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SLOW WAVES TRAPPED IN A FLUID-FILLED INFINITE CRACK: IMPLICATION FOR VOLCANIC TREMOR 
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Abstract. The dynamics and seismic radiation of fluid-filled 
cracks have been studied by numerous authors, as models for tremor 
and for long-period events observed at volcanoes. One of the most 
intriguing results of the recent models is the existence of a very 
slow wave propagating along the crack boundary. In order to bet- 
ter understand this slow wave, which has so far only been studied 
numerically, we studied analytically normal modes trapped in a liq- 
uid layer sandwiched between two solid half--space,;. A slow wave, 
similar to the tube wave found by Blot, exists for all wavelengths. 
In the short wavelength limit, this wave approaches the Stoneley 
wave for the liquid-solid interface. Unlike the tube w; re, however, 
as the wavelength increases to infinity, both the phase and group 
velocities approach zero, in inverse proportion to the square root 
of wavelength. The phase velocity and amplitude of this slow wave 
are in good agreement with those obtained by the numerical stud- 
ies on the dynamics of fluid-filled cracks by two-dimensional and 
three-dimensional finite difference methods. In the past the size of a 
magma body has been estimated from volcanic tremor periods and 
the acoustic velocity in the fluid. These estimates should be drasti- 
cally reduced if the slow wave donfinates (he tremor. For exan?ple, 
the extremely long-period volcanic tremor, with periods up to "s, 
observed at Mount Aso may be generated by a fluid-filled crack of 
modest size, a magma body 0.5 m thick end 0.5 km long. 

Introduction 

Volcanic tremoi sometimes precedes c•n eruption, as in the case of 
E1 Chichon in 19S2 [Hayskor et al., 1983] in which tremor occurred 
just before an eruption and ended with it in other cases, hewever, 
its occurrence is not followed by an e•'uption. Thus we need to 
understand its mechanism better in order to use it as a tool to find 

out about magmatic condit5ons inside a volcano. 
A tre:nor can last from a few minutes to several days and is 

characte• ized by peaked spectra at froquencies ranging from 0.15 to 
10 Hz, whSch may be explained by the resonance set up in magmatic 
conduits. Tempo:al changes of tremor period have been observed on 
various volcanoes, including Kilauea [Shimozuru et al., 1966; Aki and 
Koyanagi, lg81], Mount Aso [Kubotera, 1974], Sakurajima [Karno 
et al., 1977], Mount Etna [Schick et al., 1982], and Mount St. lielens 
[Fehler, 1983], in support of the idea that the spectral peaks are 
associated with the source effect rather than the propagation path 
effect. 

Fehler [1983] analyzed d•ta recorded at Mount St. Helens and 
found that tremor and so called "long-period events" share the same 
peaked spectra. This led him •o suggest that the tremor consisted 
of a sequence of randomly occurring long-period events. This idea, 
which was first proposed by Latter [1979] for the tremor at Ruapehu 
and Ngauruhoe, New Zealand, and has been supported by other 
workers [Seidl et al., 1981; Fehler and Chouet, 1982; McNutt, 1986], 
was well demonstrated by Fehler [1983]. Recently, Bame and Fehler 
[1986] showed that the first events which occur during hydraulic 
fracturing in virgin rock are long-period events. These observations 
provide an important link between volcanic tremor and hydraulic 
fracturing of rock. 

Since Sassa [1935] first considered a magma-filled crack for ex- 
plaining various observations at Mount Aso, numerous models have 
been developed to interpret volcanic tremor (see Chouet et al. [1987] 
for the latest review on the subject). In the fluid-driven crack models 
first studied by Aki et al. [1977], the fluid did not support acoustic 
waves and simply behaved like a cushion to the vibration of the crack 
walls. Therefore the observed long duration of the long-period event 
could not be simulated because of the weak resonance and strong ra- 
diation loss. Although several models considering unsteady fluid flow 
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have been proposed [St. Lawrence and Qamar, 1979; Ferrick et al., 
1982], the coupling between the fluid and the surrounding elastic 
solid was not sufiqciently analyzed to lead to quantitative results that 
can be compared with seismic observations. Recently, Chouet [1985, 
1986] and Chouet and Julian [1985] have developed models in which 
the fluid dynamics and seismic radiation are considered to the ex- 
tent that the acoustic vibration in the fluid and its coupling with the 
surrounding solid are fully analyzed. In these studies on dynamics 
of a fluid-filled crack the equations of motion for the fluid are solved 
simultaneously with those for the elastic solid. They found, among 
other things, that the resonant period of a fluid-filled crack can be 
much longer than expected from the acoustic vibration of fluid, be- 
cause of the existence of very slow waves which Chouet [1986] called 
"crack waves." The discovery of crack waves may have important 
implications for the interpretation of volcanic tremor. For exam- 
ple, the puzzle of a tremor with a period as long as 7 s reported by 
Sassa [1935] at Mount Aso, which required a huge magma reservoir 
as the resonator may be resolved because the low velocity of crack 
wave allows a more realistic size of magma body to generate a very 
long resonance period. Their numerical approach, however, tends 
to obscure the causal relationship between the observed motion and 
the model parameters. We decided to start with the simplest case 
in order to isolate important factors involved in the phenomena and 
chose the study of normal modes in a fluid layer sandwiched between 
two elastic half-spaces. 

Normal modes in fluid-solid systems have been investigated by 
many authors. Because of their considerable geophysical interest, 
two classes of models have been intensively studied: a fluid layer 
c, verlying a solid elastic half-space [Stoneley, 1926; Pekeris, 1948; 
Press and Ewing, 1950; Blot, 1952a; Tolstoy and Clay, 1966], and a 
fluid-filled borehole [Blot, 1952b; Cheng and Toksoz, 1981; White, 
1OS3]. 

Normal modes in a fluid layer sandwiched between two homoge- 
neous elastic half-spaces, however, have not attracted much atten- 
tion except in the work by Paillet and White [1982], who used such 
a model as a simple approximation to a fluid-filled borehole. In the 
first part of this paper, following Blot [1952b], who studied seismic 
waves in the fluid-filled borehole, we derive the equation of disper- 
sion to determine the phase velocities and the eigenfunctions for a 
given normal mode. We show that both phase and group veloci- 
ties decrease in inverse proportion to the square root of wavelength 
and become zero for infinite wavelength. Then using Salto's [1967] 
method for surface wave excitation, we calculate the amplitude of a 
mode generated by an explosive source in the fluid layer and compare 
our results with the numerical results obtained by Chouet's [1986] 
study of the dynamics of a three-dimensional fluid-filled crack. 

The Equation of Motion and Boundary Conditions 

Consider a fluid layer of thickness h lying between two elastic 
half-spaces bounded by the horizontal planes z = -hi2 and z = hi2, 
where z is the vertical axis. Our first objective is to determine the 
dispersion equation for normal modes trapped in the fluid layer. 
The horizontal and vertical displacement components for the fluid 
are given in terms of the potential •! by 

u! = Ox 
o•! 

w!= Oz 

(1) 

where •! satisfies the wave equation 

I 0•4! (2) V •e}! - c• Ot • 
t is time, and c is the acoustic wave velocity in the fluid. For waves 
propagating in the x direction, the solution •! may be written in 
the form 

9215 



9216 Ferrazzini and Aki: Slow Waves Trapped in a Fluid Layer 

6! = (Ae iv* + Be -iv*) e i(} .... t) (3a) 
for k 2 = (w21c 2) > k• and u2 = k 2 _ k•, and 

6! = (Ae v* + Be -v*) e i(k .... t) (3b) 

for k 2 = (w2/c 2) < k• and u 2 = k•- k 2, and A and B have dimen- 
sions of length squared. 

The fluid pressure is given by 

026[ 
P=-p! Ot 2 (4) 

p! being the fluid density. 
We consider two cases; in one the perturbation of pressure is sym- 

metric, in the other antisymmetric with respect to z. In the follow- 
ing, the superscript $ refers to the symmetric mode and corresponds 
to the upper sign, while the subscript A refers to the antisymmetric 
mode and corresponds to the lower sign. Putting e = w/ck• = v/c 
where v is the horizontal phase velocity of the wave, we have 

for e> 1 

for e< 1 

Therefore from equations (1), (4), and (5)the ratio of the pressure 
to the vertical displacement at z = q-h/2 for symmetric (upper sign) 
and antisymmetric (lower sign) modes can be written 

for e> 1 

P P!w2sign(z)(coth ( • ) •-•]*=+ õ sa = q- •-j-•'•2 --_ • k, tan] V/e2 - 1 k• 
for e< 1 

s 

•-•]•==• • = p!w2sign(z) (coth• h k•) k•/1 - e 2 •,tanh] ( V/1 - e2• 
where cot and tan apply to the symmetric and antisymmetric modes 
respectively. 

The horizontal and vertical displacement components in the P-SV 
problem for an elastic solid are given by 

Oz Oz 
(6) 

where 6 and •p are the potentials of compressional and shear waves 
which satisfy the wave equations: 

V26 _ 

V2•b = 

1 026 
o• 2 0t 2 

1 02•b 
f12 Or2 

(7) 

with a and/? being the velocities of compressional and shear waves 
in the solid. 

These equations have solutions of the form 

where 

6 = 6o e-l•lz[ (e ik•a: + e -ik'•) e -iwt 
(8) 

ø• 2 
The tangential and normal components of traction acting on a 

plane perpendicular to the z axis are 

(9) 

where A and tt are the Lamd moduli of the solid. 
Applying the boundary condition that the shear stress must van- 

ish at the fluid-solid interfaces: 

r,•],=+ } -0 (10) 

we obtain a relation between 6o and •Po: 

6--5ø - sign(z) i(2 - 
•o- (11) 

with e, = v//3 and ec = v/ct. Using the above relations, the ratio of 
the stress component r** to the vertical displacement w at z = q-h/2 
can be written as 

r,•l = sign(z)p,-- - 4V/1 - e• •-•*=+ } e• V/1 -e• 
where p, is the density of the solid. 

(12) 

The Equation of Dispersion 

The vertical component of the traction and the displacement must 
be continuous at the fluid-solid interfaces. Following Biot [1952b] we 
define a mechanical impedance as the ratio of stress to displacement 
and match the impedances at the fluid-solid interfaces z =_+ hi2: 

P --Tzz 
- (13) 

w! w 

From this, four dispersion equations for waves with horizontal 
phase velocity v -w/ks are obtained. For e • 1, 

(cot'• Iv/e2- 1 tan] a 

2-P' X/e2-1 ( (2-e')2 Pl %4 •/• -- 7i - 4 V/1 - e• (14a) 
and for e ( 1 

tanh] - 

- P' •l - e2 ( (2 - e•) 2 ½iZ 5 - 41- 4 (14b) 
For given values of the three ratios P*/Pl, e,, and Poisson ratio 

a, which is related to the velocities a and • by the equation 

' =(1 
(lS) 

the phase velocity can be determined • a function of wavelength. 
This can be simply done using a bisection method. The solution of 
the above equations when P*/Pl = 2.5, •/c = 1.5, and a = 0.25 is 
given in Figure 1. 

The antisy•etric group (for which the plane z = 0 is a constant- 
pressure surface) contains all the modes which can be observed in 
a fluid layer overlying a solid half-space such as the ocean and h• 
been investigated by numerous authors, for example, Biot [1952a] 
and Tolstoy [1954]. It does not need further discussion here. 

The Existence of Very Slow Waves 

In the symmetric group, the most important feature is the fun- 
damental mode, which exists for all wavelengths. The phase veloc- 
ity of this mode is lower than the acoustic velocity of the fluid for 



Ferrazzini and Aki: Slow Waves Trapped in a Fluid Layer 9217 

o 0 

/ p./pf=2.5 

• !/ •/c=1.5 
• c•=0.25 

2 4 6 8 10 12•o 
ß 

ß 

o 

2 4 6 8 10 2 ø 

Fig. 1. Phase velocity divided by acoustic velocity plotted as a function of the wavelength divided by the layer thickness. 
Branches of the symmetric group are represented by bold lines and those of the antisymmetric group by thin lines. 

all wavelengths and decreases as the wavelength increases. At high 
frequencies this slow wave becomes the Stoneley wave propagating 
along the fluid-solid interface. For this reason, it is comparable to 
the tube wave studied by Biot [1952b], but as the wavelength tends 
to infinity, the velocity approaches zero according tc 

lim ( )2 =2 1- 

ß Ps 

varying inversely with the square root of the wavelength (Figure 2) 
unlike the tube wave, for which the velocity approaches a finite value. 

One consequence of this slow-velocity branch is that resonance 
at a long period may be possible for a small fluid-filled crack. For 

example, for a fluid-filled crack of length 1 krn and thickness 0.5 
rn, with the parameters ps/p! = 2.5, fi/c= 1.5, •r = 0.25, and 
c = 2 km/s, the half wavelength equal to the crack length will corre- 
spond to a period of 10 s, which is 10 times the period of resonance of 
acoustic waves in the fluid. Sassa [1935] made some broadband mea- 
surements on Mount Aso using long-period seismographs (Galitzin 
type, To = 8 s) within 1 km from the crater. He recorded tremor 
associated with the magmatic activity, which he called "tremor of 
the second kind," and which has a period ranging between 3.5 and 
7 s. Kubotera [1974] interpreted this tremor as due to the vibrations 
of a spherical magma chamber. He found, assuming the acoustic 
velocity is 2 km/s, that the chamber diameter must range between 
4 and 8 km to explain the observed period. Using another model, 
the fluid-driven crack model.of Chouet [1981], one concludes that 
the total crack length should be at least of the order of 4 km. Since 
the previous estimations were based on the acoustic velocity in the 

• • ++ + 

+ ++ 

+++ U/c 

1' p,/p½= l . ß ,8/c=1.25; o'=0.25 

2: p,/p½=l.5; ,8/c=1.25; o'=0.25 

3: p./pf=2.5; ,8/c=1.5 ß a=0.25 

• , . ....... ! ........ | i ß i ! ß i i i I • ! i • ß , 

%., , ,0 ,oo ',boo 

Fig. 2. Phase and group velocity, v and U, of the fundamental symmetric mode as a function of wavelength for three 
different sets of medium characteristics. 
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Fig. 3. Comparison of the phase velocity of the fundamental symmetric mode with that inferred from the numerical 
results on apparent period and wavelength, obtained by Chouet [1986] for a crack of finite length and for different values 
of the stiffness factor C which is attached to each curve. 

magma, the slow wave will allow a drastic reduction in the estimate 
of magma body size. The long period of volcanic tremor up to 7 s 
observed at Mount Aso may be explained by a modest-sized magma 
body 0.5 km long and 0.5 m thick. 

The existence of this slow wave has been demonstrated in 

Chouet's [1986] studies on the dynamics of a fluid-filled crack excited 
by the rupture of a barrier, using a three-dimensional finite differ- 
ence method. He observes slow waves that he calls "crack waves" and 

plots in his Figure 17, the dispersion curves v/c, for different values 
of the stiffness factor C, against the dimensionless wavelength A/L, 
L being the length of the crack. The stiffness factor, introduced by 
Aki et al. [1977], is an important parameter controlling the dynamics 
of fluid-filled cracks and is defined as 

bL 

where b is the bulk modulus of the fluid, tt is the rigidity of the 
solid, L is the length of the crack, and h is the crack thickness. For 
the case ps/p! = 1.5, /•/v - 1.15, a = 0.25, Figure 3 compares 
the phase velocity of the fundamental symmetric mode with that 
estimated from Chouet's numerical results on apparent period and 
wavelength. The result obtained for a crack of infinite length appears 
to lie at a natural extrapolation of incre•ing crack stiffness factor 
which is proportional to crack length. It is interesting to note that 
for each run of the finite difference calculation, v/c is the lowest 
for the longest wavelength (,• = L) and is roughly one half of the 
asymptotic value for short wavelengths. Thus the ratio v/c to be 
used for calculation of resonance (,• = L) should be about one half of 
the value given by the analytic curve which appears to be asymptotic 
to the numerical results at short wavelengths. 

The Motion-Stress Vector 

To get more insight into the motion set up by this slow wave, 
we compute its eigenfunctions. Since the slow wave (fundamental 
mode) has a particle motion similar to that of Rayleigh waves, using 
the notation of Aki and Richards [1980], the displacement and stress 
components can be written 

u = Yx (k•,z,w)exp(i(k•x-wt)) 
w: iy• (k•, z,w)exp (i (k•x -wt)) 

(17) 
rzx = y3(kx,z,w)exp(i(kxx-wt)) 
• = iy• (•, •,•) •xp (i (• -•t)) 

where (y•, y2, y3, y4) is called the motion-stress vector. Taking into 

account the continuity of y2 at the fluid-solid interface one may ex- 
press the four components of this motion-stress vector as a function 
of only one undetermined constant. The group velocity may then be 
written in the form [Aki and Richards, 1980, p. 291] 

u = •2 + •12• (18) 
vii 

where the energy integrals are 

I +oo 

- ]'_ (yl + 
I +oo 

= j'_ + + 
13 = Ayl •zz - I•Y2 dz J dz 

(19) 

and can be evaluated analytically to obtain the group velocity as a 
function of the wavelength. Since the slope of the velocity curve as a 
function of the wavelength is negative, the group velocity is always 
greater than the phase velocity. At large wavelengths, where the 
phase velocity is proportional to the inverse of the square root of 
the wavelength, the group velocity equals three halves of the phase 
velocity and thus tends also to zero when the wavelength goes to 
infinity. 

Figure 4 shows the four components of the motion-stress vector 
for the fundamental symmetric (Figure 4a) and antisymmetric modes 
(Figure 4b) for the values A/h ranging from 0.025 to 11.025, p•/p! - 
2.5, fi/c= 1.5, and rr = 0.25. In these figures the liquid layer lies 
between z/h = -0.5 and 0.5. The amplitudes of the displacement 
functions Yl and y• are normalized to a unit value of y• at the 
fluid-solid interface. Those of the traction functions, Y3 and y4, are 
normalized to a unit vertical traction at the same interface. In Figure 
4b, when the phase velocity reaches the acoustic velocity, there is a 
phase change that inverts the sign of the eigenfunctions. 

In Figure 4a the fundamental symmetric mode shows a very large 
horizontal displacement yl inside the fluid layer. Furthermore, this 
motion increases with the wavelength, and for large wavelengths the 
whole section of the fluid layer is displaced as a whole. 

Excitation of the Slow Wave by an Explosive Source 
in the Fluid Layer 

So far we have been concerned only with the free waves prop- 
agating along the interface. To calculate absolute amplitudes, we 
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Fig. 5. Dimensionless amplitude spectral density of the vertical displacement as a function of the dimensionless wavelength 
A/h, at a horizontal distance r = 1000h. The upper line corresponds to z = hi2 (the fluid-solid interface). The other 
curves correspond to depths varying from 5h to 485h, at intervals of 10h. The source considered is an explosion located 
in the middle of the fluid layer at (r = 0.,z = 0.). Also drawn in this figure is the curve of the spectral amplitude at 

consider an explosive point source located at x = y = z = 0, in the 
middle of the fluid layer. The moment tensor is then reduced to the 
three equal diagonal elements, M• = M• = Mzz = Mo(t). 

According to Aki and Richards [1980, p. 317], if we assume a step 
function for Mo(t), using cylindrical coordinates (r,z, qS), the Fourier 
transform of the vertical displacement due to the fundamental sym- 
metric mode is given by the expression 

ß exp [i (kzv q- •-)] kz y•. (0) q- •-•Yz• [o] (20) 

In order to facilitate the presentation of our result in a diagram, 
we use the non-dimensional variables defined by 

z-- z*h a½ -- • v -- v* c 
P = P*Pl Mo = M•,plhSc • (21) 

and the dimensionless amplitude spectral density is obtained as 

½ 

Figure 5 shows the dimensionless amplitude spectral density of 

z/h=•,•..• p,/pf=l.5. ,8/C=1.15. 0=0.25 

50O0 

= 3OLO. 

10 4 

Dimensionless Period, Tc/h 

1.5x 10 4 2x10 4 

Fig. 6. Dimensionless amplitude spectral density of the vertical displacement as a function of the dimensionless period 
at distance r = 1000h. The upper line corresponds to z = hi2. The other curves correspond to depths varying from 10h 
to 3010h, at intervals of 100h. The source considered is the same as in Figure 5. 
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the vertical displacement, for M• = 1, as a function of the dimen- 
sionless wavelength with the same set of ratios as in Figure 4, at 
the horizontal distance r = 1000 h and for depths z between h/2 
(the fluid-solid interface) and 485 h. Also drawn in this figure is the 
curve of the spectral amplitude at z = A. The amplitude decreases 
by about a factor of 100 from the edge of the crack to a vertical dis- 
tance equal to the wavelength. Thus our trapped mode is difficult to 
observe at a vertical distance greater than a wavelength. If the crack 
is finite, however, the strong horizontal motion propagating in the 
fluid layer may provide an important source of radiation which can 
be observed at large distances. In order to compare the amplitude 
of the displacement at the fluid-solid interface with those obtained 
by Chouet [1986] for the crack wave, we have plotted (Figure 6) the 
amplitude spectral density as a function of the dimensionless period, 

r-r'- h 
½ 

for the case p,/p! = 1.5, /•/c = 1.155, and rr = 0.25, which is iden- 
tical to the medium he considered. For a stiffness factor C = 100, if 
we assume the crack length L = 100 m and b/it = 0.5, then the crack 
he considered has a barrier area $ = 12.5 m 2. Taking an applied 
excess pressure P = 100 bars and an acoustic velocity of 2 kin/s, 
from Figures 15 and 16 of Chouet [1986] we can evaluate the ampli- 
tude spectral density of normal displacement at the crack surface, 
due to the crack wave. The estimated amplitude spectral density is 
of the order of W = 9 x 10-5 cm s at a period T = 0.52 s. Consider- 
ing an equivalent diagonal element of moment Mo = PSh [Aki and 
Richards, 1980, p. 60] and the same period, after correction of the 
geometrical spreading, we find that the amplitude spectral density 
equals i x 10 -5 cm s. We consider this agreement to be satisfactory 
in view of the extremely simple and rapid calculation involved in 
(20) as compared with Chouet's finite difference calculation. 

Summary 

We found that a very slow wave, trapped in a fluid layer sand- 
wiched between two elastic half-spaces, exhibits extraordinary be- 
havior; both phase and group velocities tend to zero as the wave- 
length goes to infinity. This result agrees with Chouet's [1986] re- 
sult on the phase velocity of the so-called crack wave obtained by 
a three-dimensional finite difference calculation on the dynamics of 
a fluid-filled finite crack. Although this slow wave is difficult to ob- 
serve at distances greater than a wavelength from the fluid layer for 
the case of the infinite layer, reflection at the crack tip should pro- 
vide an important source of radiation in the case of a finite crack. 
Our estimation of the amplitude of the normal displacement at the 
fluid-solid interface is also in good agreement with Chouet's [1986] 
results. This wave may play an important role in the long-period 
events observed in volcanoes and geothermal areas and may explain 
their signal duration and low frequencies. Also the estimated dimen- 
sions of the source of long-period events can be drastically reduced 
from the case in which the resonance period was attributed to acous- 
tic waves in the fluid. For example, the long-period tremor observed 
by Sassa [1935] at Mount Aso in 1933, with periods ranging from 
3.5 to 7 s, may be explained by a modest-sized magma body, 0.5 m 
thick and 0.5 km long. The existence of this wave may also suggest 
that we are not recording and analyzing the tremor in the optimal 
range of frequencies. If we instrument volcanoes with seismographs 
more sensitive to long-period motion, we may observe slow waves 
more effectively and be able to use them to find the geometrical and 
mechanical properties of magma bodies. For this purpose, we need 
to study further the effects of material properties, such as viscosity, 
on the characteristics of tremors. 
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