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Alzheimer’s disease (AD) is the major cause of dementia, characterized by the presence
of amyloid-beta plaques and neurofibrillary tau tangles. Plaques and tangles are
associated with sleep-wake cycle disruptions, including the disruptions in non-rapid
eye movement (NREM) slow wave sleep (SWS). Alzheimer’s patients spend less time in
NREM sleep and exhibit decreased slow wave activity (SWA). Consistent with the critical
role of SWS in memory consolidation, reduced SWA is associated with impaired memory
consolidation in AD patients. The aberrant SWA can be modeled in transgenic mouse
models of amyloidosis and tauopathy. Animal models exhibited slow wave impairments
early in the disease progression, prior to the deposition of amyloid-beta plaques,
however, in the presence of abundant oligomeric amyloid-beta. Optogenetic rescue of
SWA successfully halted the amyloid accumulation and restored intraneuronal calcium
levels in mice. On the other hand, optogenetic acceleration of slow wave frequency
exacerbated amyloid deposition and disrupted neuronal calcium homeostasis. In this
review, we summarize the evidence and the mechanisms underlying the existence of a
positive feedback loop between amyloid/tau pathology and SWA disruptions that lead
to further accumulations of amyloid and tau in AD. Moreover, since SWA disruptions
occur prior to the plaque deposition, SWA disruptions may provide an early biomarker
for AD. Finally, we propose that therapeutic targeting of SWA in AD might lead to an
effective treatment for Alzheimer’s patients.

Keywords: Alzheimer’s disease, sleep, NREM sleep, slow wave activity, slow oscillations

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common
cause of dementia in the elderly (Alzheimer’s Association, 2016). The pathological hallmarks of
AD are the presence of extracellular plaques composed of amyloid-beta (Aβ) and intracellular
neurofibrillary tangles composed of the microtubule binding protein tau in the brain (Bloom,
2014; Calderon-Garcidueñas and Duyckaerts, 2017). According to the amyloid cascade hypothesis,
Aβ accumulation leads to tau deposition, triggers neuronal dysfunction and results in neuronal
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death (Hardy and Higgins, 1992; Selkoe and Hardy, 2016).
Although, amyloid cascade hypothesis is widely debated, soluble
Aβ and tau protein aggregations have been shown to lead
to synaptic dysfunction and loss of synaptic density (Spires-
Jones and Hyman, 2014), resulting in memory and cognitive
deficits in AD patients (DeKosky and Scheff, 1990). The
clinical features of AD include progressive memory loss,
impaired judgment and decision-making (Förstl and Kurz, 1999).
Current therapeutics are limited to alleviation of symptoms, not
reversing or slowing the disease progression (Yiannopoulou and
Papageorgiou, 2013; Cummings et al., 2019). Therefore, there
is an urgent need to identify effective treatment strategies for
alleviating the disease burden.

In addition to memory and cognitive impairments,
Alzheimer’s patients experience sleep disruptions (Bliwise
et al., 1995; McCurry et al., 1999; Moran et al., 2005), leading
to reductions of non-rapid eye movement (NREM) sleep
and slow wave activity (SWA), a brain rhythm prevalent
during NREM sleep (Prinz et al., 1982). These disruptions
include increased amounts and frequencies of nighttime
wakefulness as well as daytime napping (Vitiello and Prinz,
1989; McCurry et al., 1999). Sleep disturbances manifest
early since individuals with mild cognitive impairment
(MCI), a pre-clinical stage of AD, suffer from sleep
disruptions (Vitiello and Prinz, 1989; Westerberg et al.,
2012). Similarly, individuals with detectable amyloid beta,
but cognitively healthy also suffer from sleep disturbances,
defined as lower sleep quality and increased number of
day-time naps (Ju et al., 2013). Thus, sleep and memory
disruptions manifest early in the disease progression, prior
to symptom onset.

Sleep mediates several forms of memory consolidation
(Diekelmann and Born, 2010; Born and Wilhelm, 2012;
Rasch and Born, 2013). Sleep disturbances are correlated with
deteriorated memory function and cognitive decline in AD
and MCI patients (Moe et al., 1995; Brzecka et al., 2018).
Increased night-time wakefulness and decreased slow wave
sleep (SWS), which is dominated by SWA, was associated
with impaired memory and cognitive functions (Moe et al.,
1995). NREM, in particular SWS, plays an important role
in declarative memory consolidation (Walker, 2009; Lu and
Göder, 2012). This review will provide an overview of
the SWA disruptions in AD. It will also summarize the
evidence for the causal relationship between AD pathology,
Aβ/tau, and sleep-dependent memory consolidation deficits
that are driven by the SWA disturbances in AD patients
and animal models of AD. Furthermore, we will propose
possible mechanisms underlying the SWA disruptions. Finally,
we will discuss therapeutic strategies for targeting SWS in
AD aimed at slowing the disease progression and restoring
the sleep-dependent memory consolidation. This review is
focused on the SWA, the most prominent neocortical activity
with the increased power density in 0.5–4.0 Hz frequency
range occurring during NREM sleep. It will not cover other
NREM sleep-associated rhythms, such as thalamo-cortical
sleep spindles, or hippocampal ripples, nor will it discuss
REM sleep disruptions in AD, that have been reviewed or

described elsewhere (Christos, 1993; Rauchs et al., 2008;
Pase et al., 2017).

SWA AND SLEEP-DEPENDENT
MEMORY CONSOLIDATION

Sleep consists of rapid eye movement (REM) and NREM sleep.
REM sleep is characterized by desynchronized EEG activity
with faster oscillations and lower voltage waveforms (Carskadon
and Dement, 2011). Human NREM sleep is subdivided into
stages N1–N3 (previously stages 1–4) and is defined by the
electroencephalogram (EEG) activity as synchronous waveforms,
including sleep spindles (12–14 Hz), K-complexes in stage 2 as
well as slow (<1 Hz) and delta (1–4 Hz) activity in stage 3 (Iber
et al., 2007). Slow and delta oscillations or isolated slow waves
are commonly called SWA (Timofeev et al., 2020). Stage N3, also
referred to as Delta Sleep or SWS, is characterized by the high
amounts of SWA (Carskadon and Dement, 2011).

Slow oscillation is a major rhythm of deep sleep. During slow
oscillations, excitatory and inhibitory neocortical neurons from
all layers (unknown for layer 1) in anesthetized (Steriade et al.,
1993a,b,c) and sleeping animals (Timofeev et al., 2000b, 2001;
Steriade et al., 2001; Chauvette et al., 2010) oscillate between
depolarized (active or UP) and hyperpolarized (silent or DOWN)
states. Despite involvement of the entire thalamocortical system
(Steriade et al., 1993a; Contreras and Steriade, 1995; Sheroziya
and Timofeev, 2014), the slow oscillations originate in neocortex
as can be recorded in neocortical slices (Sanchez-Vives and
McCormick, 2000; Sanchez-Vives et al., 2010), cortical cell
cultures (Sun et al., 2010; Hinard et al., 2012) and isolated
cortical slabs maintained in vivo (Timofeev et al., 2000a; Lemieux
et al., 2014). Slow oscillation is absent from the thalamus of
decorticated animals (Timofeev and Steriade, 1996). The silent
(hyperpolarized or DOWN) states of slow oscillations are periods
of disfacilitation, i.e., absence of synaptic activity. Leak currents
primary mediate silent states (Timofeev et al., 1996, 2001). The
active (depolarized or up) states are mediated by barrages of
excitatory and inhibitory synaptic activities at the level of soma
(Steriade et al., 2001; Timofeev et al., 2001; Rudolph et al.,
2007) and major Ca2+ activities in dendrites (Milojkovic et al.,
2007; Seibt et al., 2017). Neocortex generates slow oscillations
while thalamus contributes to their maintenance as thalamic
inactivation temporally modifies cortical SWA (David et al., 2013;
Lemieux et al., 2014).

To control the slow oscillations, it is important to understand
the major cellular events taking place during SWA. The neuronal
firing and thus synaptic activity in local cortical networks, is
essentially absent in the silent state. Two major mechanisms
for the active state onset are proposed. (i) The silent state is
partially mediated by Ca2+- and Na+-dependent K+ currents.
A reduction in these currents leads to the onset of a new active
state (Sanchez-Vives and McCormick, 2000). (ii) Silent states
are characterized by the absence of synaptic activity, but spike-
independent neurotransmitter release (miniature postsynaptic
potentials, minis) are still present. Co-occurrence of minis in
large neurons that possess a high number of postsynaptic sites
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can lead to significant depolarizations and initiations of spikes,
that would drive the whole network into an active state (Timofeev
et al., 2000a; Bazhenov et al., 2002; Chauvette et al., 2010).
Since this is a stochastic process, it can start in any cell, but
more often, it starts in larger neurons, typically layer 5 large
cortical pyramidal cells in experimental animals (Chauvette et al.,
2010; Fiáth et al., 2016). In human, however, slow wave active
states more often start in layer 3 (Cash et al., 2009; Csercsa
et al., 2010). There might be two reasons for this difference:
(a) human pyramidal cells from layer 3 are very large (Mohan
et al., 2015), and therefore, they are well situated to summate
minis and to trigger active states; and (b) enhanced electrical
compartmentalization in layer 5 pyramidal neurons in humans
does not allow dendritic depolarizing events to reach soma,
even in the presence of dendritic spikes (Beaulieu-Laroche
et al., 2018), therefore reducing overall implication of layer 5
cells in network operation. Local origin of active states and
dense synaptic interactions in the cortex trigger propagation
of slow waves across cortical mantle (Massimini et al., 2004;
Volgushev et al., 2006; Sheroziya and Timofeev, 2014). Active
states are mediated by interactions of excitatory and inhibitory
conductances (Haider et al., 2006; Haider and McCormick,
2009; Chen et al., 2012) with overall stronger inhibition at
the level of soma (Rudolph et al., 2007; Haider et al., 2013).
A termination of active states and transition to silent states
occurs due to several factors: (i) activation of Na+- and Ca2+-
dependent potassium currents (Sanchez-Vives and McCormick,
2000), (ii) synaptic depression (Timofeev et al., 2000b), and
(iii) synchronous active inhibitory drive (Steriade et al., 1993b;
Lemieux et al., 2015). Because active states terminate nearly
simultaneously across large cortical territories (Volgushev et al.,
2006; Sheroziya and Timofeev, 2014), intrinsic current activation
or synaptic depression likely do not play a leading role, because
they are cell specific. Thus, we suggest that active inhibitory
mechanisms terminate active states and provide network-wide
synchronous onset of silent states. First, somatostatin-positive
GABAergic interneurons increase activity prior to the onset of
silent states (Funk et al., 2017; Niethard et al., 2018). Most of
these interneurons have short axons, therefore an external trigger,
possibly from thalamus, synchronizes them. Indeed, thalamic
inactivation abolishes synchronous onset of silent states (Lemieux
et al., 2015). Furthermore, some thalamocortical neurons fire
during silent states driving parvalbumin-positive interneurons
(Zucca et al., 2019). Another potential source is claustrum,
the structure that has widespread cortical projections and, if
activated optogenetically, induces cortical down states (Narikiyo
et al., 2018). It appears that claustrum is well situated to drive
simultaneously cortical interneurons across different areas just
prior to the onset of silent states.

Sleep slow oscillations play an important role in cortical
plasticity. However, the direction of these plastic changes is still
under discussion. A subset of studies, based mainly on indirect
measurements, propose that cortical synaptic connections are
strengthened during wakefulness and are weakened during sleep
(Tononi and Cirelli, 2003, 2014). Other studies demonstrate
that slow oscillations and overall sleep strengthens efficacy of
cortical synapses (Aton et al., 2009; Chauvette et al., 2012; Seibt

et al., 2012; Yang et al., 2014; Jasinska et al., 2015; Timofeev and
Chauvette, 2017). Finally, there is an attempt to reach agreement
in this debate which proposes that some synapses are upregulated
and others are downregulated by sleep (Seibt and Frank, 2019).

Irrespective of the synaptic mechanisms, slow oscillations
play an important role in sleep-dependent declarative memory
consolidation (Steriade and Timofeev, 2003; Marshall et al.,
2006; Walker, 2009; Lu and Göder, 2012). Born and colleagues
proposed a model of declarative, hippocampus-related memory
consolidation during SWS. Cortical slow oscillations drive
the reactivation of short-term hippocampal memories by
synchronizing hippocampal sharp wave ripples with spindle
activity in the thalamus during slow oscillation UP states.
This mechanism thereby contributes to the long-term synaptic
plasticity changes in neocortical networks and supports the
consolidation of long-term memory in neocortex (Diekelmann
and Born, 2010; Rasch and Born, 2013). SWS declines with
increasing age especially after the age of 30 (Van Cauter et al.,
2000). Age-related reduction in SWS was correlated with
impaired sleep-associated memory consolidation (Backhaus
et al., 2007). Furthermore, insomnia patients with less
SWS showed declines in overnight declarative memory
consolidation compared to age-matched controls (Backhaus
et al., 2006). Boosting SWA facilitated sleep-dependent
memory consolidation (Marshall et al., 2006). Thus, SWA,
slow oscillations in particular, is necessary and sufficient for
memory consolidation during sleep, and we propose that SWA
disruptions might contribute to memory impairments in AD.

SWA DISRUPTIONS IN AD PATIENTS

Toxic Aβ is thought to initiate pathological events and drive
the formation of pathological tau aggregates that ultimately
lead to synaptic loss and cell death (Hardy and Higgins, 1992;
Selkoe and Hardy, 2016; Henstridge et al., 2019), which in turn
compromises neuronal circuitry. Aβ levels correlate with sleep
alterations in cognitively normal individuals with preclinical AD
(Ju et al., 2013; Spira et al., 2013). Neuronal activity disturbances
including slow oscillation disruptions were reported in older
adults (Mander et al., 2013, 2015; Lucey et al., 2019). Aβ

and tau deposits were associated with decreased NREM SWA
in cognitively normal older adults and in early stages of AD
(Mander et al., 2015; Lucey et al., 2019). Decreased NREM
slow oscillations (0.6–1 Hz) were associated with increased Aβ

accumulation in the medial prefrontal cortex (Mander et al.,
2015). Also, higher tau deposition was correlated with decreased
delta power (1–4 Hz) (Lucey et al., 2019). This evidence provides
strong support for a relationship between SWA disruptions and
AD pathology (Figure 1). In addition to SWA disruptions in
asymptomatic cognitively normal adults, SWA was reduced in
MCI individuals (Westerberg et al., 2012). Sleep disturbances
in cognitively normal older adults could predict the Aβ burden
and tau accumulation later in life (Winer et al., 2019). Taking
into account all of the above, we propose that, sleep-wake cycle
disturbances, especially decreases in NREM SWA, may serve as a
potential early biomarker for AD.
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FIGURE 1 | Schematic representation of the causal relationship between NREM SWS, memory consolidation, and AD pathology. Low NREM SWS leads to reduced
SWA and perivascular clearance of soluble Aβ and is associated with impaired memory consolidation. Further, low SWA is associated with increased Aβ/tau
aggregation in AD patients. Ways to restore NREM SWA are proposed for animal models and Alzheimer’s patients, where these might lead to a promising
therapeutic strategy for AD. Abbreviations: NREM SWS, non-rapid eye movement slow wave sleep; SWA, slow wave activity; Aβ, amyloid-beta; AD, Alzheimer’s
disease; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.

Aberrations in SWA correlated with disrupted memory
consolidation in MCI patients (Westerberg et al., 2012) and
older adults (Mander et al., 2015). Therefore, it stands to reason
that slow oscillation disruptions in individuals with early AD
might contribute to and accelerate the progressive memory and
cognitive decline. In turn, AD pathology might further disrupt
sleep-dependent brain rhythm activity that further exacerbates
AD (Figure 1).

Glymphatic system hypothesis, although still debated (Abbott
et al., 2018), states that soluble Aβ is cleared along perivascular
pathways, including through the glymphatic system (Iliff et al.,
2012). SWS enhanced the clearance of Aβ when compared to the
waking state (Xie et al., 2013). Interestingly, soluble Aβ levels
fluctuated with the sleep-wake cycle in humans. Aβ levels were
elevated during waking and declined during sleep (Kang et al.,
2009; Lucey et al., 2017), suggesting that sleep facilitates Aβ

clearance. Thus, there is accumulating evidence for a relationship
between Aβ, sleep and neuronal activity disruptions (Figure 1).

SWA DISRUPTIONS IN MOUSE MODELS
OF AD

Mouse models of AD provide a powerful means to study SWA
disruptions. Amyloidosis models recapitulate Aβ production,
amyloid plaque deposition and associated neuropathology
exhibited by Alzheimer’s patients. Tauopathy models mimic
tau production, intracellular tau tangles and associated
neuropathology. Furthermore, slow oscillation disruptions were
recapitulated in mouse models of amyloidosis and tauopathy

(Holth et al., 2017; Kastanenka et al., 2017; Castano-Prat et al.,
2019). Wide field imaging using voltage sensitive dyes (VSD)
and genetically encoded reporters, in addition to traditional
methods, such as electrophysiology, allowed monitoring SWA
in mice. Similar to those in humans (Massimini et al., 2004),
slow oscillations propagate across cortex in mice as traveling
waves between two hemispheres (Mohajerani et al., 2010). We
used a transgenic mouse model of amyloidosis (APPswe/PS1dE9
mice; APP mice) to show that the cortical slow wave power
but not the frequency was decreased in young (Kastanenka
et al., 2017) and older mice (Kastanenka et al., 2019). APP mice
spent less time in NREM sleep (Roh et al., 2012). Tg2576 mice
exhibited decreases in SWA; and their power spectral density was
shifted to higher frequencies (Kent et al., 2018). As for tauopathy
models, P301S human tau transgenic mice exhibited sleep-wake
cycle disruptions, reductions in NREM sleep and increased
wakefulness. Moreover, their SWA was significantly decreased
during NREM sleep (Holth et al., 2017). Furthermore, the
transgenic mouse model 3xTg-AD, which develops plaque and
tangle pathology, exhibited slow waves at lower frequency and
reduced firing rate (Castano-Prat et al., 2019). Thus, these animal
models recapitulated SWA disruptions exhibited by Alzheimer’s
patients (Lucey et al., 2019). It should be noted that animal
models do not recapitulate all aspects of human condition. Mice
have more primitive cortex and hence slow oscillations present
in mice are not as complex as those recorded in humans. During
aging, sleep in mice undergoes changes, sometimes dissimilar
to those in humans. For example, aged mice exhibit less SWS
compared to young mice. The power of slow-wave activity in
aging mice is increased when measured in frontal cortex, while
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slow wave power in aging human adults is decreased. On the
other hand, aging mice also exhibit similarities to aging humans.
For example, aged mice exhibit increases in sleep fragmentation,
increases in sleep duration during active phase of sleep-wake
cycle (light for humans, dark for mice), and decreased REM
sleep at the end of quiet phase of sleep-wake cycle (Soltani
et al., 2019). Thus use of mouse models should be considered
with caution when modeling human condition. Despite these
limitations, the mouse models were successfully used to monitor
and modulate activity of specific neuronal and non-neuronal
populations that contribute to the disruptions of slow waves
(see below). Uncovering the neural circuit mechanisms that
underlie the SWA disruptions could lead to the discovery of
novel therapeutic strategies.

MECHANISMS UNDERLYING SWA
DISRUPTIONS IN AD

Observations from human studies demonstrated that disrupted
SWA contributed to the impairments of memory consolidation
in AD patients. However, the mechanisms that underlie SWA
disruptions remain largely unknown. Aβ peptides target synapses
and disrupt excitatory and inhibitory neurotransmission leading
to neural network dysfunction (Selkoe, 2019). This indicates that,
SWA anomalies in aMCI and AD patients might be due to the
neuronal network dysfunction resulting from neuronal hyper-
and hypoactivity. Animal studies using multiphoton microscopy
elucidated deficits in inhibitory tone as one possible mechanism
for disrupted SWA (Busche et al., 2008; Kastanenka et al., 2017).
Deficits in synaptic inhibition led to neuronal hyperactivity
(Busche et al., 2008) and caused desynchronized circuit activity
within cortical excitatory neurons (Kastanenka et al., 2017).
More than 20% of the layer 2/3 cortical neurons exhibited
hyperactivity surrounding Aβ plaques. This hyperactivity was
reduced when hyperactive neurons were treated with the gamma-
aminobutyric acid A (GABAA) agonist diazepam (Busche et al.,
2008), while slow oscillations were rescued by topical application
of GABA directly onto the somatosensory cortex (Kastanenka
et al., 2017). In addition to low GABA levels, the expression
of GABAA and GABAB receptors was downregulated in APP
mice (Kastanenka et al., 2017). Interestingly, application of either
GABAA or GABAB inhibitors disrupted slow oscillations in
healthy wild-type animals, mimicking slow wave disruptions in
APP mice (Kastanenka et al., 2017). As we indicated earlier,
GABAergic neurons play a critical role in the onset of cortical
silent states, the major element of SWA. Topical applications
of a GABAA receptor agonist rescued slow waves and sleep-
dependent memory consolidation in transgenic mice (Busche
et al., 2015). Thus, APP mice exhibit cortical hyper- and
hypoactivity due to deficits in inhibitory elements of the circuit,
specifically GABA, GABAA, and GABAB receptors, the activity of
which is necessary and sufficient for normal SWA.

Alzheimer’s disease is a truly progressive disorder. Deficits
in inhibitory elements of the circuit were followed by deficits
in excitatory elements (Kastanenka et al., 2019). The protein
levels of the cortical excitatory neurotransmitter glutamate were

examined in APP mice. Glutamate levels were comparable in
APP and wild-type littermates at 7 months of age (Kastanenka
et al., 2017). However, by 9 months of age, APP mice
started showing deficits in glutamate levels (Kastanenka et al.,
2019). These findings indicate that the disturbances of synaptic
inhibition followed by a deficiency in synaptic excitation within
the neuronal circuits may be related to the disruptions of
slow oscillations in AD. Furthermore, administration of the
glutamate receptor antagonists alleviated hyperactivity in APP
mice (Busche et al., 2008). Taken together, inhibition deficits
followed by excitation deficits within the slow wave circuits
most likely contributed to the disruption of slow oscillations
early in the disease progression and impaired sleep-dependent
memory formation.

In addition to inhibitory and excitatory neurons, cortico-
thalamic circuits rely on astrocytes to maintain their normal
function (Araque et al., 1999; Poskanzer and Yuste, 2011, 2016).
Astrocytes are the glial cells that maintain glutamate and GABA
recycling via glutamate/GABA-glutamine cycles. Astrocytes
form the tripartite synapses with pre- and post-synaptic
neuronal compartments to regulate synaptic transmission via
astrocytic calcium signaling (Araque et al., 1999; Newman,
2003). Astrocytic contributions to normal circuit function
has been underappreciated until recently (Clarke and Barres,
2013; Kastanenka et al., 2020). Amyloid deposits disrupted
astrocytic topology (Galea et al., 2015), and astrocytic calcium
dynamics were altered in APP mice (Kuchibhotla et al., 2009).
Furthermore, elevations in resting calcium concentrations were
reported in astrocytes in APP mice (Kuchibhotla et al., 2009).
Thus, aberrant astrocytic activity might contribute to the SWA
disruptions in AD. Furthermore, the protein expression levels
of glutamate transporters GLAST and GLT-1, which localize
specifically to astrocytic plasma membrane, were decreased in
the cortex and hippocampus in a mouse model of AD (Schallier
et al., 2011). Alterations in astrocytic elements of the circuit
were also reported in brain tissue from AD patients. The
expression of astrocytic glutamine synthetase was decreased
in close proximity to Aβ plaques in AD brains (Robinson,
2000). Interestingly, aberrant expression of glutamine synthetase
was detected in a subpopulation of pyramidal neurons in AD
individuals (Robinson, 2000), suggesting that the glutamate-
glutamine cycle was disrupted. The abnormalities in astrocytic
activity may contribute to aberrant neuronal firing and lead to the
disruption of neuronal networks, thus perturbing SWA. Indeed,
astrocytes participated in triggering slow oscillation UP states
in vitro (Poskanzer and Yuste, 2011) and in vivo (Poskanzer
and Yuste, 2016; Szabó et al., 2017). Poskanzer and Yuste (2016)
visualized intracellular calcium transients and demonstrated that
astrocytes had modulated extracellular glutamate, thus triggering
the SWA in mouse brains. Furthermore, Szabó et al. (2017)
showed that blocking astrocytic calcium transients resulted in
reduced numbers of astrocytes and neurons participating in the
SWA. This series of studies supports the idea that astrocytes are
necessary and play a critical role in induction of slow oscillation
UP states in the cortical circuits. Therefore, astrocytic network
studies using animal models are important to understand the
role of astrocytes in slow wave dysfunction in AD. Finally,

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 705

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00705 June 29, 2020 Time: 22:4 # 6

Lee et al. Slow Oscillations in Alzheimer’s Disease

understanding the role of astrocytes in SWA disruptions might
point to a novel therapeutic strategy for Alzheimer’s patients.

OPTOGENETIC CONTROL OF SLOW
OSCILLATIONS IN MOUSE MODELS OF
AD

Optogenetics is a leading-edge research tool that can be used
to gain valuable insight into the causal relationship between
circuit dynamics and Alzheimer’s progression using animal
models (Boyden et al., 2005; Li et al., 2005). This methodology
provides high spatiotemporal precision with cell-type specificity.
Distinct cell types can be targeted in vivo using cell-type specific
promoters with light-activatable channels or proton pumps
(Fenno et al., 2011). Light activation of cells expressing the
channels or pumps can be used to manipulate the activity within
neural circuits of interest. Optogenetics has been successfully
adopted to studies of AD using mouse models.

Optogenetics was used to increase neuronal activity
chronically in hippocampal perforant pathway in AD mice. This
exacerbated hyperactivity in the circuit and increased interstitial
fluid Aβ42 levels as well as Aβ deposition in the projection areas
(Yamamoto et al., 2015). Optogenetic-mediated increases in
neuronal activity also elevated release and propagation of tau
in htau mice (Wu et al., 2016). This evidence further solidified
the fact that aberrant synaptic activity facilitated AD progression
(Cirrito et al., 2005, 2008). Optogenetics was also used to
shed light onto the state of brain rhythms in AD. Optogenetic
entrainment of interneurons in the gamma frequency range
restored gamma oscillations and reduced Aβ deposition in a
mouse model of AD (Iaccarino et al., 2016). Our laboratory
reported that light-activation of channelrhodopsin-2 (ChR2)-
expressing excitatory neurons at the endogenous frequency
of slow waves in APP mice for 4 weeks rescued aberrant slow
oscillations by restoring slow wave power. It also restored GABA
as well as GABAA and GABAB receptor levels (Kastanenka
et al., 2017). In addition, chronic restoration of SWA halted
Aβ plaque deposition and prevented intraneuronal calcium
elevations (defined as calcium overload) (Kastanenka et al.,
2017). Alternatively, driving slow waves at twice the endogenous
frequency using optogenetics augmented Aβ production,
increased neuronal calcium overload and decreased the synaptic
spine density (Kastanenka et al., 2019). Optogenetic restoration
of circuit activity slowed pathology progression in mouse models
of AD, while optogenetic increases in the frequency of slow
waves accelerated the progressive pathophysiology and resulted
in neuronal network failure.

Similarly, modulations of brain wave activity restored
memory deficits in experimental models using optogenetics.
Synchronization of SWA in somatosensory and motor cortices
using optogenetics was able to restore perceptual memory
impairment and prolong memory retention in sleep-deprived
mice (Miyamoto et al., 2016). In addition, restoration of
hippocampal oscillations with optogenetics resulted in an
improvement of recognition memory in APP mice (Giovannetti
et al., 2018). Also, optogenetic activation of memory engram

cells in hippocampus increased spine density in engram cells
and restored long-term memory (Roy et al., 2016). Furthermore,
gamma oscillation rescue using optogenetics improved spatial
memory in an AD mouse model (Etter et al., 2019). Restoring
brain oscillations by optogenetic approaches in mouse models
provides insight into novel therapeutic approaches to treat and/or
prevent AD altogether. Animal studies suggest that restoring
brain oscillation activity, including SWA, may be an effective
therapeutic strategy for reducing memory deficits in AD patients.

RESTORING SLOW WAVE SLEEP IS A
PROMISING THERAPY FOR AD

Currently, there are no effective treatments able to slow AD
progression and alleviate cognitive and memory impairments in
patients. The majority of clinical therapeutic approaches focus on
clearing Aβ and tau with monoclonal antibodies using passive
immunotherapies (van Dyck, 2018). Light therapy had mixed
results in the clinic (Dowling et al., 2005, 2008; Riemersma-
van der Lek et al., 2008). However, a large number of clinical
trial failures underscores the need to identify novel therapeutic
strategies for treating AD.

Restoration of SWA during NREM sleep in Alzheimer’s
patients might slow the disease progression and rescue sleep-
dependent memory consolidation. Transcranial direct current
stimulation (tDCS) and transcranial magnetic stimulation (TMS)
are two noninvasive brain stimulation methodologies that could
potentially be used to do so. Recently, tDCS was applied to
human MCI subjects during daytime nap to investigate the
patterns of SWA and sleep-dependent memory consolidation.
Both the slow oscillation power and memory performance were
improved after stimulating the brain at the slow oscillation
frequency with tDCS (Ladenbauer et al., 2017). Furthermore,
repeated applications of tDCS induced slow oscillations during
SWS and led to enhanced declarative memory retention the next
day in older (Westerberg et al., 2015) and in young healthy
adults (Marshall et al., 2004, 2006). In a similar study, TMS was
used to evoke slow waves during NREM sleep. TMS increased
SWA power in healthy young subjects (Massimini et al., 2007).
In addition to tDCS and TMS methodologies, slow oscillations
can be enhanced with auditory stimulation (Ngo et al., 2013;
Leminen et al., 2017; Papalambros et al., 2017; Ong et al.,
2018). Applied auditory tones that were phase-locked to the
up states of slow oscillations during sleep benefited declarative
memory consolidation in healthy young adults (Ngo et al.,
2013; Leminen et al., 2017) and in older subjects (Papalambros
et al., 2017). Furthermore, phase-locked acoustic stimulation
also enhanced memory encoding during nap in healthy young
subjects (Ong et al., 2018). Another sensory stimulation strategy
visual stimulation, can be used to induce SWA (Riedner et al.,
2011). Using high-density EEG recordings in healthy young
subjects during NREM sleep, SWA was successfully evoked by
visual stimuli (Riedner et al., 2011). Thus, tDCS, TMS, acoustic,
and visual stimulations could potentially be used to enhance
sleep-dependent memory consolidation in healthy subjects and
AD patients in early stages of the disease.
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Targeting specific GABAergic neuronal circuit elements may
be particularly attractive in designing new AD therapies. Whereas
restoration of parvalbumin interneuron activity acutely restored
gamma oscillations (Iaccarino et al., 2016) and prevented
memory loss as well as network hyperexcitability (Hijazi et al.,
2019), activation of either neuronal nitric oxide synthase (nNOS)
or somatostatin neurons may be useful for restoring SWA.
A recent study involving the chemogenetic activation of SST-
positive cells in the cerebral cortex showed increased SWA,
elevated slope of individual slow waves, and prolonged NREM
sleep duration compared to control conditions. Alternatively,
chemogenetic inhibition of these cells reduced SWA and slow-
wave incidence without changing time spent in NREM sleep
(Funk et al., 2017). We previously demonstrated that nNOS
neurons are activated during episodes of NREM sleep associated
with increased SWA (Gerashchenko et al., 2008). We also showed
that optogenetically evoked responses in nNOS-positive cells
of the cerebral cortex are consistent with their role in slow-
wave sleep physiology (Gerashchenko et al., 2018). Furthermore,
mice lacking nNOS expression in SST positive neurons exhibited
significant impairments in both homeostatic low delta frequency
range SWA production and a recognition memory task that relies
on cortical input (Zielinski et al., 2019). Further studies will
determine whether activation of nNOS/somatostatin neurons
in the cerebral cortex is efficient in reducing AD pathology,
and whether this effect is mediated by SWA enhancement.
Finally, instead of activating endogenous interneurons, it would
be promising to explore cell-based therapeutic strategies, such
as transplantation of human stem cell-derived interneurons to
increase inhibitory tone and restore SWA.

DISCUSSION

In addition to memory disruptions, Alzheimer’s patients
experience disturbances in their sleep-wake cycles, due to
increased nighttime wakefulness and decreased NREM SWS.
AD pathology is correlated with SWA disruptions at the early
stages of AD. Decreased SWA was found in asymptomatic
cognitively normal adults and aMCI patients. Since slow
oscillation disruption is an early event, it has the potential to
be used as an early biomarker for AD. It should be noted that
a lot of human studies discussed here were based on a low

sample size at higher risk for false positives due to random
variations in a small number of data points. Thus replications
are needed to validate the findings. Nevertheless, disruptions in
slow oscillations might underlie the memory impairments as part
of AD progression, since SWA plays a key role in declarative
memory consolidation during sleep. Moreover, animal models
of AD recapitulate the slow wave disruptions and can be
used for mechanistic studies. Use of leading-edge technologies,
including optogenetics, wide-field imaging and multiphoton
microscopy, in addition to traditional technologies, including
electrophysiology, provided insight into the mechanisms of
slow wave disruptions in AD. A better understanding of the
relationship between SWA disruptions and memory decline
may shed light on the mechanistic pathways underlying AD-
associated memory impairment. SWA restoration provides a
promising novel therapeutic target for AD. Utilizing noninvasive
brain stimulation technologies and medications that upregulate
inhibitory elements of cortico-thalamic circuits may prove to
become efficient therapeutic strategies. Development of novel
therapeutic interventions targeting SWA during NREM sleep
early in the disease progression might slow memory decline in
the elderly and delay AD onset in MCI or healthy individuals at
risk for developing AD.
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