (£ - cost;)172 £ Gm(£) cos mij. (10)
m = 0

The no-slip condition u0(£o> tj) = 0 can then be easily satisfied by choosing

A ^m V^o) r\i /1 i \ 77T' w = 0'1'---- (n)
Vim- 1/2V»0/

As it will turn the Gm satisfy an inhomogeneous Lagendre equation. We first note that the

factor (f — cos t})~1/2 can be developed in a cosine series (Hobson, p. 443)

(? - cos t))"1/2 = ^-£L1/2(0 + 1/2(0cos mrj (12)
m = 1

A cosine series expansion of the factor (f - cos t?) 3/2 appearing on the right hand side of

Eq. (6) can then be obtained by differentiation of Eq. (12) with respect to f. Equating

coefficients of cos mi) then gives the inhomogeneous equation

(13)

with

= 2 dp

0 7th dd

"-1-2  <i4>

where we have also used the relation

Ql->Mn - (F -■ (15)

The particular solution of Eq. (13) can easily be found by trying

GM) = fM)Qln-1/2(0 (16)
and noting that Q1m_ 1/2(0 is an homogeneous solution. We then obtain a first order

equation for the derivative gm = dfm/dl'

|rgm + Hm($)gm = Dm{S2 - l)"2 (17)

where

■ml-, ms)/<k 2f
-(f)" A-W<r) <18)
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The integrating factor for Eq. (17) is

exp(/#»,(£) = (f2 - l)[Ql-i/2^)Y

from which we obtain the first integral

-1 - D.ytlg-r'1°'1'"°- <19>
"o oc (7 — 1

It can be verified a posteriori that the left hand side approaches zero for large f using the

large argument asymptotic behavior of the ring function. The necessary relations are given

in Section 3. The final expression for the velocity field can be written as

v) = (f - COS7))1/2 £ 0L-l/2(f){/m(f) -/m(?o)} COS W1J, (20)
m = 0

where fm must be determined by quadrature of Eq. (19).

3. Calculation of flux ratio. The flux ratio is defined here as the ratio of the volume flow

rate carried by the toroidal tube to that of a straight tube having a length equal to 277

times the coil radius, with the same pressure gradient applied in both cases. The flux ratio

is then the relative hydrodynamic conductance, or the inverse of the relative hydrody-

namic resistance. The flux Q carried by the toroidal tube is the integral of ue over the cross

section whose differential area element is

sinh2 £0

(cosh £ — cos t])~
d£ clrj.

The integration over the angular variable 17 can be done with the use of the integral

representation

Ql-IAU) - -2>"«' - COS',*. (21)
0 ($ — cos n )

We note that the volume flux carried by the straight tube is given by Poiseuille's relation

O = - 77 — (22)
Wo 90 1 J

where ju is the viscosity of the fluid. Then the flux ratio Q = Q/Qs can be written as the

summation of integrals

e(?0) = -1)3/2 £ <riQl-iMO]2
77 m = 0 fo

x{/„,(fo)-/m(n}7^7 (23)

where

fm fm/^m »

, = (1, m = 0 (24)
" \2, m = 1,2,3 
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It is of interest to compute the first few terms of the asymptotic expansion of Q for large

f0. The ring functions have the series representation (5)

eL-1/2(cosh |) = rn tm|g~(m+1/2)'(l - e"2*)
' 1(1 + m)

■F{\, § + m< 1 + e~2(), (25)

m = 0,l,2,...,0<£< oo,

where T is the gamma function and F is the Gaussian hypergeometric function given in

terms of the hypergeometric series.

r( , x r(c) ^ r(a + n)T{b + n) z"
F(a, b,; c; z) = h  ^ ~7 ■ (26)

r(a)r(6) r(c + n) n\

We also need to invert the relationship f = cosh £ to obtain

{-iog2f-jr2-^r4-^r'+.... (27)

Then Eqs. (25)-(27) yield the large f approximations

n1 (y\ —   1 /] _(_ _Z_f-2 _|_ 331 y-4 _)_ ilLL>--6 +
7 2y/2f \ 16f 1024 16384

Ql/itt) = {*" 1 + 32^ 3 + 1024^ 5 + ""J' (28)

QlMn = + jfr4 + gr6 +

From Eqs. (19) and (25) we can approximate the fm for large argument

f _ JL/i + lZf-2 + 273 ,-4
/o 4f2 \ 32 768

? 1 (, 61 „_3 365 U_A "1

~ ifM + 96 " + 12288 + - }' (29)

/!°TJF+ -■

Then with Eqs. (23), (28), and (29) we can obtain the first few terms of the asymptotic

expansion of the flux ratio

48io 1024;

The leading term shows that the Poiseulle limit is recovered as -» oo. The sign of the

second term is quite unexpected given it implies a slightly curved tube has a smaller

resistance than a straight one.1 When the same problem is considered in two dimensions,

i.e. an annulus, the flux ration is given in terms of elementary functions (6).

Q(£ o) = 1+7^o2-T7^o4+ •••• (30)

'Professor Van Dyke found a discrepancy in the coefficient of the fj4 term in Eq. (30) in an earlier version of

the paper. The present value now agrees with his own independent calculations as well as the zero Dean number

limit in (7).
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Qan(So) 4^0 l^oj1 ^.2 | l«g j j _ j ̂ j • (31)

Expanding for large f0 gives

QaMo) = 1 - ^2 - ^o4 - ••• (32)

and it is seen that small curvature of a two dimensional channel increases the relative

resistance. In the most extreme case of curvature where f0 -» 1, it is seen from Eq. (31)

that Qan —> 3/4. We have been unable to analytically determine the behavior of Q near

f0 = 1 for the torus, and so a complete numerical evaluation of Eq. (20) was undertaken.

The results of this computation are given in Table I and also graphically in Fig. 1. It is

remarkable how little the flux ratio deviates from unity over the entire range 0 < f0-1 < 1.

The maximal increase in flux is about 1/2%, while the maximal decrease is about 3%.

Table /. Flux Ratio in a Toroidal Tube as a Function of Tube Radius/Coil Radius.

fo1 Q fo1 Q
0.000 1.00000 0.550 1.00477

0.050 1.00005 0.600 1.00519

0.100 1.00021 0.650 1.00540

0.150 1.00046 0.700 1.00527

0.200 1.00081 0.750 1.00461

0.250 1.00125 0.800 1.00313

0.300 1.00176 0.850 1.00038

0.350 1.00234 0.900 0.99555

0.400 1.00296 0.950 0.98697

0.450 1.00360 0.990 0.97452

0.500 1.00421 0.998 0.97079

1.01 r

Q
0.99

0.98

0.97

0. 0.2 0.4 0.6 0.8 1.0

<o~1
Fig. 1.
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4. Concluding Remarks. The present calculations indicate that the hydrodynamic

resistance of the tightly coiled helix form of a buckled microvessel is not significantly

different than an straight vessel for all values of the tube radius: coil radius ratio.

However, one might expect different results for other buckled forms not considered here,

e.g. the sinusoid. The flow is fully three dimensional even at negligible Reynolds numbers

when the curvature is not constant along the primary flow direction, in contrast to the

unidirectional flow for the present configuration.
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