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Fluctuations in a fluid are strongly affected by the presence of a macroscopic gradient making
them long-ranged and enhancing their amplitude. While small-scale fluctuations exhibit diffusive
lifetimes, larger-scale fluctuations live shorter because of gravity, as theoretically and experimentally
well-known. We explore here fluctuations of even larger size, comparable to the extent of the
system in the direction of the gradient, and find experimental evidence of a dramatic slowing-down
in their dynamics. We recover diffusive behaviour for these strongly-confined fluctuations, but
with a diffusion coefficient that depends on the solutal Rayleigh number. Results from dynamic
shadowgraph experiments are complemented by theoretical calculations and numerical simulations
based on fluctuating hydrodynamics, and excellent agreement is found. The study of the dynamics
of non-equilibrium fluctuations allows to probe and measure the competition of physical processes
such as diffusion, buoyancy and confinement.

PACS numbers: 05.40.-a, 05.70.Ln, 47.11.-j, 42.30.Va

It is well established that fluctuations are long-ranged
in systems out-of-equilibrium [1–3], even far from critical
points where the long-range behaviour is observed also
in equilibrium conditions [4]. In a binary fluid mixture
subject to a stabilizing (vertical) temperature or concen-
tration gradient, the coupling between the spontaneous
velocity fluctuations and the macroscopic gradient re-
sults in giant concentration fluctuations in the quiescent
state [3, 5]. Gravity quenches the intensity of fluctua-
tions with length scales larger than a characteristic (hor-
izontal) size 2π/q⋆s related to the dimensionless solutal
Rayleigh number Ras of the system [5, 6]:

Ras =
βsg∇cL4

νD
; −Ras =(q⋆sL)

4, (1)

where βs = ρ−1(∂ρ/∂c) is the solutal expansion coeffi-
cient, ρ the fluid density, g the gravity acceleration, c
the concentration (mass fraction) of the denser compo-
nent of the fluid, ∇c the modulus of the concentration
gradient, D the mass diffusion coefficient, ν the kine-
matic viscosity, and q⋆s a characteristic solutal wave vec-
tor. Vertical boundaries suppress fluctuations larger than
the confinement length L in the direction of the gradi-
ent [3, 7]. Gravity also accelerates the dynamics of the
fluctuations for wavenumbers smaller than q⋆s via buoy-
ancy effects, leading to non-diffusive decay of large-scale
fluctuations [8].

The dynamics of concentration non-equilibrium fluctu-
ations (c-NEFs) in the presence of a vertical concentra-
tion gradient in a binary liquid mixture can be charac-
terized in terms of the Intermediate Scattering Function
(ISF or, equivalently, normalized time correlation func-
tion) f(q, t), with f(q, 0) = 1. At first approximation
the ISF can be modeled by a single exponential with de-
cay time τ(q) depending on the analysed wave vector q.

Available theories accounting for the simultaneous pres-
ence of diffusion (d) and gravity (g) [9, 10], but not for
confinement, predict for a stable configuration (Ras < 0):

τ(q̃)

τs

∣

∣

∣

∣

d+g

= τ̃(q̃)|d+g =
1

q̃2

(

1− Ras
q̃4

) , (2)

where the wave vector is expressed in its dimension-
less form q̃ = qL and τs = L2/D is the typical solu-
tal time it takes diffusion to traverse the thickness of
the sample. Equation (2) implies different behaviours
for the decay times of small-scale and large-scale fluc-
tuations, τ̃(q̃)|d = 1/q̃2 for q̃ ≫ q̃⋆s , and τ̃(q̃)|g =
−q̃2/Ras for q̃ ≪ q̃⋆s . Actually, small fluctuations
are dominated by diffusion, the latter being faster at
small scales, while for large fluctuations buoyancy be-
comes more efficient and dominates the temporal evolu-
tion of c-NEFs. As a consequence, the fluctuation decay
time has a maximum (clearly visible in the dashed lines
of Fig. 3) at q̃⋆s , which identifies the most persistent fluc-
tuation in the system if confinement is neglected.
The behaviour predicted by Eq. (2) has been experi-

mentally verified in a number of experiments on c-NEFs
related to a pure concentration gradient (isothermal mass
diffusion) [8, 11] or to a concentration gradient induced
by the Soret effect [12–14].
Confinement is expected to cause deviations from

Eq. (2) at very small wave numbers; to investigate this
issue we perform experiments at wave vectors down to
qmin = 8.9 cm−1. We apply a stabilizing tempera-
ture difference ∆T = 20 K (with an average tempera-
ture of T0 =298 K) to a horizontal layer of tetralin and
n-dodecane at 50% weight fraction of different vertical
thicknesses L = 0.7, 1.3 and 5.0 mm and constant lat-
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FIG. 1. Scheme of the experimental cell: two sapphire win-
dows are kept at different temperatures T0 +∆T/2 (the top,
red one) and T0−∆T/2 (the bottom, blue one) while the sam-
ple fluid (colored pattern) is contained by an O-ring (black cir-
cles) at a thickness L precisely defined by three plastic spacers
(gray rectangles).

eral extent R = 13.0 mm. The sample thickness is var-
ied by using different plastic spacers and sealing O-rings.
Given the sample thermophysical properties [15] the so-
lutal Rayleigh numbers are: Ras = −4 · 104, −2 · 105
and −1 · 107, respectively. The thermal gradient cell is
sketched in Fig. 1: two sapphire windows kept at fixed
distance vertically contain the sample fluid and are ther-
mally controlled by two Peltier elements with a central
hole. The entire system allows a quasi-mono-chromatic
parallel light beam pass through in the direction of the
temperature gradient. More details of the thermal gra-
dient cell can be found in previous literature [12, 17].

The rapid imposition of a temperature difference by
heating the fluid mixture from above results in a linear
temperature profile across the sample in a thermal time
τT = L2/κ, where κ is the fluid thermal diffusivity. Due
to the much smaller value of the mass diffusion coeffi-
cient, a nearly linear concentration profile is generated
by means of the Soret effect [18, 19] in a much larger
solutal diffusion time τs = L2/D. Since the investigated
mixture has a positive separation ratio, for negative Ras
both the temperature and the concentration profile result
in a stabilizing density profile [20] and the only variations
are due to intrinsic fluctuations.

Shadowgraphy [21–24] allows recording images whose
intensities I(x, t) contain a mapping of the sample re-
fractive index fluctuations, over space and time, aver-
aged along the direction of the gradient, as illustrated in
Fig. 2(a). These intensity patterns are generated at the
sensor plane by the heterodyne superposition of the light
scattered by the sample refractive index fluctuations and
the much more intense transmitted beam (’local oscilla-
tor’). These images are 2D-space-Fourier transformed in

silico, Fig. 2(c), to separate the contribution of light scat-
tered at different wave vectors. This procedure provides
results similar to conventional Light Scattering, but with
a shadowgraph one can access smaller wave vectors, ex-
actly were gravity and confinement effects are expected

to strongly affect the c-NEFs.
Dynamic shadowgraphy is performed by the Differen-

tial Dynamic Algorithm [8, 11, 12, 25], where one directly
computes the so-called structure function:

C(q,∆t) = 〈| ∆im(q,∆t) |2〉t,|q|=q =

= 〈| i(q, t)− i(q, t+∆t) |2〉t,|q|=q, (3)

with i(q, t) = F [I(x, t)/〈I(x, t)〉x] the 2D-Fourier trans-
form of a normalized image I(x, t) and ∆t the time delay
between the pair of analyzed images, as illustrated in
Fig. 2(b-c). C(q,∆t) is shown in Fig. 2(d-e). The struc-
ture function is related to the ISF via [8, 11, 12, 25]:

C(q,∆t) = 2A{T (q)S(q) | 1− f(q,∆t) | +B(q)}, (4)

where T (q) is the optical transfer function of the instru-
ment (a complicated oscillating function for a shadow-
graph, see [22, 23]), S(q) the static structure factor of c-
NEFs, A an intensity pre-factor, and B(q) a background
including all the phenomena with time-correlation func-
tions decaying faster than the CCD frame rate, such as
contributions due to shot noise and temperature fluctu-
ations. The ISF f(q, t) can be evaluated via Eqs. (3)-
(4). Results for three different wave vectors are shown in
Fig. 2(f). Essentially for all the wave vectors accessible
in the reported experiments the ISF can be fit by a single
exponential function over the resolved part of the decay.
For direct comparison with theory and simulations we ex-
tract effective decay times as the time needed to f(q, t)
to decay to 1/e.

Figure 3 reports experimental data for the three differ-
ent Ras, not normalized in panel (a), and in dimension-
less form in panel (b). For essentially all wave vectors
smaller than q̃⋆s = 4

√
−Ras, the effective decay time de-

parts from the theoretical description of Eq. (2) depicted
as a dashed line. As the wave vector is decreased the
decay time presents a minimum for a dimensionless wave
vector q̃b ∼= 5 and for smaller wave vectors it recovers a
diffusive decay τ̃ ∝ q̃−2 (except for Ras = −1 · 107, with
no experimental points at low enough q̃).
In order to interpret these experimental findings we use

a Fluctuating Hydrodynamics (FHD) model [7] that in-
corporates gravity and confinement. The dynamic struc-
ture factor I(q, t) of the c-NEFs can be expressed as:

I(q, t) = S(q)f(q, t) =

∞
∑

N=1

AN (q) exp

[

− t

τN (q)

]

, (5)

see [26] for further details. The decay times in Eq. (5)
are the inverse of the eigenvalues ΓN (q) = 1/τN (q) solv-
ing Eq. (43) in Ref. [7]. The amplitudes AN are an-
alytically related to ΓN and q. The power spectrum
(static structure factor) of c-NEFs analyzed in [7] is then
S(q) =

∑

AN (q). In general, the eigenvalues can only
be computed numerically, however, in the limit q → 0, a
full analytical investigation is possible by means of power
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FIG. 2. (a) Shadowgraph image I(x, t); (b) difference of
normalized images ∆im(x,∆t); (c) power spectrum of (b)
| ∆im(q,∆t) |2; (d) structure function C(q,∆t) for three dif-
ferent time delays, vertical lines stand for wave vectors used
in (e); (e) structure function C(q,∆t) for three different wave
vectors, vertical lines stand for delay times used in (d); (f)
ISFs for three different wave vectors f(q,∆t): markers are for
experimental data while lines depict theoretical results. All
data are taken from the measurement at Ras = −2 · 105.

expansions in q, and a clear hierarchy of well-separated
ΓN identified [7]. In that limit, the first term in Eq. (5)
dominates, and f(q → 0, t) becomes single-exponential
in practice, with decay time due to confinement (c):

τ̃(q̃ → 0)|c =
1

q̃2
(

1− Ras
Ras,c

)

=
1

q̃2
(

1− Ras
720

)

, (6)

where Ras,c = 720 is the critical solutal Rayleigh num-
ber at which the convective instability first appears [20].
This asymptotic behaviour is shown in Fig. 3(b) by dot-
ted lines. Hence, the theory predicts a crossover from
Eq. (2) (not-including confinement) at large and inter-
mediate q, to the confinement behaviour of Eq. (6) at
small q, precisely the kind of behaviour experimentally
shown in Fig. 3. We estimate the wave number qb corre-
sponding to the minimum decay time by equating Eq. (2)
and (6). This gives q̃b = 4

√

Ras,c =
4
√
720 ∼= 5.2 indepen-

dent of Ras, in further agreement with the observations
in Fig. 3(b).

Previous work [7] considered only small (in magnitude)
negative solutal Rayleigh numbers. Here we investigate
Ras values for realistic liquid mixtures, and find different,
much richer, ΓN (q) and AN (q) landscapes. In Fig. 4(a)

the amplitudes AN (q̃) of the first three eigenmodes are
shown as a function of the dimensionless wave number q̃,
for Ras = −2 ·105, while Fig. 4(b) shows the correspond-
ing dimensionless decay times τ̃N (q̃) for the first two
modes. Clearly in different wave number ranges different
modes dominate. For very large (q̃ & 50) wave numbers,
all decay times collapse and the ISF is approximately a
single exponential dominated in amplitude by the first
mode. For very small wave numbers (q̃ . 0.3) the first
mode dominates in amplitude and a single-exponential
decay is again recovered. The second mode leads in am-
plitude in the central range 0.6 . q̃ . 30, but having a
smaller decay time means that both modes play a signifi-
cant role and the ISF should show signatures of a double
exponential decay. Indeed, data from theory and simula-
tions show such signatures in the predicted wave vector
range, however such signatures are not detectable in the
experimental data given the limited wave vector range
and the smaller signal to noise ratio. In Fig. 2(e) we
report three examples of experimental ISFs for different
wave vectors.

Also for the theory and regardless of the multiple ex-
ponential character, a single effective decay time τeff(q) is
defined by f(q, τeff) = 1/e. In Figs. 3 and 4(b) we show
results for τeff(q), computed via Eq. (5) from the am-
plitudes and decay rates obtained theoretically. All the
features seen in the experimental data points are well-
reproduced by the theory. Noticeably the slowing-down
observed for small wave numbers is clearly related to con-
finement, since this is the only ingredient added to the
theory that gives Eq. (2).

The theory [7] assumes that viscous dissipation domi-
nates, and neglects the effect of fluid inertia; this is justi-
fied by the fact that in all liquids momentum diffusion is
much faster than mass diffusion, i.e., the Schmidt num-
ber Sc = ν/D is very large. While neglecting inertial
effects is a good approximation at most wavenumbers of
interest, it is known that, depending on Ras, it fails at
sufficiently small wavenumbers due to the appearance of
inertial propagative modes [27] (closely related to gravity
waves) driven by buoyancy. In order to confirm that the
observed slowing down is due to confinement and not to
inertia we have performed numerical simulations that ac-
count for inertial effects and confinement [28, 29], see [26]
for details. Data points from a numerical simulation with
fluid parameters matching the experimental ones are also
shown in Fig. 3. An excellent agreement is visible for this
dataset among experimental, theoretical and simulation
results, confirming that inertia effects are not relevant in
our experiments. We note, however, that for thicknesses
L & 5 mm the simulations do show oscillatory time cor-
relation functions (propagative modes) at the smallest
wavenumbers [29]; this range is not accessible in the ex-
periments reported here.

We conclude that confinement has a moderate damp-
ing impact on the intensities of large-scale non-
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FIG. 3. Effective decay times: (a) Log-log plot of the ex-
perimental decay times τ as a function of wave vector q for
different Rayleigh numbers. (b) Log-log plot of the dimen-
sionless decay times τ̃ as a function of dimensionless wave
number q̃. Filled red markers are experimental data, open
blue are for calculations based on the FHD model, and open-
dotted black are from numerical simulations. Dashed lines
depict the analytical solution provided by Eq. (2) for q̃ > q̃b,
taking into account gravity and diffusion only; dotted lines
are for the confinement limit of Eq. (6) for q̃ < q̃b.

equilibrium concentration fluctuations, but, in the pres-
ence of gravity, it strongly affects their dynamics. Exper-
iments, as well as theory and simulations, show that the
slowing down is determined by the solutal Rayleigh num-
ber that, in this study, is controlled solely by the confine-
ment distance L. Large-scale fluctuations are confined to
evolve in an essentially quasi-two-dimensional manner by
the boundaries, and we found them to behave diffusively
but with a greatly enhanced diffusion coefficient.

This is in contrast to the case of diffusion in a mi-
crogravity environment where the coupling to velocity
fluctuations greatly enhances the intensity of the c-NEFs
but does not alter their Fickian diffusive dynamics [30].
In strongly confined systems, such as porous media, the
buoyancy driven acceleration of the fluctuations is elim-
inated by confinement already at mesoscopic scales. In
the absence of confinement, however, the gravitational
acceleration is eventually suppressed by inertial effects

leading to propagative modes; confinement is expected to
also strongly affect the dynamics of these gravity waves,
as we will explore in future work.

Although the main focus of this letter is on the dynam-
ics and we leave for future publications a full discussion
of the statics, we note that the minimum q̃b in τeff cor-
responds to a minimum in the intensity of fluctuations
S(q). This indicates that the results presented here may
be thought of as a kind of de Gennes narrowing [31].
In analogy to diffusion in colloidal suspensions where a
competition between interparticle interactions and hy-
drodynamic effects is present, here we have a competition
between gravity and confinement.

Interestingly, we find that the dimensionless wave num-
ber identifying where confinement coexists with grav-
ity is related to the critical solutal Rayleigh number
Ras,c = 720 where the convective instability first ap-
pears [20]. This is a signature of the Onsager regression
hypothesis stating that the dynamics of the fluctuations
contains all of the signatures seen in the deterministic dy-
namics, which is known to be controlled by the Rayleigh
number. Our work indicates that the study of the dynam-
ics, rather than the intensity of non-equilibrium fluctua-

FIG. 4. (a) Log-log plot of the amplitude of the first three
eigenmodes AN , for N = 1, 2, 3, as a function of the dimen-
sionless wave number q̃ for Ras = −2 · 105. (b) Log-log plot
of the dimensionless decay times of the two first eigenvalues
τ̃N = τN/τs, for N = 1, 2 as a function of the dimensionless
wave number for the same Ras. Eqs. (2), (6) and the theoret-
ical data points reported in Fig. 3 are also plotted for direct
comparison.
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tions, gives deep insights into the competition of physical
processes such as diffusion, buoyancy, and confinement.
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FLUCTUATING HYDRODYNAMICS

Thermal fluctuations in non-equilibrium systems can
be described with the method of fluctuating hydrody-
namics (FHD) [1]. For the purpose of this letter, we
consider the FHD equations of a binary mixture in the
presence of a stationary concentration gradient and in
the limit of large Lewis number [2, 3] and large Schmidt
number [4]. This approximation is adequate for liquid
mixtures (but not for gases) of positive separation ra-
tio [5] and, in the presence of gravity, for sufficiently
large wave vectors. By linearizing the complete hydro-
dynamics equations to leading order in the fluctuations
one obtains for the small fluctuations around the steady
state [2]:

0 = ∇4δvz − βsg(∂
2
x + ∂2

y)δc+
1

ρ
{∇×∇×(∇·Π)}z

∂t(δt) = D∇2(δc)− (∇c)δvz, (S1)

where δvz are the fluctuations in the fluid velocity compo-
nent along the direction of the gradient, ∇c = ∇c · ẑ, and
δc is the mass concentration fluctuations. In Eqs. (S1),
in accordance to the general guidelines of FHD, we
added a white-noise stochastic momentum flux, Π(r, t),
whose statistical properties are given by the fluctuation-
dissipation theorem [1, 2]. All other symbols are defined
after Eq. (1) of the main text.

The problem of FHD is to solve Eqs. (S1) so as to
obtain the correlation function of concentration fluctua-
tions (proportional to the measured ISF [1, 6]) from the
correlation function of the stochastic noise Π(r, t). If one
does not consider boundary conditions for the fluctuating
fields, Eqs. (S1) are readily solved in the Fourier domain
[7, 8], leading to a single exponential decay of the ISF
with dimensionless decay time given by Eq. (2) of the
main text. This solution without boundary conditions is
only meaningful for negative Ras. To account for con-
finement effects, one has to implement realistic boundary
conditions:

0 = δvz = ∂zδvz = ∂zδc at z = 0 and z = L. (S2)

The linear stability of the problem given by Eqs. (S1)-
(S2) was studied by Ryskin et al. [9] who showed that
the quiescent state is stable below a convection threshold:
Ras < Ras,c = +720.

In a previous publication of theoretical nature [2], it
was shown how conditions (S2) can indeed be imple-
mented in FHD by expanding the solution of Eqs. (S1)
in a series of hydrodynamic modes that solve an asso-
ciated eigenvalue problem. The hydrodynamic modes
(eigenfunctions) have single decay times τN (q) that are
obtained by numerically solving an algebraic equation
(Eq.(43) in Ref.[2]). Although all the data reported in
this letter are for negative Ras, we note that the solution
to Eqs. (S1) incorporating the boundary conditions (S2)
is meaningful for any Ras < +720, including the whole
range of positive solutal Rayleigh numbers below the con-
vection threshold [2, 9].

The focus of [2] was on the static structure factor
S(q) of c-NEFs and the dynamics, although implicitly
included, was not investigated. In this work we focus
on the dynamics, and obtain Eqs. (5) and (6) of the
main text. In addition, we numerically evaluate the de-
cay times τN (q) and corresponding amplitudes AN (q) for
a range of previously unexplored large negative values
of the solutal Rayleigh number relevant to the experi-
mental conditions. The results of these calculations for
Ras = −2 ·105 are summarized in Fig. 4 of the main text.
From the data contained in this figure, using Eq. (5), we
computed theoretical ISFs that, depending on the wave
number q, exhibit a clear multi-exponential behaviour
that will be discussed more in detail in future publica-
tions. A well-defined effective decay time τeff can be ex-
tracted by evaluating the time the ISF takes to decay
to 1/e. Those theoretical decay times are displayed in
Figs. 3(b) and 4 as open blue symbols, and compared
with experiments and simulations.

NUMERICAL SIMULATIONS

We perform computer simulations of the experimental
setup using finite-volume methods for fluctuating hydro-
dynamics described in more detail elsewhere [4, 10, 11];
here we summarize some key points. The numerical
methods have been implemented in the IBAMR software
framework [12]. The numerical codes solve the following
stochastic partial differential equations for the fluctuat-
ing velocity field v(r, t) and mass concentration c(r, t) in
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a binary liquid mixture [1],

ρ∂tv +∇p = η∇2
v +∇·Π− ρβscg (S3)

∇·v = 0

∂t(c) + v·∇c = D∇2c, (S4)

where η = ρν is the shear viscosity, p(r, t) the pres-
sure and, as in Eqs. (S1), Π(r, t) denotes a white-noise
stochastic momentum flux due to thermal fluctuations.
Nonlinear advective terms in the velocity equation are
neglected in a small Reynolds number approximation.
Temperature fluctuations are not considered in a large
Lewis number (very fast temperature dynamics) approx-
imation [2]. We assume that the applied temperature
gradient ∇T is weak and approximate T ≈ To = 298 K.
Note that in (S4), as well as in (S1), we have ignored ther-
mal fluctuations in the mass flux, which are responsible
for equilibrium fluctuations in the concentration. This is
because our focus is on the much larger non-equilibrium
fluctuations induced by the coupling to the velocity equa-
tion via the advective term v·∇c.

In linearized FHD the equations (S3)-(S4) are ex-
panded to leading order in the magnitude of the fluctua-
tions δc = c−〈c〉 and δv = v−〈v〉 around the steady state
solution of the deterministic equations [2]. Typical liquid
mixtures have a large Schmidt number, Sc = ν/D ≫ 1,
and under certain conditions one can take a limit of equa-
tions (S3)-(S4) as Sc → ∞; in the linearized setting this
over-damped limit amounts to deleting the inertial term
ρ∂tv in the velocity equation (S3), [2, 3, 9, 11]. With
these simplifications only the component of the velocity
parallel to the macroscopic concentration gradient cou-
ples to the concentration equations, and after taking a
double curl of the velocity equation one obtains equa-
tions (S1), [2]. Our numerical method, however, solves
the complete hydrodynamic equations (S3)-(S4) in two
dimensions with the concentration gradient along the y
axis; for this problem there is no difference between two
and three-dimensional simulations due to the symmetries
of the problem.

With a simple modification of the time-integration al-
gorithm used in the numerical method we can perform
simulations with or without the ρ∂tv term in the veloc-
ity equation (S3), allowing us to study the importance of
fluid inertia [11]. In the inertia-less limit we have con-
firmed that numerical simulations reproduce the results
of the theoretical calculations (see previous section on
FHD) based on solving (S1)-(S2) analytically. In the
simulations with inertia we have confirmed that, for the
range of Ras probed experimentally, propagative modes
appear only for the largest Ras = 107 but at wavenum-
bers q . 10 cm−1 not resolved in the experiments. For
the wavenumbers and Rayleigh numbers experimentally
studied, simulations show negligible effects of inertia on
the correlation functions, and the same slow decay at
long times is observed for confined fluctuations with or

without fluid inertia. Hence, the observed slowing-down
is due to confinement only.

In our simulations, the domain is periodic along the x
direction. At the top and bottom boundaries, y = 0, L,
a no-flux boundary condition is imposed for the concen-
tration, ∇c = −co(1 − co)ST∇T , where co = 0.5 is the
average concentration, and a no-slip boundary condition
is imposed for velocity. For comparison, we have also
performed simulations employing free-slip boundary con-
ditions for the velocity; these show a qualitatively similar
behaviour to the results reported here but differ quanti-
tatively indicating the importance of the boundary con-
ditions (confinement).

The experimentally observed light intensity, once cor-
rected for the optical transfer function of the equipment,
is proportional to the intensity of the fluctuations in the
concentration averaged along the gradient [1, 2, 13],

δc⊥(x; t) =
1

L

∫ L

0

δc(x, y; t)dy. (S5)

The main quantity of interest in our simulations is the
Fourier transform δĉ⊥(q; t) of the vertically averaged con-
centration, the time-correlation of which gives the dy-
namic structure factor appearing in Eq. (5) of the main
text:

I(q, t) = 〈δĉ⊥(q, t)δĉ
⋆
⊥
(q, 0)〉. (S6)

After suitable normalization and background subtraction
I(q, t) is directly related to the experimental ISF, see
Eq. (4) of the main text. We obtain the relaxation time
τ from the simulation results by fitting I(q, t) to a sum
of two exponentials and solving I(q, τ) = I(q, 0)/e.

The physical parameters used in the simulations are
the same as reported in Ref. [23] of the main text and
the temperature difference across the sample is ∆T =
20 K, heating from the top boundary. The length of the
simulation box in the periodic direction (perpendicular to
the gradient) is 6.13 mm. The time step size is sufficiently
small to resolve the fast viscous dynamics, ∆t=5×10−3 s.
We skip the initial 1250 seconds (in physical time) of the
run to allow the steady state to develop, and then collect
data for another 6250 seconds. Different sizes of uniform
grids were used for the different sample thicknesses, as
summarized in the following table:

Thickness, L Ras grid resolution

0.7 mm −4 · 104 280× 32
1.3 mm −2 · 105 300× 64
5 mm −1 · 107 156× 128
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FIG. S1. Log-log plot of the experimental decay times as a
function of wave vector for Ras = −2 · 105. Filled red circles
are experimental data, open blue diamonds for calculations
based on the FHD model, and open-dotted black squares from
numerical simulations. The brown dashed line depicts the
analytical solution provided by Eq. (2), taking into account
gravity and diffusion only; the purple dotted line stands for
the confinement limit of Eq. (6). The dashed-dotted black
line represents the empirical formula expressed in Eq. (S7),
while the continuous black line is for Eq. (S8) with α = 32.

PHENOMENOLOGICAL EQUATION FOR THE

DECAY TIMES INCLUDING: DIFFUSION,

GRAVITY AND CONFINEMENT

We now focus on the shape of the dimensionless de-
cay time τ̃ as a function of q̃, with the goal of obtain-
ing an empirical relation to replace Eq. (2) of the main
text and incorporate the confinement as described by
Eq. (6) for small wave numbers. Specifically, we propose
a phenomenological equation that crosses over analyti-
cally from Eq. (6) of the main text at extremely small q̃
to Eq. (2) at intermediate q̃, and is therefore useful for
a rapid analysis of experimental results. We first notice
that the only difference between the two aforementioned
equations is that the q̃4 term of Eq. (2) becomes 720 in
Eq. (6), so we substitute these terms by 720(1+ q̃4/720),

to obtain the empirical equation:

τ(q̃)

τs

∣

∣

∣

∣

d+g+c

=
1

q̃2

[

1−
Ras

720(1 + q̃4

720
)

] =

=
720 + q̃4

q̃2
(

−Ras + 720 + q̃4
) . (S7)

We show in Fig. S1 the crossover curve, Eq. (S7), to-
gether with the experimental, theoretical and simulation
data points for Ras = −2 · 105. Clearly a discrepancy is
present between Eq. (S7) and the data points for wave
vectors around qb = 5.2. The gap can be filled-in by
slightly modifying Eq. (S7), adding a term of the second
order in q̃ in the numerator:

τ(q̃)

τs

∣

∣

∣

∣

d+g+c

=
720 + αq̃2 + q̃4

q̃2
(

−Ras + 720 + q̃4
) , (S8)

which does not modify the asymptotic behaviours at
large and small q̃. We find that Eq. (S8) can be used
in practice to fit the experimental data points with the
ad hoc constant α as a free parameter.
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