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Slow viscous flow past a rotating sphere
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Introduction. Keller and Rubinow(l) have considered the force on a spinning sphere
which is moving through an incompressible viscous fluid by employing the method of
matched asymptotic expansions to describe the asymmetric flow. Childress(2) has
investigated the motion of a sphere moving through a rotating fluid and calculated a
correction to the drag coefficient. Brenner (3) has also obtained some general results
for the drag and couple on an obstacle which is moving through the fluid. The present
paper is concerned with a similar problem, namely the axially symmetric flow past
a rotating sphere due to a uniform stream of infinity. It is shown that leading terms for
the flow consist of a linear superposition of a primary Stokes flow past a non-rotating
sphere together with an antisymmetric secondary flow in the azimuthal plane induced
by the spinning sphere. For a3n2 > 6Uv, where n is the angular velocity of the sphere,
U the speed of the uniform stream, and a the radius of the sphere, there is in the
azimuthal plane a region of reversed flow attached to the rear portion of the sphere.
The structure of the vortex is described and is shown to be confined to the rear portion
of the sphere. A similar phenomenon occurs for a sphere rotating about an axis oblique
to the direction of the uniform stream but the analysis will be given in a separate
paper.

Equations of motion. The fluid motion to be considered is the steady flow due to
a uniform stream of velocity— Ufc at infinity past a sphere of radius a rotating with
angular velocity n%. Let (z, m, <f>) be cylindrical polar coordinates with origin at the
centre of the sphere and $ be the unit vector directed perpendicular to the azimuthal
plane <f> = constant and in the sense of <j> increasing. Then an axially symmetric fluid
motion may be defined by i I \

{^) ^ (1)
ijr is the stream function, vjw is the swirl component of velocity and q is the fluid
velocity. The scaled equations satisfied by ifr and v are

no OO "I O

where the Stokes operator D2 = ^-r + -r—^ -r—
8z2 dw2 mdm

and the parameters R and Rt are defined by R = Uajv and R1 = ahijv.
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The boundary conditions to be satisfied by rjr and v are given by

^• = - ^ - = 0 , r = l , i/r

V
V = in2, r = 1, >0 as

where z = r cos<r, w = rsintr define spherical polar coordinates. Due to the coupled
non-linearity of (2) the solution of (2) subject to (3) will only be discussed for small
values of R and Rx. In this case there is a formal solution of the scaled equations (2)
given by m °o m »

f= S Zx$^Rp, V= S SFJi^JBP, (4)
p = 0g=0 j)=0g=0

P2
where ̂  is denned by Xl = fl + ̂ f f l - i - (5)
The expansion (4) will not be uniformly valid at infinity but for the present choice
of parameters will be sufficiently accurate to discuss the flow in a vicinity of the sphere.
In particular, the effort of the rotation of the sphere will be dominant in a neighbour-
hood of the sphere and the case of most interest in the present paper is for choices of the
parameter R and Rx such that R\IR > 6. For example, if R\ = O(l0~n), R = 0(10-'"),
TO > n so that R\R~X = O(l0m~n), m, n being positive integers, but in order that
convection termslike

are uniformly small near the sphere, it is necessary that RfR-1 <̂  1 which is satisfied
in a numerical sense if m = n+ 1 and n ^ 3, say. The first few terms in the expansions
are given by / 1

^ 8 [ & 2 i ] ( l P % /? = coscr,

The procedure is straightforward and higher-order terms may be constructed in a
similar manner.

However, for R^R-1 = O(10) it is not necessary to consider any higher-order terms
as the dominant effects in the neighbourhood of the boundary are represented by

It is noted at this point that, if the more refined method of matched asymptotic expan-
sions were employed to determine v and rjr, higher-order terms would be introduced
into the Stokes expansion but the leading terms would still be represented by Xo-
Now the stream function for the leading terms may be written in the form

, (8)
rcoscr0j
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where R\j%R = a/6 = sec cr0. I t follows that the sphere and z-axis are streamlines and
also the curve G defined by

2r + i+ i£2!£ = o. (9)
rcos<r0

This curve C encloses a vortex or a region of reversed flow (in the azimuthal plane)
exterior to the rear portion of the sphere and meets the sphere at the point P( 1, n - a0),
0 < 0"o < 2n a n d t n e axis at the point

J, cr = 7r. (10)

Fig. 1. (a) Secondary flow streamlines in the azimuthal plane.
(b) Primary Stokes flow streamlines.

The fluid velocity along the axis is positive for 1 < r < 1(1 + 4a)* - \, cr = n, and this
latter end-point is a stagnation point for the flow. There is also a stagnation point
inside the region bounded by C and exterior to the sphere defined by the equations

(l-3/?2)-4r/?(2r+l) = 0, r(4 l)+afi = 0. (11)
The vorticity on the boundary arising from the motion in the azimuthal plane is given

and for R\ > 6R is easily seen to vanish at cr = IT - a0. This is indicative of a reversed
flow and also demonstrates that the reversed flow region cannot advance beyond the
equatorial plane cr = \n and is confined to the rear portion of the sphere (Fig. 1).
Now the first term xjrl of Xo is the stream function for well-known Stokes flow past a
non-rotating sphere. The motion is symmetrical fore and aft of the sphere and there is
no separated flow. The rotation of the sphere produces a body force in the fluid whose
z-component is given by

(13)Rw dz RT4
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This force represents a symmetric push and pull in the fluid and is directed against the
Stokes flow for \ir < a < n. Again the secondary flow produced by the sphere spinning,
and driven by the term

£_l
ito2 ° dz

is antisymmetric about the equatorial plane 2 = 0 (which is a stream surface). To
the degree of approximation considered, superposition of the primary Stokes flow

Fig. 2. Diagram of the streamlines illustrating region of reversed flow at
the rear stagnation point.

and the secondary flow is possible and the net effect is to produce a flow in the azi-
muthal plane with eddies behind the sphere, provided that R\ > QR. Diagrams of the
primary, secondary and superposed flows are given in Fig. 2.

Flow at large distances (azimuthal component). The equation for the azimuthal com-
ponent of velocity at large distances from the sphere can be obtained by replacing ifr
by £G72 in (2) to yield the Oseen-type equation

^ = 0. (14)

The solution V = e x p j - y (1+fi)) ^ + | ) (I-/?2) (15)

satisfies the differential equation and outer boundary conditions exactly and for small
R and finite r behaves like (1 — /?2)/r + 0(R), so that to zero order in R the inner bound-
ary conditions are satisfied exactly. It is clear that the vorticity of the azimuthal or
swirl component of velocity decays exponentially everywhere in the fluid except in the
wake region where it decays algebraically on the downstream axis.
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