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Slowing light with Fabry–Perot resonator arrays
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We analyze the transmission of light through coupled-resonator optical waveguides in the form of evanescently
coupled Fabry–Perot resonator arrays. We develop a transfer matrix method to calculate the amplitude and
phase responses of the arrays. We also discuss the inclusion of optical gain in the system to compensate for
losses in these structures. Owing to the compact length along the propagation direction in evanescently
coupled arrays, large slowing factors of the order of 102–103 can be achieved even with a weak index contrast
of �0.1%. The large slowing factor, coupled with weak index contrast, makes this structure a promising can-
didate for artificial slow light system. © 2007 Optical Society of America

OCIS codes: 230.5750, 130.2790.
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. INTRODUCTION
coupled-resonator optical waveguide (CROW) is a peri-

dic array of resonators in which light propagates due to
he weak coupling between nearest neighbors [1]. In arti-
cially structured materials, the interresonator coupling
an be made small by tuning the intercavity coupling
pacing. As a result, CROWs have the potential to signifi-
antly slow down the propagation of light, which may find
pplications such as optical delay lines, interferometers,
ptical buffers, and nonlinear optics [2–5].

To achieve significant slowing in CROWs, and indeed in
ny medium, the optical delay should be achieved over as
hort a device length as possible in the direction of propa-
ation. In many realizations of CROWs, such as coupled
ragg grating defects [6], photonic crystal defect cavities

7], or ring resonators [5,8,9], maximizing the slowing fac-
or necessitates using a high refractive index contrast ma-
erial system to keep the resonators compact and the in-
erresonator coupling strength weak.

However, a high refractive index contrast poses some
ractical challenges. First, a high-index contrast signifi-
antly increases scattering loss due to sidewall rough-
ess. Second, more complex fabrication procedures may
e required for the devices. For example, small (submi-
rometer) feature sizes and a large etch depth (approxi-
ately micrometers) or even suspended membranes as in

hotonic crystal cavities may be needed [10]. Third, the
igh-index contrast can lead to a greater modal size and
ffective index mismatch between an optical fiber and the
ode of the CROW, further increasing the insertion losses

f the system.
Here we propose to use an array of evanescently

oupled Fabry–Perot resonators as a low-index contrast
low light structure. Despite the low-index contrast, a
igh slowing factor is obtained by decoupling the length of
he device in the propagation direction from the size of
he resonators. The CROW consists of an array of linear
aveguides terminated by reflectors in the direction per-
endicular to the periodicity, so the waveguides become
0740-3224/07/112763-7/$15.00 © 2
abry–Perot resonators. Certain implementations of the
ROW are depicted in Figs. 1(a) and 1(b). Although simi-

ar structures have been studied for discrete solitons, we
ill be analyzing slow light propagation in these struc-

ures [11]. A large slowing factor is possible because along
, the direction of propagation, the period of the device, �,
an be short, say �5 �m for evanescently coupled single-
ode waveguides (2−3 �m wide waveguides spaced
1 �m apart). The periodicity of the structure is similar

o what is achievable in high-index contrast photonic
rystal, ring, or disk resonators. In the y direction, propa-
ating optical waves are resonant with the cavities. More-
ver, optical gain and electronic control can be readily in-
orporated into the coupled waveguide array, by
everaging diode laser array techniques [12,13].

To excite the structure, an optical signal can be input to
he resonator array in a side-coupled [Fig. 1(c)] or end-
oupled [Fig. 1(d)] configuration. The output can be out-
oupled in a similar manner out of the last element of the
rray. In the side-coupled scheme [Fig. 1(c)], the first and
ast element, or equivalently the input and output ports,
f the structure do not possess reflectors and hence be-
ave only as waveguides. In the end-coupled scheme [Fig.
(d)], every element of the structure is a resonator. The
ifferences in the input and output coupling mechanisms
nd configurations lead to a qualitative change of the
ransmission properties.

This paper presents a transfer matrix analysis of
ROWs in the form of low-index contrast coupled Fabry–
erot resonator arrays. These CROWs have the potential

o slow light hundreds of times compared to the free-space
elocity. A high slowing factor compared to other systems
s obtained because of its geometric configuration. We will
rst show how the conventional coupled mode approach
ommonly used to analyze waveguide arrays [13] can be
xtended to the treatment of coupled Fabry–Perot resona-
ors. Using the technique outlined here, the dispersion
roperties of coupled Fabry–Perot resonators can be char-
cterized by a few parameters. We will show how the
007 Optical Society of America
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ransfer matrix formalism can be used to easily study ar-
ays with side-coupled or end-coupled input and output
orts. Finally, we will discuss the dispersion and trans-
ission in the presence of optical gain.

. COUPLED-MODE THEORY
eakly coupled waveguide arrays are commonly analyzed

sing coupled-mode theory [13]. In this section, we will
riefly review the approach and show how the dispersion
elation of a tight-binding form [1] can be recovered from
he analysis.

Using the coordinate system in Fig. 1, for an array of N
oupled, identical waveguides, we write the dielectric con-
tant of the structure as

ig. 1. Schematic of (a) waveguide laser and (b) DFB laser ar-
ays in a planar geometry as implementations of CROWs. The
nput–output can be (c) side coupled or (d) end coupled into–out
f the array. � is the period of the CROW. The slanted lines rep-
esent reflectors that define each resonator. The arrows indicate
he field propagation direction inside each resonator or wave-
uide. An optical pulse in the structure propagates in the direc-
ion of periodicity of the resonators.
��r� = �̄�r� + �
n=1

N

���r� − n�ẑ�, �1�

here �̄�r� is the dielectric constant in the absence of any
aveguides, r� represents the transverse coordinates

x ,z�, ���r�� defines each waveguide, and � is the period
n the z direction. In coupled-mode theory, we write the
otal field as a superposition of the modes of the constitu-
nt waveguides,

E�r� = �
n=1

N

cn�y�En�x,z�exp�− i�0y�, �2�

here E�r� is electric field in the array, cn�y� are coeffi-
ients of expansion, and En�x ,z� and �0=�neff��� /c are the
ode profile and propagation constant of the nth wave-

uide in the uncoupled case, respectively. � is the optical
requency and neff��� is the effective index of the mode.

Expressing the y-dependent part of the total field as a
olumn vector, we write

E�y� � �
c1�y�e−i�0y

c2�y�e−i�0y

]

]

]

cN�y�e−i�0y

� � �
E1�y�

E2�y�

]

]

]

EN�y�
� . �3�

eglecting interaction between nonneighboring
aveguides, the coupled-mode equations can thus be
ritten in matrix form as

dE

dy
= CE,

here

C = − i�
�0 + Ml �l 0 0 ¯ 0 0

�l �0 + Ml �l 0 ¯ 0 0

] ] ] ] ] ] ]

] ] ] ] ] ] ]

] ] ] ] ] �l �0 + Ml

� . �4�

ere �l is the per length nearest-neighbor coupling coef-
cient and Ml is the per length self-coupling coefficient
iven by

�l =
��0

4 �
−�

�

En
*�r��	��r�� − ���r − n��
En+1�r��dr�,

�5a�

Ml =
��0

4 �
−�

�

En
*�r��	��r�� − ���r − n��
En�r��dr�, �5b�

here we have used the normalization

�0

2��
�

−�

�

Em
* �r��En

*�r��dr� = 	m,n. �6�
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The propagation constants of the array modes, �, are
etermined by the solution of the eigenvalue equation

�C + i�I�E = 0, �7�

here I is the N
N unit matrix, and � represents the
requency of interest.

Implicit in Eq. (4) is the boundary condition c0=cN+1
0 (which corresponds to no field propagating in the two
nd waveguides). Furthermore, we assume the sth mode
f the waveguide array takes the form E�s��r�
�n=1

N an
�s�En�x ,z�exp�−i��s�y�. The associated eigenmodes

nd propagation constants are given by

��s� = �0 + Ml + 2�l cos� s�

N + 1� , �8a�

an
�s� = sin� ns�

N + 1� , �8b�

here s=1, . . . ,N and n=1, . . . ,N are integers and n enu-
erates positions of the waveguides.
Thus far, the coupled-mode theory we have used is in

he spatial domain where we have solved for the N propa-
ation constants of the waveguide array supermodes [13],
�s�, at a fixed (given) frequency embodied by �0
�neff��� /c. If we introduce reflection at the end of each
aveguide in an array of resonators, the feedback along

he y direction discretizes ��s� such that the modes of the
esonator arrays satisfy ��s�L+�0=m�, where L is the
ength of the array length in y, �0 is the phase shift in-
urred at each reflector, and m is an integer. Hence, to
nd the dispersion relationship of a resonator array, we
se Eq. (8a) to determine the frequencies (or values of �0)

or which ��s�L+�0=m�. For the calculations that follow,
e will set �0 to zero to simplify the expressions, but this
hase shift can be easily accounted for in the results by
ubtracting �0 wherever m� appears.

Figure 2 clarifies the effects of imposing an additional
et of boundary conditions in y to the coupled-mode treat-
ent of an array of waveguides. For the calculations, we

ave assumed eight coupled resonators with a coupling
onstant of 8
10−4 �m−1. Without the feedback in the y
irection, we compute N=8 values of ��s� at each fre-
uency, thus arriving at the linear dispersion relations
the sloped lines) shown on the left half of the figure. The
ondition ��s�L=m� (L=500 �m, m=2097), denoted by
he vertical line in the plot, “selects” the resonance fre-
uencies of the resonator array, which are marked by

”s. These resonance frequencies in turn correspond to
articular values of s� / �N+1� shown on the right side of
ig. 2. Through this process, the waveguide dispersion re-

ations from the time-independent coupled-mode theory
re converted to the dispersion relation of the coupled
esonators, and the relation between eigenmode splitting
n the time-independent coupled-mode theory and the

odes of a CROW is highlighted.
Assuming that  is the resonance frequency of an un-
oupled resonator, such that �0��L=neff��L /c=m�,
etting ��s�L=m� gives

��s� = 
neff��

neff���s��1 −
MlL

m�
− 2

�lL

m�
cos� s�

N + 1�� . �9�

or N coupled cavities, there are N discrete resonant fre-
uencies.
As N→�, the array modes described by Eq. (9) form a

ontinuum and the array eigenmodes of the structure can
e treated as the Bloch modes of the system. A Bloch
ode is a periodic function in which the field in the �n
1�th period differs from the nth period by a phase factor
f K�, where K is the (continuous) Bloch wavenumber
nd � is the period. Because the fields described by Eq.
8b) are standing waves along z, they can be decomposed
nto superposition of counterpropagating traveling waves
long ẑ. Therefore, by comparison with Eq. (8b), we can
eplace

lim
N→�

s�/�N + 1� → K�. �10�

his leads to the dispersion of a CROW based on an array
f coupled Fabry–Perot resonators

��K� = 1 −
M

m�
− 2

�

m�
cos�K��� , �11�

here we have assumed neff���=neff��=n is a constant,
nd �lL=� and MlL=M are dimensionless coupling coef-
cients. The frequency dependence of � and M are given
y Eq. (5); however, since the bandwidth of a CROW is not
xpected to be large �� /�1�, the coupling coefficients
an be assumed to be constant.

The dispersion relation described by Eq. (11) is of the

ig. 2. (Color online) Schematic illustrating the role of the ad-
itional resonance or boundary condition in y. On the left, the
esonance condition ��s�L=m� selects the resonance frequencies
rom the dispersion relations of the waveguide array. These fre-
uencies correspond to particular values of s� / �N+1� on the
ight.
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ame form as the CROW dispersion from the tight-
inding approximation and the dispersion calculated us-
ng transfer matrices for ring resonators [14]. The key dif-
erence between Fabry–Perot and ring resonators is that
nly two K vectors correspond to a particular eigenfre-
uency for the Fabry–Perot resonators while there are
our K vectors for the rings. Physically, this is because a
ing resonator supports two degenerate modes on reso-
ance (i.e., even and odd, or clockwise and anticlockwise),
hile a Fabry–Perot resonator supports one mode on

esonance.
The slowing factor, given by the ratio of the speed of

ight to the maximum group velocity in the CROW, is

S =
c

v�g�max

=
nL

2��
=

n

2�l�
. �12�

nlike coupled grating defects or ring resonators, the pe-
iod � of the CROW is decoupled from L. Since for weakly
oupled single-mode waveguides �l�10−4–10−3 �m−1 and

can be �5 �m even for modest index contrast ��n /n
10−3–10−2�, large slowing factors of the order of a few

undred to a thousand are possible.

. TRANSFER MATRIX ANALYSIS
hile the modes and the dispersion relation of a wave-

uide array CROW can be determined from the coupled-
ode theory of a waveguide array, the transmission spec-

rum does not immediately follow from the calculations.
ne approach to calculate the spectrum is to expand the

nput excitation field in terms of the eigenmodes of the
ROW and propagate the modes individually. A second,
ore convenient approach, which we shall describe in

his section, is to use a transfer matrix formalism. This

ethod can account for an arbitrary input excitation at
he array end facet, applies to asymmetric structures, and
an also be used for arrays with side-coupled input–
utput waveguides.

To use the transfer matrix formalism, we describe the
ropagation of light through the structure with a 2N
2N matrix. The matrix acts on a column vector describ-

ng both the forward and backward propagating fields at
ach waveguide as shown in Figs. 1(c) and 1(d). We denote
he fields at each interface by

U�y� = 	E1
�+��y� E2

�+��y� . . . EN
�+��y�
T,

D�y� = 	E1
�−��y� E2

�−��y� . . . EN
�−��y�
T, �13�

here En
�+��y� and En

�−��y� are the forward and backward
ropagating fields, respectively, in each element at a par-
icular value of y. Thus, the fields at y=L are related to
hose at y=0 by

U�L�

D�L�� = S�2�QS�1�U�0�

D�0�� . �14�

ere S�1,2� are matrices describing the reflectors at y= l1
nd y= l2, which can arise from Fresnel or Bragg reflec-
ion. Q is the transfer matrix that describes the coupling
nd propagation in the array region.
To simplify the numerics and make the system more

ractable, we assume that light is not coupled from one el-
ment to the next in the reflector sections (from y=0 to
= l1 and from y= l2 to y=L). This assumption is valid for
eflection from cleaved facets and for well-confined wave-
uide modes in short gratings. For the intercavity cou-
ling (from y= l1 to y= l2), we are primarily interested in
he weak coupling regime, where only nearest-neighbor
oupling is significant. The inclusion of the more general
ffect (e.g., nearest-neighbor coupling in the grating sec-
ions) will lead to quantitative, but not qualitative,
hanges in our results.

�q�
The form of S (where q=1,2) is given by
S�q� = S11
�q� S12

�q�

S21
�q� S22

�q�� = �
P11

�q� P12
�q�

F11
�q� F12

�q�

� �

F11
�q� F12

�q�

P11
�q� P12

�q�

P21
�q� P22

�q�

F21
�q� F22

�q�

� �

F21
�q� F22

�q�

P21
�q� P22

�q�

� , �15�
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here Sij
�q� are N
N diagonal submatrices, Pij

�q� are 2
2
ransfer matrices for the input and output waveguides or
esonators, and Fij

�q� are derived from the 2
2 transfer
atrices for the reflectors. In other words, for the middle
aveguides (where n�1,N) we have

En
�+��l1�

En
�−��l1�� = F11

�1� F12
�1�

F21
�1� F22

�1��En
�+��0�

En
�−��0�� , �16�

En
�+��L�

En
�−��L�� = F11

�2� F12
�2�

F21
�2� F22

�2��En
�+��l2�

En
�−��l2�� . �17�

For an array of N−2 resonators with sidecoupled
aveguides for input and output coupling, P12

�q�=P21
�q�=0

nd P11
�q�= �P22

�q��−1 describes the accumulation of phase.
his leads to P11

�1�=exp�−i�0l1� and P11
�2�=exp	−i�0�L− l2�
.

therwise, for input coupling at the end facet of an array
f N resonators, Pij

�q�=Fij
�q�. The elements Fij

�q� can be
eadily calculated for an arbitrary type of mirror (e.g.,
ragg reflectors, cleaved facets).
In the waveguide–coupler section of the structure in

igs. 1(c) and 1(d), one can use the coupled-mode theory
escribed in Section 2:

d

dyU�y�

D�y�� = C �

� C†�U�y�

D�y�� . �18�

herefore,

U�l2�

D�l2�� = Q �

� Q†�U�l1�

D�l1�� � QU�l1�

D�l1�� , �19a�

Q = exp�CL�. �19b�

Combining Eqs. (15) and (19), the transfer matrix for
he overall system is given by

U�L�

D�L�� = S11
�2� S12

�2�

S21
�2� S22

�2��Q �

� Q†�S11
�1� S12

�1�

S21
�1� S22

�1��U�0�

D�0��
� G11 G12

G21 G22
�U�0�

D�0�� , �20�

here G�S�2�QS�1�.
Rearranging terms in Eq. (20) and assuming D�L�=0

no field is incident from the right), we have

U�L� = �G11 − G12G22
−1G21�U�0�, �21a�

D�0� = �− G22
−1G21�U�0�, �21b�

hich relates the input and output fields of our structure.
The transfer matrices can account for an arbitrary in-

ut field at y=0 and can be used to calculate the reflection
nd transmission coefficients of any resonator. However,
n most cases, we are primarily interested in exciting the
rst element and the transmission and reflection coeffi-
ients in the first and last elements only. In this case, the
oundary conditions are UT�0�= 	1 0 0 0. . .0
 and DT�L�
	0 0 0 0. . .0
. Using Eq. (21) and the boundary condi-

ions, the transmission and reflection coefficients are
R1 =
D1�0�

U1�0�
, RN =

DN�0�

U1�0�
, �22�

T1 =
U1�L�

U1�0�
, TN =

UN�L�

U1�0�
, �23�

ith Un�y� representing the nth element of U�y�, and R1
nd T1 are the reflection and transmission coefficients at
he input–through port as marked in Fig. 1, while R2 and
2 are the coefficients at the drop–output port.
The transmission and reflection spectra for a CROW

ith five resonators with side-coupled input and output
aveguides are shown in Fig. 3. The reflectors in the cal-

ulations consist of Bragg gratings with alternating lay-
rs of thicknesses dH=119 nm and dL=123 nm, with ef-
ective indices nH=3.25 and nL=3.15, respectively. The
ratings are 24 �m or 100 periods long. The waveguide
ections have an effective index of 3.25 and are 50 �m
ong. The coupling constant is �l=4
10−3 �m−1. These
arameters can be accomplished by 1.25 �m wide
aveguides with an effective index of 3.25 spaced about
900 nm apart surrounded by a cladding of index 3.15.
he resultant length of the coupled resonators in the di-
ection of periodicity is about �10 �m.

By design, the standing-wave cavities supports a reso-
ance mode at a free-space wavelength of 1.551 �m. It is

ig. 3. (Color online) (a) Transmission spectrum at the through
ort and (b) the transmission and reflection spectra at the input
nd drop ports for the side-coupled array.
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pparent from Fig. 3 that the transmission properties of
ur structures resemble that of microring CROWs [14]. In
lose vicinity of the resonance frequency , the transmis-
ion across cavities is increased. In contrast to CROWs
onsisting of traveling wave cavities (e.g., ring–disk reso-
ators), the maximum transmission in the present situa-
ion is 25% rather than unity as in the case of ring reso-
ators. This is attributed to the fact that the standing-
ave cavity has no degenerate modes at , and the fields

n the cavity can decay into the two waveguides in both
he forward and backward directions [15]. This poses a
imitation on the practicality of a passive system, but will
ot be a main concern for systems with optical gain. In
assive systems, the maximum transmission shown in
ig. 3(b) can be improved by increasing the reflectivity of

he Bragg gratings through increasing the number of pe-
iods and/or the index contrast. The ripples in the spec-
rum can be reduced by apodizing the coupling constants
16–18].

. OPTICAL GAIN
he most straightforward implementation of the Fabry–
erot CROWs is an array of waveguides with cleaved fac-
ts providing the feedback for the resonators. Since the
resnel reflection coefficient is only �30%, a large optical
ain is necessary to compensate for the losses. Gain intro-
uces an imaginary component to the coupling constants,
l and Ml, and can be used to tune the CROW dispersion
f the gain–loss modulation is strong [19].

Optical amplification (and loss) can be built into the
oupled-mode theory by writing the dielectric constant as
complex function:

��r� = �̄�r� + �
n=1

N ���r − n�� + i
2�eff

�0
���r − n��� , �24�

here �� denotes the gain coefficient in the waveguides,
nd �eff normalizes �� /�0 to ��r� and is the effective di-
lectric constant of the waveguides. The gain is a periodic
unction in z in practice because the gain in the wave-
uide core and cladding areas will not be identical.

We assume the uncoupled modes of the individual
aveguides are En�x ,z�exp�−i�0y�. Using the normaliza-

ion condition [Eq. (6)], the coupling constants in the pres-
nce of gain are

�̃l = �l + i
��0�eff

2�0
�
j=1

N �
−�

�

En
*�r�����r − j��En+1�r��dr�

� �l + i�l�, �25a�

M̃l = Ml + i
��0�eff

2�0
�
j=1

N �
−�

�

En
*�r�����r − j��En�r��dr�

� Ml + iMl�, �25b�

here �l and Ml are the coupling constants in the passive
tructure and are given in Eq. (5).

The coupling coefficients are now complex. In typical
emiconductor materials, �� is of the order of
0−3–10−2 �m−1, while � is of the order of 10 �m−1. On
0
he other hand, even in low-index contrast systems, �� is
f the order of 10−1 ��n�0.01�. Therefore, in most cases,

l� /�l ,Ml� /Ml�1.
If the Bloch vectors are complex (i.e., to account for net

ain–loss in the direction of propagation), K=KR+ iKI,
hen the dispersion relation for the CROW is

��K� = 1 −
M

m�
− 2

�

m�
cos�KR��cosh�KI��

− 2
��

m�
sin�KR��sinh�KI��� . �26�

I can be determined from the net gain of the supermodes
f the waveguide array:

��K� = Ml� + 2�l� cos�KR��cosh�KI��

− 2�l sin�KR��sinh�KI��. �27�

pproximating the gain of the supermodes is roughly
qual to the gain of the individual waveguides, ��K�
Ml�, KI� is given by

coth�KI�� =
�l

�l�
tan�KR��, �28�

here KI�=0 when KR�=0,� /2 ,�.

ig. 4. (Color online) (a) Transmission and (b) phase responses
f a resonator array for various gain values. The input is end
oupled into the first element of the array.
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Near the band center, which is the frequency range of
nterest as the CROW group-velocity dispersion is mini-

um, KI� is of the order of 10−3 and is negligibly small.
ence, the dispersion relation does not change signifi-

antly with gain. However, in real systems, the refractive
ndex is expected to change with the gain through ther-

al and carrier injection effects. If these effects induce a
arge gain–loss modulation in the CROW, then the disper-
ion relation can be significantly modified with the optical
ain [19].

In the approximation that the coupling constant re-
ains constant with gain, the gain can be modeled in the

ransfer matrices by the inclusion of a complex propaga-
ion constant �0+ i�0. Figure 4 shows the transmission
nd phase responses of the drop port (or the last resona-
or) for various values of gain calculated using the trans-
er matrices by adding an imaginary component to the
ropagation constant for an array of 15 resonators. The
nput is end coupled into first element of the array as in
ig. 1(d) and the output is taken from the last resonator.
he length of the waveguides is 500 �m, and the coupling
onstant is 8
10−4 �m−1. The gain values correspond to
5%, 90%, 95%, and 99.8% of the mirror losses
/ �2L�ln�r2�, where r2=0.28 is about the reflectivity of
leaved facets. The coupling strength can be achieved
ith 3 �m wide waveguides separated by about �1 �m
ith an index contrast of �n /n�0.05, resulting in slow-

ng factors of about 600.

. CONCLUSION
e have presented a means of slowing light with low-

ndex contrast CROWs using coupled waveguide and la-
er resonator arrays. Low-index contrast systems have
he advantage of having smaller sidewall scattering
osses for a given roughness and typically requiring sim-
ler fabrication processes (e.g., larger feature sizes, shal-
ower etch depth). We have analyzed evanescently
oupled arrays and show that they can achieve slowing
actors of several hundreds times with bandwidths of tens
f gigahertz. Optical amplification, naturally present in
aser arrays, overcomes the severe limitation of high op-
ical attenuation characteristic of most passive slow light
tructures. Combining evanescent coupling in the propa-
ation direction with Bragg or Fresnel reflection in the or-
hogonal direction provides an approach for engineering
ore complex periodic structures to slow light.
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