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ABSTRACT

The angular momentum (AM) evolution of stellar interiors, along with the resulting rotation

rates of stellar remnants, remains poorly understood. Asteroseismic measurements of red

giant stars reveal that their cores rotate much faster than their surfaces, but much slower than

theoretically predicted, indicating an unidentified source of AM transport operates in their

radiative cores. Motivated by this, we investigate the magnetic Tayler instability and argue

that it saturates when turbulent dissipation of the perturbed magnetic field energy is equal

to magnetic energy generation via winding. This leads to larger magnetic field amplitudes,

more efficient AM transport, and smaller shears than predicted by the classic Tayler–Spruit

dynamo. We provide prescriptions for the effective AM diffusivity and incorporate them into

numerical stellar models, finding they largely reproduce (1) the nearly rigid rotation of the Sun

and main sequence stars, (2) the core rotation rates of low-mass red giants during hydrogen

shell and helium burning, and (3) the rotation rates of white dwarfs. We discuss implications

for stellar rotational evolution, internal rotation profiles, rotational mixing, and the spins of

compact objects.

Key words: asteroseismology – instabilities – MHD – stars: evolution – stars: interiors –

stars: rotation.

1 IN T RO D U C T I O N

One of the long-standing problems in stellar astrophysics is the

nature of angular momentum (AM) transport within evolving stars.

After the main sequence, the stellar core contracts and spins up,

while the envelope expands and spins down. The differential rotation

may source various (magneto)-hydrodynamical instabilities that can

transport AM outwards to slow the rotation of the stellar core, with

crucial consequences for the spins of white dwarfs (WDs), neutron

stars, and black holes. However, the AM transport mechanisms at

work remain controversial and enigmatic.

Asteroseismic observations have revolutionized this field by

measuring internal stellar rotation rates for stars at various stages

of evolution. Helioseismic inversions reveal nearly rigid rotation

in the Sun’s radiative zone (Howe 2009; Gough 2015). For low-

mass (M � 3 M⊙) stars, internal rotation rates have been measured

on the main sequence (Kurtz et al. 2014; Benomar et al. 2015;

Saio et al. 2015; Van Reeth et al. 2018), sub-giant/red giant branch

(RGB) (Beck et al. 2012; Mosser et al. 2012; Deheuvels et al. 2014;

Triana et al. 2017; Gehan et al. 2018), red clump (Mosser et al.

2012; Deheuvels et al. 2015), and finally in WD remnants (Hermes

et al. 2017). The conclusion drawn from these measurements is

⋆ E-mail: jfuller@caltech.edu

unambiguous: core rotation rates are relatively slow, and the vast

majority of AM is extracted from stellar cores as they evolve. An

efficient AM transport mechanism must be at work, causing cores

and compact remnants to spin orders of magnitude slower than they

would in the absence of AM transport.

In fact, the spin rates red giant cores and WDs are slower than

theoretically predicted by nearly all AM transport mechanisms

(Cantiello et al. 2014; Belkacem et al. 2015; Fuller et al. 2015;

Spada et al. 2016; Eggenberger et al. 2017; Ouazzani et al. 2018).

The MHD instability known as the Tayler–Spruit dynamo (Spruit

2002) can provide more efficient AM transport than most other

mechanisms, but prior implementations still predict spin rates

roughly an order of magnitude too large because they struggle

to overcome the steep composition gradient in red giants that

suppress AM mixing (Cantiello et al. 2014). Magnetorotational

instability (Balbus & Hawley 1994) may operate in some stars (e.g.

Kagan & Wheeler 2014; Rüdiger et al. 2015; Wheeler, Kagan &

Chatzopoulos 2015) but it is also inhibited by composition gradients

and thus has difficulty operating in red giants. Another possibility

is that magnetic fields enforce rigid rotation in radiative regions

of stars (Mestel 1953), but that differential rotation develops in

deep convective envelopes (Kissin & Thompson 2015a), discussed

further in Section 4. See Aerts, Mathis & Rogers (2018) for a review

of asteroseismic rotation rates and AM transport mechanisms.
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In this paper, we re-investigate the physics of the Tayler instability

and its resulting saturation, as described in the seminal paper by

Spruit 2002 (see also references therein Acheson & Gibbons 1978;

Pitts & Tayler 1985; Spruit 1999; Braithwaite 2006; Denissenkov &

Pinsonneault 2007; Zahn, Brun & Mathis 2007). We show that the

instability can persist in RGB stars despite the existence of strong

composition gradients, and we argue that its growth will saturate in a

different manner than proposed by Spruit (2002). In our formulation,

the instability can grow to larger amplitudes and produce stronger

magnetic torques. We develop a convenient prescription for the

effective AM/chemical diffusivity created by the instability and

implement it into stellar evolution models. The core rotation rates of

these models roughly match those observed in main sequence stars,

red giant cores, and WDs. Hence, if the Tayler instability operates as

we propose, it may largely solve the AM transport problem in stellar

interiors.

2 TAY LER INSTABILITY

Here we analyse the onset, growth, and saturation of the Tayler

instability. We follow the heuristic description of Spruit (2002)

and use the same notation, but we address subsequent criticism by

Denissenkov & Pinsonneault (2007) and Zahn et al. (2007). We

begin by describing the main, generally agreed-upon features of the

Tayler instability and summarize how this instability is typically

argued to saturate via the Tayler–Spruit dynamo. We then present

an alternative way of thinking about the saturation, for which we

explore the corresponding AM transport.

2.1 Instability basics

The instability is analyzed in a rotating frame such that the local

velocity is zero, but the local shear is finite. We make a number

of standard assumptions that are appropriate in the context of

stellar interiors, including (1) the main background component

of the magnetic field is Bφ with corresponding Alfvèn frequency

ωA = Bφ/
√

4πρr2, (2) the angular rotation frequency � is roughly

constant on spherical shells since horizontal turbulence can redis-

tribute AM latitudinally much faster than it can radially, and (3) the

key frequencies are ordered such that ωA ≪ � ≪ N, where N is the

Brunt–Väisälä frequency.

As shear winds the magnetic field, Bφ grows and becomes Tayler

unstable when it reaches a critical strength of (Spruit 2002; Zahn

et al. 2007)

ωA > ωc ∼ �

(

N

�

)1/2(
η

r2�

)1/4

, (1)

where η is the magnetic diffusivity. The corresponding growth

rate of this instability is largest for m = 1 perturbations and is

approximately

ωgrow ∼
ω2

A

�
for ωA � 2� . (2)

Due to the strong stratification in these stars, the radial length-scale

of the instability is limited to

lr ∼
1

kr

� l⊥
ωA

N
, (3)

while the maximum horizontal length-scale of the instability is l⊥
∼ r.1

At the short radial length-scales characteristic of Tayler instability

in red giants, thermal diffusion is efficient so that the thermal

stratification is largely mitigated (see Section 3.1). The main effect

of this can be replicated by replacing N in the above expressions

with an ‘effective’ Brunt–Väisälä frequency

N2
eff ≃

η

K
N2

T + N2
μ , (4)

where K is the thermal diffusivity, N2
T is the thermal component

of the stratification, and N2
μ is the compositional component. Red

giant cores have large composition gradients, so Neff in much of the

core (and especially at the hydrogen-burning shell, the bottleneck

for AM transport) is dominated by its compositional component,

and thus Neff ≃ Nμ. Section C discusses the appropriate value of

Neff when thermal diffusion is moderately important.

2.2 Saturation via the Tayler–Spruit dynamo

The saturation of the Tayler instability is crucial for understanding

the strength of the AM transport and chemical mixing it generates.

The linear instability calculation allows us to determine the rate

at which energy is transferred from background fields to perturbed

fields, but energy dissipation only results from non-linear effects.

This non-linear energy dissipation rate is necessary for calculating

the mean amplitudes of the background and perturbed fields. One

possibility is that the instability grows until it reaches a statistically

stationary state in which the turbulent velocity field produces an

effective viscosity or magnetic diffusivity large enough to balance

the linear growth rate of the instability (Spruit 2002). Equating the

turbulent damping rate γ turb with the linear growth rate results in

γturb ∼ k2
r ηeff ∼

ω2
A

�
, (5)

where the wavenumber kr is the minimum required for instability, kr

∼ ωA/(Nr), and ηeff is an effective turbulent diffusivity. Next, since

the azimuthal field grows via winding by shear as

∂

∂t
Bφ = q�Br (6)

where Br is the radial field, then the amplification rate is γ amp =
q�Br/Bφ . The incompressible nature of the instability implies that

krBr ∼ k⊥Bφ and thus Br ∼ (ωA/N)Bφ , such that

γamp ∼ q�
ωA

N
. (7)

If the azimuthal field Bφ is turbulently damped at the rate of

equation (5), setting equations (5) and (7) equally determines the az-

imuthal field strength at saturation Bφ/
√

4πρr2 ∼ ωA ∼ q�2/N .

The radial field strength is then Br/
√

4πρr2 ∼ q2�4/N3, so that

T = BrBφ ∼ 4πρr2�2q3

(

�

N

)4

. (8)

is the resulting Maxwell stress.

1Although Denissenkov & Pinsonneault (2007) argue the instability operates

on shorter length-scales, we demonstrate in a forthcoming paper (Ma &

Fuller, in preparation) l⊥ ∼ r is generally appropriate by deriving the

dispersion relation at non-polar latitudes. The critique by Denissenkov &

Pinsonneault (2007) is incorrect because it confuses the instability length-

scale l⊥ ∼ 1/k⊥ with the displacement amplitude ξ⊥.
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Slowing stellar spins 3663

An important issue regarding this picture (as pointed out by Zahn

et al. 2007) is that to linear order the Tayler instability grows fastest

in the non-axisymmetric m = 1 mode. Therefore the radial field

generated by the instability is non-axisymmetric, and winding of

this field produces no net increase in the axisymmetric component

of Bφ . Thus the axisymmetric component of Br is not necessarily

related to the axisymmetric component of Bφ via Br/Bφ ∼ ωA/N.

A second potential issue is that equation (5) may not predict the

correct damping rate for a large-scale background field Bφ that varies

on length-scales much larger than 1/kr. If the background field Bφ is

essentially constant on this length-scale, displacements do not mix

background field lines of opposite polarity such that reconnection

or dissipation occurs. Loops of background field can dissipate via

reconnection if they migrate to a pole of a star where the loop has a

small spatial scale, but we show in Appendix B that this mechanism

produces a damping rate much smaller than equation (5). Hence, we

believe equation (5) overestimates the decay rate of any large-scale

component of Bφ , and the saturated values of Br and Bφ can be

larger than those above.

Equation (1) presents a schematic for understanding the satura-

tion of the Tayler instability as envisaged by Spruit (2002), and our

proposed modifications discussed below.

2.3 Saturation via magnetic cascade

Motivated by these difficulties of calculating a turbulent/non-linear

energy damping rate, we explore how turbulent cascades damp

energy from the fluctuating fields δB and δv. Tayler instability

transfers energy from large-scale magnetic fields to perturbed fields

δB that vary on the short length-scale ∼1/kr. In the linear regime,

δB and δv are related to each other via

δB = (k · Bφ)ξ , (9)

where ξ is the Lagrangian displacement associated with the in-

stability. Using δv ≃ −iωRξ , where ωR ∼ ω2
A/� is the real part

of the perturbation frequency, and k · Bφ ≃ kφBφ ≃ imBφ/r sin θ ,

we have

δv ∼
ωA

�
δvA . (10)

Here we have used m = 1 and ignore geometric terms of order unity,

and δvA = δB/
√

4πρ is the perturbed Alfvén velocity. A similar

answer can be obtained by analyzing the momentum equation

∂

∂t
v +

(

v · ∇
)

v = 2(� × v) −
∇P

ρ
+

(∇ × B) × B

4πρ
− g . (11)

The dominant forces in the horizontal direction of equation (11)

are the Coriolis and Lorentz terms. Therefore we expect quasi-

magnetogeostrophic balance, as found in rapidly rotating convective

simulations by Augustson, Brun & Toomre (2016), such that

δv⊥ ∼
ωA

�
δvA,⊥ , (12)

where δv⊥ and δvA, ⊥ are the horizontal components of the perturbed

velocity and Alfvén velocity. Since we shall find ωA ≪ � in

most stellar applications, the perturbation energy is dominated by

magnetic rather than kinetic energy.

Understanding how energy cascades to small (or large) scales

in MHD turbulence is tricky business. We look to Goldreich &

Sridhar (1995), Lithwick & Goldreich (2003), Chandran (2004),

and Lithwick, Goldreich & Sridhar (2007) for guidance, though

these studies did not include the effects of stratification and rotation.

In Appendix A, we attempt to account for Coriolis and buoyancy

forces on the Alfvénic cascade rate to smaller spatial scales, finding

γcas ∼
δvA

r
. (13)

Similar to the weak Alfvénic turbulence described by Lithwick &

Goldreich (2003), equation (13) is determined by the rate at which

energy is transferred to smaller scales when Tayler modes scatter off

one another. We assume magnetic energy cascades from the large

scales of the instability to small scales where it is damped, such that

the cascade rate γ cas effectively represents a turbulent damping rate

of the perturbed magnetic energy. The non-linear energy dissipation

rate is then

Ėdamp ∼
δvA

r
|δB⊥|2 . (14)

We do not expect energy in the background field Bφ to be damped

by a turbulent cascade to small scales. This is a key difference

from Spruit (2002), who uses a damping rate Ėdamp ∼ γturb|B2
φ | ∼

(ω2
A/�)|B2

φ |. We believe that this is unphysical because the Alfvénic

turbulence does not cause magnetic energy in the background field

to cascade to small scales, it is only the Alfvén waves traveling

along the background field (i.e. Tayler modes) that cascade to small

scales where they can be damped.

As in Spruit (2002), we assume the instability saturates and

reaches a statistically stationary state when the instability growth

rate is matched by the turbulent damping rate such that

ω2
A

�
∼

δvA

r
. (15)

Note that equation (15) implies that upon saturation, the perturbed

and background field are related by

δB⊥ ∼
ωA

�
Bφ , (16)

so that the energy damping rate is

Ėdamp ∼
ω4

A

�3
|Bφ |2 . (17)

Energy in the background field can be damped if field loops

can reconnect with loops of opposite polarity, which can occur

sufficiently close to the pole of the star where the loops have a small

spatial scale. In Appendix B, we show that the maximum possible

energy damping rate due to this effect is

Ėdamp,pole �
ω4

A

�3
B2

φ , (18)

which is less than or equal to the energy damping rate of equa-

tion (17). Hence, both mechanisms may contribute to saturation of

the instability, but equation (17) is always a good estimate of the

total energy damping rate.

Next, it is useful to consider the flow of energy in this system,

which is as follows.

(i) Rotational shear energy is converted to magnetic energy by

winding a radial field into a toroidal field.

(ii) Toroidal field energy is converted by the Tayler instability

into magnetic/kinetic energy associated with the perturbed mag-

netic/velocity field.

(iii) These perturbations are damped into heat by a turbulent

cascade.

At equilibrium, the energy input by winding must equal the

turbulent energy dissipation rate. The energy input by winding is

∂

∂t
Emag ∼ Bφ

∂

∂t
Bφ ∼ q�BφBr . (19)
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3664 J. Fuller, A. L. Piro, and A. S. Jermyn

Figure 1. Schematic showing the physical processes at work in stars undergoing Tayler instability, according to the Tayler–Spruit dynamo as proposed by

Spruit 2002 (top) and our model (bottom). Black arrows represent magnetic field lines, while red arrows represent fluid motions. Orange text describes processes

that we argue operate differently than proposed by Spruit 2002.

Equating the energy input rate to energy damping rate, we have

q�BφBr ∼
ω4

A

�3
|Bφ |2 . (20)

To solve our system, we need an estimate of Br/Bφ . In Section 2.3.1,

we argue that Br can grow until Lorentz forces nearly stabilize the

plasma against the growth of the Tayler instability, such that

Br

Bφ

∼
ωA

Neff

. (21)

This is the same ratio used by Spruit (2002), but it arises for different

reasons. Combining this with equations (15) and (20), we expect

the turbulent damping to saturate the Tayler instability at

Bφ
√

4πρr2
= ωA ∼ �

(

q�

Neff

)1/3

, (22)

Br
√

4πρr2
∼ �

(

q2�5

N5
eff

)1/3

, (23)

δB⊥
√

4πρr2
∼

δvA

r
∼ �

(

q�

Neff

)2/3

, (24)

δv⊥

r
∼ �

q�

Neff

. (25)

These fields can then drive AM transport and chemical mixing as

further described in Section 2.4.

2.3.1 The importance of non-linear induction

Before providing prescriptions that can be used for stellar evolution

calculations, it is helpful to address some conceptual challenges

associated with this new approach to the saturation of the Tayler

instability. Initially, Br can be due to a small seed field, but as this

field is converted to a toroidal field and dissipation occurs, it must

be replenished. This new Br can then continue to be wound by

the shear, and continue the flow of energy as outlined above. The

question is how this new Br is generated and how strong can it grow.

As argued in Section 2.2, closing the loop between Br and Bφ is

difficult if only linear effects are considered. This can be seen by

starting with the linearized induction equation,

∂

∂t
δB = (δB · ∇)v + (Bφ · ∇)δv . (26)

and taking the azimuthal average, which yields

∂

∂t
〈δB〉 = 0 . (27)

This is because the perturbed magnetic/velocity field is non-

axisymmetric (m = 1) to linear order, while the background

magnetic field is axisymmetric. Equation (27) conveys the argument

MNRAS 485, 3661–3680 (2019)
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Slowing stellar spins 3665

by Zahn et al. (2007) that winding of the non-axisymmetric field

cannot regenerate the axisymmetric toroidal field.

However, there can be growth of the axisymmetric radial field if

we include non-linear terms in the induction equation. Perturbing

the induction equation to second order and taking the azimuthal

average yields

∂

∂t
〈δB〉 = 〈(δB · ∇)δv〉 . (28)

To order of magnitude, we thus expect

∂

∂t
〈δBr〉 ∼

〈δv⊥δB⊥〉
r

. (29)

Hence, we expect some growth of an axisymmetric radial field due

to non-linear induction, i.e. an α-dynamo effect.

However, as shown by Braithwaite (2009), Tayler instability

cannot operate if Br rises above a threshold value. This occurs

if magnetic tension forces due to perturbation of the radial field are

larger than magnetic pressure forces driving the instability, which

can be expressed as

r2k2
r B

2
r � B2

φ . (30)

If Br grows until the instability is quenched, then the maximum

possible value of Br (corresponding to the longest length-scale

unstable disturbance rkr ∼ Neff/ωA) is

Br =
ωA

Neff

Bφ . (31)

This is identical to the condition arising from incompressibility

used by Spruit (2002), but it relates the axisymmetric component

of Br and Bφ , whereas Spruit’s relation is valid only for the non-

axisymmetric component of Br.

2.4 Angular momentum transport

The torque via Maxwell stresses in the saturated state is found from

combining equations (22) and (23),

T = BrBφ ∼ 4πqρr2�2

(

�

Neff

)2

(32)

corresponding to an effective AM diffusivity

νAM =
T

4πρq�
∼ r2�

(

�

Neff

)2

. (33)

Although these scalings apply in the case of magnetic energy

dissipation balance, it is difficult to predict the exact prefactors

using these analytic arguments. We therefore parametrize our result

via the saturated Alfvén frequency, using a dimensionless parameter

α such that

ωA = α�

(

q�

Neff

)1/3

. (34)

The parametrized AM diffusivity is then

νAM = α3r2�

(

�

Neff

)2

. (35)

We expect α of order unity, and indeed in Section 3 we find α ≈ 1

fits the observational data.

Combining the instability criterion given by equation (1) with the

value of ωA in the saturated state implies a minimum shear in order

for the instability to occur and saturate as outlined above. Equating

(1) and (34), we find

qmin ∼ α−3

(

Neff

�

)5/2(
η

r2�

)3/4

. (36)

We show in Section 3 that this minimum shear appears to frequently

be realized in red giant stars, such that ωA ∼ ωc in most of the core.

In this case, the core rotation rates are set mostly by the structure

of the star (i.e. profiles of Neff and η) and are very insensitive to the

initial rotation rate or prior evolution of the star.

2.5 Energetics and mixing

Note that our relations at saturation imply a hierarchy of rotational,

background magnetic, perturbed magnetic, and kinetic energy

densities:

Erot ∼ 4πρ�2r2

≫ Emag,back ∼ B2
φ ∼ Erot

(

q�

Neff

)2/3

≫ Emag,pert ∼
∣

∣δB|2 ∼ Erot

(

q�

Neff

)4/3

≫ Ekin ∼ 4πρ|δv|2 ∼ Erot

(

q�

Neff

)2

. (37)

These hierarchies are true as long as q � Neff/�, which is true in

our models in Section 3, where q ∼ 1 and Neff/� ∼ 104. However,

in cases where q is much larger, the hierarchy will be altered, and

the instability could saturate in a different manner.

From the divergence-free conditions on the perturbed magnetic

and velocity fields, we can also calculate their radial components:

δBr
√

4πρr2
≃

k⊥

kr

δB⊥
√

4πρr2
∼

ωA

Neff

δB⊥
√

4πρr2
∼ �

q�2

N2
eff

, (38)

δvr

r
∼

ωA

Neff

δv⊥

r
∼ �

(

q4�7

N7
eff

)1/3

. (39)

The radial components of the fields are typically orders of magnitude

smaller than the horizontal components due to the tiny value of

�/Neff in most stars.

For this reason, chemical mixing induced by the Tayler instability

will likely be less important than AM transport in most stars. The

effective chemical mixing diffusivity is

νmix ∼ δvr lr . (40)

Using the relations above, we have

νmix ∼ r2�

(

�

Neff

)2(
q�

Neff

)5/3

, (41)

so that

νmix

νAM

∼
(

q�

Neff

)5/3

, (42)

for the ratio of chemical mixing to AM transport.

In red giants, we find νmix/νAM ∼ 10−6, such that chemical

mixing caused by the Tayler instability is minuscule. The chemical

mixing time-scale across the star is longer the Ohmic diffusion

time-scale, which is longer than the stellar evolution time-scale

(Cantiello, Fuller & Bildsten 2016), so the chemical mixing is likely

negligible. The scaling of 42 is stronger than that of Eddington-

Sweet circulation, so we expect chemical mixing from Tayler

instabilities to be unimportant unless q ≫ 1 or Neff ≪ N.
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3666 J. Fuller, A. L. Piro, and A. S. Jermyn

Figure 2. Important frequencies as a function of radius in a 1.2 M⊙, 4 R⊙
model at the base of the RGB. We show the Brunt–Väisälä frequency N, its

compositional component Nμ, and its effective value Neff (equation 4) when

thermal diffusion is important. We also plot the angular rotation frequency

�, the saturated Alfvén frequency ωA (equation 34), the minimum Alfvén

frequency required for Tayler instability ωc (equation 1), and the thermal

diffusion frequency at the instability length-scale ωt (equation 43). Note that

ωA ≪ � throughout the interior such that Tayler instability occurs in the

rapidly rotating regime. Because ωt ≫ ωA, the instability occurs in the limit

where thermal diffusion is important.

3 STELLA R M ODELS

With our prediction for AM transport due to Tayler torques, we im-

plement this prescription into stellar evolutionary models to predict

their internal rotation rates. We then compare with asteroseismic

measurements of internal rotation rates, finding generally good

agreement.

3.1 Properties of red giant cores

An important feature of post-main sequence stars is their steep

composition gradient in and above their hydrogen burning shells.

Fig. 2 shows a M = 1.2 M⊙ model on the lower RGB at R = 4.1 R⊙
and log(g)=3.3. At the hydrogen burning shell, the stabilization is

primarily due to the hydrogen-helium composition gradient such

that N ≃ Nμ, but even above the burning shell, we often find Nμ

∼ N/5 due to the hydrogen gradient left behind by partial pp-chain

burning during the main sequence. Hence, the compositional part

of the stratification is very important, even above the burning shell.

An important consideration for the operation of the Tayler

instability is whether thermal diffusion will undermine the thermal

component of N2. It is useful to compare the growth rate of the

instability with the thermal diffusion time-scale at the instability

length-scale,

γ = k2
r χ (43)

≃
χ

r2

N2
eff

ω2
A

. (44)

Here, we have used the maximum radial length-scale for Tayler

instability lr ∼ r(ωA/Neff), and the thermal diffusivity χ =
16σ SBT3/(3ρ2cvκ). Thermal diffusion strongly reduces the effective

thermal stratification when γ � ω, where ω is the real part of the

frequency of the overstable oscillations. Zahn et al. (2007) show

that ω ∼ ω2
A/�. Using our saturated field strength (equation 34),

we find thermal diffusion is very important when

ωt =
χ

r2

(

N5
eff

q2α6�5

)2/3

� �. (45)

A comparison of ωt and � in Fig. 2 shows that the former is larger

throughout the radiative core, such that thermal diffusion is very

important. This is almost always the case in our post-main sequence

models. In this case, as discussed by Zahn et al. (2007), the effective

stabilization is given by equation (4). In most regions of our models,

we find N2
eff ≃ N2

μ.

3.2 Comparison with measurements

We expect the AM diffusivity of equation (35) to capture the scaling

of magnetic torques in differentially rotating stars, but we must

still evaluate the appropriate value of α. To that end, we construct

rotating stellar models using the MESA stellar evolution code

(Paxton et al. 2011, 2013, 2015, 2018). We assume rotation constant

on spherical shells and near rigid rotation in convective zones. These

models include AM transport via the diffusivity of equation (35)

applied to gradients in angular rotation frequency, which is included

if equation (36) is satisfied. Our models also include hydrody-

namic AM transport mechanisms (which are usually negligible

compared to our revised TS torques), but we do not use MESA’s

default prescription for TS torques. A full inlist can be found in

Appendix D.

To calculate core rotation rates Pcore for comparison with aster-

oseismology, we compute the average core rotation period Pcore =
2π /�core as sensed by a gravity wave in the WKB limit,

�core =
∫

�Ndr/r
∫

Ndr/r
. (46)

The bounds of the integral in equation (46) correspond to the

boundaries of the core gravity mode cavity where ωg < N, and

we consider gravity waves with frequency ωg = 2πνmax, where the

frequency of maximum power is calculated via classical scaling

relations νmax = 3090 μHz (M/M⊙)(R/R⊙)−2(T /T⊙)−1/2. For our

WD models, we simply set Pcore equal to the central rotation

rate.

We evolve solar metallicity models ranging from 1.2 − 6 M⊙
from the zero-age main sequence (ZAMS) to the WD phase. We

initiated each model with a spin rate Pi = 2 d, except for the 1.2 M⊙
model for which we used Pi = 20 d to account for main sequence

magnetic braking. Fig. 3 shows evolution of the core and surface

rotation rates of a 1.6 M⊙ model with a ZAMS rotation period Pi =
2 d. We also denote typical measured rotation rates of cores of stars

ascending the RGB (Mosser et al. 2012; Gehan et al. 2018), stars on

the red clump (Mosser et al. 2012), and WDs (Hermes et al. 2017),

all of which descended predominantly from main sequence stars in

the range 1 M⊙ � M � 3 M⊙. Typical core rotation rates are Pcore

∼ 10−20 d on the lower RGB, Pcore ∼ 50−200 d on the red clump,

and P ∼ 0.5−4 d for WDs.

Our models generally exhibit very similar rotation rates to

observations for α ≈ 1, a reasonable value since we expect α ∼
1. The agreement is very good along the RGB, red clump, and in

the WD phase. We also plot the model’s surface rotation rate, which

shows that nearly rigid rotation is maintained beyond the end of the

main sequence. The rigid rotation is maintained until the ratio of

�/Neff becomes sufficiently small that the Tayler instability cannot

MNRAS 485, 3661–3680 (2019)
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Slowing stellar spins 3667

Figure 3. Post-main sequence rotational evolution of a 1.6 M⊙ star, with

a ZAMS rotation rate Pi = 2 d and including our updated prescription for

AM transport with α = 1. We plot the surface rotation rate (blue line), and

core rotation rate as sensed by mixed modes (red line). We also include the

core rotation rate using a prior prescription for the TS dynamo (black line).

Our AM transport scheme closely matches observations along the red giant

branch (Mosser et al. 2012; Gehan et al. 2018), red clump (Mosser et al.

2012; Deheuvels et al. 2015), and WD phase (Hermes et al. 2017).

fully prevent the spin-up of the core. After this point, differential

rotation develops during the late sub-giant/early red giant phase as

the core contracts and tries to spin up, while the envelope expands

and spins down. However, the AM transport is strong enough that the

core rotation period actually increases between the main sequence

and the tip of the RGB. In contrast, a model including the default

prescription for TS torques exhibits core spin-up along the RGB,

spinning an order of magnitude too fast compared to observations,

in agreement with the results of Cantiello et al. (2014). Models with

only hydrodynamic prescriptions for AM transport have even faster

core rotation and are totally incompatible with observations.

Our models diverge from those with different AM transport

prescriptions along the sub-giant branch and lower RGB because

most of the core AM extraction in our models occurs during these

phases. At later stages of evolution of low-mass stars (M � 2 M⊙),

the stabilizing composition gradients are so large in comparison to

the local rotation rates that very little AM transport occurs after

the RGB bump. This result agrees with Cantiello et al. (2014),

who find that red clump and WD rotation rates require approximate

conservation of core AM after the RGB bump.

To understand the dependence of our results on the parameter

α and the star’s initial spin rate, Fig. 4 shows core rotation rates

for models with different values of α and Pi. Remarkably, the

core spin rate on the RGB and red clump is nearly independent

of the initial spin. The reason is the strong dependence of AM

transport on the local spin rate, with νAM ∝ �3. Rapidly rotating

cores experience a stronger spin-down torque while slowly rotating

cores feel a weaker spin-down torque, causing convergent migration

in the post-main sequence core spin rate. Note that the WD spin rate

does exhibit some dependence on initial spin rate, largely because

this determines the AM of the accreted material on the clump and

asymptotic giant branch (AGB).

Fig. 4 shows that the post-main sequence spin period is roughly

proportional to α. Nearly rigid rotation is maintained along the main

sequence, regardless of α, except for very slow rotators in which

Figure 4. Core rotation rate for the same star as Fig. 3, but varying the initial

rotation rate and parameter α. The post-main sequence rotation period scales

approximately as α, but is relatively insensitive to initial rotation rate.

Figure 5. Rotation profile of a 1.2 M⊙ model on the lower RGB when

its radius is R ≈ 4 R⊙ (same model as Fig. 2). The model has Pi = 20 d

and α = 1. The right axis shows the Brunt–Väisälä frequency. Shear is

concentrated around the hydrogen burning shell (dashed black line) where

the compositional component of the stratification is largest.

the value of νAM is much smaller (see discussion in Section 4). The

models slightly diverge from one another on the lower RGB, with

smaller values of α allowing faster core rotation. We find that the

main effect of the value of α in our models is not the prefactor in

equation (35), but rather in determining the minimum shear qmin

(equation 36) required for Tayler instability to saturate as we have

outlined. When q > qmin, efficient AM transport generally decreases

the core rotation and shear, thereby reducing q until q ∼ qmin, as

shown in Appendix D. In this limit, equation (36) predicts that the

core rotation scales as � ∝ α−12/13, in line with our numerical

finding that the core spin period is approximately proportional

to α.

Fig. 5 shows the rotation profile of a 1.2 M⊙ model at the base

of the RGB for α = 1. The shear is strongest at the hydrogen-

burning shell where Nμ is largest. There is very little shear in the

helium core where almost no compositional stratification exists.

Significant shear also exists in the radiative region above the burning

shell due to the composition gradient left over from incomplete

MNRAS 485, 3661–3680 (2019)
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3668 J. Fuller, A. L. Piro, and A. S. Jermyn

Figure 6. Core rotational evolution (as sensed by mixed modes) for models

of several masses. Each model uses α = 1 and is initiated with Pi = 2 d,

except the 1.2 M⊙ model that has Pi = 20 d. The highest plateaus of each

model correspond to the core helium-burning phase, and each model ends

as a carbon-oxygen WD.

hydrogen burning outside the central core during the main sequence.

Encouragingly, this rotational profile is very similar to that inferred

for the RGB star KIC 4448777 (Di Mauro et al. 2016, fig. 11)

at nearly the same phase of evolution, though we caution that

the actual rotation profile is poorly constrained by asteroseismic

data.

Our model makes important predictions for core rotation rates

as a function of progenitor mass, as shown in Fig. 6. We find

core rotation rates on the RGB in the range 10 d � Pcore � 30 d

regardless of mass. On the clump, the differences between stars of

different masses are slightly larger: our models predict slower core

rotation rates for low-mass clump stars, with Pcore ∼ 100 − 200 d

for ≈1.2 M⊙ stars. We predict faster rotation for secondary clump

stars, with Pcore ∼ 50 d for M ≈ 2.2 M⊙. The trend of faster rotation

for higher-mass clump/secondary clump stars indeed appears to be

present in the results of Mosser et al. (2012). We also predict very

mild core spin-down during helium-burning for lower-mass stars,

whereas we predict significant core spin-down during the helium-

burning phase of secondary clump stars (by a factor of ∼2).

We also make predictions for WD spin rates as a function

of WD mass. Fig. 7 shows asteroseismicly measured WD spin

periods from Hermes et al. (2017) as a function of WD mass,

along with predictions from our stellar models evolved down the

WD cooling track to the ZZ-ceti instability strip. The ZAMS

models have masses MZAMS = (1.2, 1.6, 2.2, 3.0, 4.0, 5.0, 6.0) M⊙
and produce carbon–oxygen WDs with masses MWD =
(0.54, 0.56, 0.58, 0.64, 0.81, 0.87, 0.95) M⊙. Fig. 7 demonstrates

that our predicted WD spin rates are very similar to those observed,

with PWD ∼ 1−3 d for WDs with M ≈ 0.6 M⊙. We predict that

more massive WDs rotate faster, a trend indeed observed in Hermes

et al. (2017), but our highest mass models rotate much slower than

the observed high-mass (M � 0.7 M⊙) WDs.

In general, the observed population on WDs appears to exhibit

more scatter than our model predictions, some of which may be

inherited from the scatter in progenitor rotation rate as shown in

Fig. 4. Additionally, our models do not take into account binary

effects such as mergers (during either stellar evolution or WD

mergers) that may produce faster rotating stellar cores and WDs.

Kilic et al. (2018) suggest that ∼10 per cent of WDs, especially

Figure 7. Internal rotation rates of our WD models as a function of WD

mass. The models are the same as the end points of the models in Fig. 6. We

also plot WDs with asteroseismic rotation rates from Hermes et al. (2017).

higher mass WDs, are likely to be merger products. We speculate

some of the faster rotating WDs shown in Fig. 7 resulted from

stellar mergers during post-main sequence evolution. Finally, our

models do not make reliable predictions for descendants of magnetic

Ap/Bp stars, whose strong internal fields likely increase AM

transport and may keep their cores more slowly rotating than our

predictions.

4 D ISCUSSION

Our AM transport prescription predicts extremely short AM trans-

port times tAM within radiative zones of main sequence stars,

tAM ∼
r2

νAM

∼
N2

eff

α3�3
. (47)

For a fast-rotating young Sun, we find that the instability occurs

in the nearly adiabatic limit such that Neff ≈ N. Evaluating

equation (47) in the radiative zone of a young solar model rotating at

P = 3 d yields a typical AM transport time-scale tAM ∼ 10 yr. In the

current Sun, the rotation rate is much slower and tAM ∼ 104 yr,

but this still enforces nearly rigid rotation in agreement with

helioseismic measurements (Howe 2009; Gough 2015). In most

cases, we predict nearly rigid rotation for main sequence stars,

although modest differential rotation may exist in very slowly

rotating stars. For rotation rates of about 100 d, equation (47)

predicts tAM ∼ 106 yr, which may be longer than the time-scale for

shear to develop due to other effects such as internal gravity waves

(Rogers et al. 2013; Fuller et al. 2014; Townsend, Goldstein &

Zweibel 2018). Hence, differential rotation can persist in slowly

rotating stars, and this could explain why some very slowly rotating

stars (see Kurtz et al. 2014; Saio et al. 2015; Triana et al. 2015;

Kallinger et al. 2017; Sowicka et al. 2017) appear to exhibit some

degree of differential rotation, while more rapidly rotating stars and

main sequence stars appear to be nearly rigidly rotating (Aerts et al.

2018).

The short AM transport time for main sequence stars may

seemingly contradict observations of rotational evolution of young

≈1.0 M⊙ stars, for which several works (e.g. Denissenkov et al.

MNRAS 485, 3661–3680 (2019)
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2010; Gallet & Bouvier 2015; Lanzafame & Spada 2015) find

evidence for core-envelope coupling times in the range tAM ∼
10–100 Myr. These coupling times are deduced by fitting models

including magnetic braking and core-envelope decoupling to the

surface rotational evolution of cluster stars at a variety of ages. The

wide distribution of surface rotation rates extending to ages older

than 100 Myr can only be fit using a value of tAM ∼ 107–108 yr

that varies with mass and rotation rate. These models all utilize

relatively simple and deterministic magnetic braking laws, but

the bimodal rotation rates of low-mass cluster stars (e.g. Rebull

et al. 2016, 2017, 2018) cannot be explained by such models.

Instead, it appears that magnetic braking is strongly influenced

by surface magnetic field morphology, such that rapidly rotating

stars with more complex fields can spin down more gradually than

slower rotating stars with mostly dipolar fields, which can explain

the bimodality and rotational evolution of low-mass cluster stars

(Brown 2014; Garraffo, Drake & Cohen 2015, 2016; Garraffo et al.

2018), even assuming rigid internal rotation. In light of the relatively

short AM transport time-scales needed to explain the slow rotation

of red giant cores, we find it most likely that tAM is indeed very small

for main sequence stars such that they rotate nearly rigidly, but that

magnetic braking can be a more complex process than previously

assumed, especially for young stars.

Our results have important consequences for mixing processes

that depend on stellar rotation, such as meridional circulation

and various shear instabilities. Mixing resulting directly from

Tayler instability (equation 41) is typically quite small as long

as there is a composition gradient such that �/Neff ≪ 1, which

is often the case in radiative regions that have undergone any

nuclear processing. An exception to this is horizontal mixing.

Unless q ≪ 1, the horizontal circulation given by equation (25)

is more rapid than the Eddington–Sweet circulation. This helps

to justify the assumption of Zahn (1992) that horizontal mixing

is much faster than vertical circulation currents, and so supports

the conclusion that vertical chemical mixing is slow relative to

the vertical advection rate. More importantly, our models exhibit

slower core rotation and smaller shears than previous predictions,

resulting in less mixing via shear instabilities. We thus suspect

that rotational mixing has been overestimated in many previous

works. To quantify this statement, more thorough calculations must

be performed, incorporating AM/chemical transport via Tayler

instability, meridional circulation, shear instabilities, convective

overshoot, etc. The coupled effects of AM tranpsort and mixing

can then be compared with abundance/rotation measurements (see

e.g. Somers & Pinsonneault 2016) for stars in clusters. We hope

to explore mixing effects and make detailed predictions for surface

abundances in future work.

Our models assume that convection zones are nearly rigidly

rotating, which may not be true for deep convective zones where

asymmetric convective energy/AM fluxes may cause deeper layers

of the convective envelope to rotate faster (Brun & Palacios 2009;

Kissin & Thompson 2015a). Indeed, some degree of envelope

differential rotation may be necessary to explain rotation rates of

horizontal branch stars (Sills & Pinsonneault 2000). However, en-

velope differential rotation does not always change our predictions

for rotation in radiative cores for two reasons. First, the strong

dependence of AM transport on local rotation rate, νAM ∝ �3,

causes core rotation to converge to a rate only weakly dependent

on surface rotation rate. Second, in our models we find the core

rotation rate often converges to a state marginally unstable to Tayler

instability such that the core rotation rate is set by equation (36).

Preliminary tests indicate envelope differential rotation may allow

for slightly faster rotation rates of WDs, similar to the effect of

decreasing the initial spin period and allowing the core to accrete

more AM during the AGB.

Currently the most viable alternative to our model is that

of Kissin & Thompson (2015a), which posits rigid rotation in

radiative zones enforced by magnetic torques and differential

rotation in convective zones due to convective AM pumping. The

clear prediction from our model is that differential rotation is

mostly in the core, while the Kissin & Thompson (2015a) model

predicts differential rotation confined to the envelope. Asteroseismic

observations appear to disfavor envelope differential rotation (Di

Mauro et al. 2016; Klion & Quataert 2017; Di Mauro et al. 2018),

though currently their ability to distinguish between the models is

limited. Both models may have some tension with observations, as

Kissin & Thompson (2015a) predict rotation rates that are too slow

for low-mass (M � 1.2M⊙) RGB stars, and Kissin & Thompson

(2015b) appear to predict anomalously slow rotation rates for

some WDs.

A potential problem with our mechanism is that it may under-

predict the scatter in observed core rotation rates, as our models

converge to a similar rotation rate regardless of initial conditions.

Additionally, we predict significant spin-up of red giant cores

(by a factor of ∼2) along the lower RGB, whereas Gehan et al.

(2018) find no clear spin-up/spin-down as a function of evolutionary

state. More work predicting spin rates for a population of stars

(incorporating changes in initial spin-rate, metallicity, binarity,

etc.), along with more asteroseismic measurements and a better

understanding of measurement biases2 will help to distinguish

between the competing models, though we note that differential

rotation in both the convective envelope and the radiative core is

possible.

Another obstacle for our model is that the radiative core must

have very weak fossil fields in order for the Tayler instability

to dominate AM transport. Fig. 8 plots various components of

the magnetic fields in a stellar model. Of particular importance

is the radial field Br, which we predict to have a strength of

Br ∼ 10−2 G through much of the radiative core. Recall that for

the predicted value of Bφ , Tayler instability cannot occur if there

is a fossil field with strength greater than equation (23). If there

is a fossil component of Br larger than that shown in Fig. 8, the

azimuthal component Bφ must be amplified by shear to larger

field strengths before Tayler instability kicks in. By the time this

occurs, the Maxwell stress BrBφ will be larger than predicted by our

model, bringing the radiative core closer to a state of rigid rotation.

So, even relatively weak fossil fields (Br � 10−2 G) may enforce

nearly rigid rotation of the radiative core. While the internal field

strengths of red giants are not well known,3 a rigidly rotating core

enforced by fossil fields would necessitate large differential rotation

in the convective envelope, as advocated by Kissin & Thompson

(2015a).

2We are concerned that measurement bias limits the number of core rotation

measurements for stars with more rapidly rotating cores higher up the

RGB, where the rotational frequency splitting becomes comparable to the

mixed mode period spacing, and the asteroseismic power spectrum becomes

difficult to interpret (Deheuvels, Ouazzani & Basu 2017).
3While some red giants with suppressed dipole oscillation modes may have

very strong (Br � 105G) magnetic fields (Fuller et al. 2015; Stello et al.

2016), those whose internal rotation has been measured must have weaker

fields in order for gravity waves to propagate in their cores such that the core

rotation rate can be measured.

MNRAS 485, 3661–3680 (2019)
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3670 J. Fuller, A. L. Piro, and A. S. Jermyn

Figure 8. Magnetic field strengths associated with the Tayler instability in

the radiative core of the same stellar model shown in Fig. 2. We plot the

background toroidal magnetic field strength (red solid line, equation 22), the

mean radial magnetic field strength (blue solid line, equation 23), the typical

perturbation field strength (red dashed line, equation 24), and the perturbed

radial field strength (blue dashed line, equation 38). We also plot the toroidal

(orange line) and radial (purple line) field strengths from equations (21) and

(23) of Spruit (2002).

5 C O N C L U S I O N S

The pioneering work of Spruit (2002) has shown that Tayler instabil-

ities naturally occur in stellar interiors and may dominate internal

AM transport. However, the saturation of the instability and the

resulting AM transport remain poorly understood. Whereas Spruit

(2002) posits that energy in the background field is dissipated at the

instability growth rate, we argue that Tayler instability saturates via

the turbulent dissipation of unstable magnetic field perturbations.

Our saturation mechanism results in a smaller energy dissipation

rate, such that the magnetic fields reach larger mean amplitudes. The

stronger fields produce larger Maxwell stresses and more efficient

AM transport. Crucially, our proposed saturation condition does not

depend on the closure of a dynamo loop and thus avoids the prob-

lems pointed out by Zahn et al. (2007). Another important difference

is that the minimum shear for significant AM transport (equation 36)

is smaller than that of equation (26) of Spruit (2002), and thus Tayler

instability can occur at much lower shear as long as equation (1) is

satisfied.

When Tayler instability operates, we find that it produces an

effective AM diffusivity given by equation (35). In our models,

the resultant torque often reduces the shear to a state of marginal

stability given by equation (36). Implementation of our results

into stellar evolution codes shows that a reasonable saturation

parameter α ≈ 1 leads to core rotation rates in good agreement with

asteroseismic measurements for main sequence stars, red giants,

and WDs across a wide range in mass. Hence, these findings may

be a key step toward solving the AM transport problem within stars,

and they open the door to realistic predictions of internal stellar

rotation rates during phases of evolution prohibitively difficult to

observe.

Our results have major implications for the core rotation rates of

massive stars and their compact progeny. Prior estimates (Heger,

Woosley & Spruit 2005) based on the original TS dynamo prescrip-

tion predicted neutron star rotation rates of PNS ∼ 10 ms, somewhat

faster than typical pulsar birth periods PNS � 10–50 ms (Faucher-

Giguère & Kaspi 2006; Igoshev & Popov 2013; Gullón et al.

2014). We expect our updated AM prescription to yield significantly

slower NS rotation than prior predictions, and in future studies

we will investigate the core rotation rates of evolving massive

stars to predict the natal spin rates of neutron stars and black

holes.
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2017, MNRAS, 467, 4663

Spada F., Gellert M., Arlt R., Deheuvels S., 2016, A&A, 589, A23

Spruit H. C., 1999, A&A, 349, 189

Spruit H. C., 2002, A&A, 381, 923

Stello D., Cantiello M., Fuller J., Huber D., Garcı́a R. A., Bedding T. R.,

Bildsten L., Silva Aguirre V., 2016, Nature, 529, 364

Townsend R. H. D., Goldstein J., Zweibel E. G., 2018, MNRAS, 475,

879
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APPEN D IX A : TURBULENT MAG NETIC CASCADE

In this Appendix we summarize the non-linear damping arguments of Lithwick & Goldreich (2003) and extend them to the instability

discussed in this paper. We begin with the equations of incompressible MHD in the absence of rotation or buoyancy:

ρ∂tv + ρv · ∇v = −∇P + ρ vA · ∇vA (A1)

∂tvA + v · ∇vA = vA · ∇v (A2)

∇ · v = 0 (A3)

∇ · vA = 0. (A4)

The pressure P is the total pressure, including both gas and magnetic contributions. If the magnetic field is composed of a large-scale slowly

varying component and a small-scale fluctuating one we may decompose it, or equivalently the Alfvén velocity, as

vA = vA,0 + δvA, (A5)

where vA,0 is the slowly varying background copmponent and δvA is the fluctuating one. With this decomposition we define combinations of

fluid velocity and magnetic field fluctuation

w± ≡ v ± δvA. (A6)

The equations of motion may then be cast as

∂tw± ± vA,0 · ∇w± = −w∓ · ∇w± − (1/ρ)∇P (A7)

∇ · w± = 0. (A8)

As usual in incompressible systems the pressure is not an independent degree of freedom, and may be used to ensure that the second of these

equations is satisfied. The net result is that P serves to project the non-linear term in the first equation into the subspace specified by the

second equation.

Studying only linear terms, equation (A7) just describes the advection of combined variations in the fluid velocity and the magnetic field.

That is,

∂tw± ± vA,0 · ∇w± = 0. (A9)

These combined fluctuations evidently only propagate along the large-scale magnetic field. With the addition of the non-linear terms, we see

that packets of w+ may scatter off of those of w− and vice versa, but because the linear evolution is constrained to be along vA,0 only those

packets that are bound to the same field line may scatter.

When these scattering events occur, Lithwick & Goldreich (2003) showed that they result in a bending of the field lines by an angle of

order w±/vA, 0. By repeatedly bending the field-lines of a wave-packet of w± the packet may be disrupted, such that its energy cascades

non-linearly to different scales. If the packets of w± have wavelength � parallel to vA,0 and wavelength λ transverse to it, then this disruption

occurs if the field lines are displaced transversely by an amount of order λ, or by an angle of order λ/�. If scattering events are equally likely

to bend field lines in all directions the process of non-linear interactions may be described as a diffusive random walk with step size w±/vA, 0,

so that it takes of order

N ≈
(

λ

�

)2 (
vA,0

w±

)2

. (A10)

scattering events to cause a cascade. Note that the ‘strong’ regime of Lithwick & Goldreich (2003) just corresponds to the point where

the above expression yields N � 1. Because each scattering event takes time of order �/vA, 0, the time-scale over which wave-packets are

disrupted is

tcas ≈ max(1, N )
�

vA,0

. (A11)

The specific energy in the system, neglecting the bulk magnetic field, is of order w2
+ + w2

−. Both w+ and w− at any given scale damp due

to the cascade, with packets disrupting after time-scale of order tcas. It follows that the damping rate of the energy in the system is of order

ωdamp ≈ t−1
cas , (A12)

or equivalently, the non-linear loss rate is

Ė = −ωdampρ(δv2 + δv2
A). (A13)
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We now generalize this argument to the Taylor instability. In this case there are two additional phenomena that must be considered. First,

in a rotating system the Coriolis effect adds an acceleration to equation (A1), so that

∂tv + v · ∇v + 2� × v = −(1/ρ)∇P + vA · ∇vA. (A14)

The new acceleration term is not fully absorbed into the pressure gradient because it is not fully directed along the wave-vector k, and hence,

at least to order of magnitude, it must be kept. Upon making the same change to equation (A7), we find

∂tw± ± vA,0 · ∇w± + � × (w+ + w−)

= −w∓ · ∇w± − (1/ρ)∇p. (A15)

Crucially, this is no longer of the form of a simple advection equation like (A9). Rather, packets of w+ now mix with those of w− over time.

This means that the non-linear interaction, which may only act between w+ and w−, may act on a single wave-packet as it transitions between

w±.

Assuming that w is not oriented nearly-parallel to the rotation axis, the time-scale over which wave-packets transition is

tmix ≈
w±

�v
. (A16)

Recalling that we work in the limit of magnetogeostrophic balance,

w ≈ |v| + |δvA| ≈
(

1 +
�

ωA

)

|v| ≈
�

ωA

|v|, (A17)

so

tmix ≈ ω−1
A . (A18)

While in the mixed state, the cascade proceeds with time-scale

t∗
cas ≈

w±

|w∓ · ∇w±|
≈

�

w∓
. (A19)

Analogous to the strong and weak regimes of Lithwick & Goldreich (2003), we therefore find two regimes. In the first, ωAt∗
cas ≪ 1, so that

scattering occurs rapidly once the wave-packets mix. This results in an effective cascade time

tcas ≈ ω−1
A . (A20)

In the opposing limit, ωAt∗
cas ≪ 1, scattering is slow and it makes sense to average w∓ · ∇w± over the mixing time ω−1

A . In effect w+ and w−
mix quickly, a small amount of scattering occurs, and then they are unmixed again. This repeats until the amount of scattering is of order

unity, so

tcas ≈ t∗
cas. (A21)

Putting the two regimes together, we find the overall effect of rotation is to reduce the cascade time-scale to

tcas ≈ max

(

ω−1
A ,

�

w∓

)

. (A22)

The above argument may also be cast in terms of new linear combinations of v and δvA which do follow an advection-like equation.

However, these new linear combinations do not preserve the structure of the non-linear interaction term, and generically give rise to interactions

of the form w+ · ∇w+, and likewise for w−. These new self-interaction terms result, following the arguments above, in the same cascade

time-cale tcas ≈ �/w±.

The second modification we must consider is that of buoyancy. This works in much the same way. We define

x ≡
∫ t

0

v(x(t ′), t ′)dt ′ (A23)

as the Lagrangian displacement of a fluid element. With this, and working in the Boussinesq limit, equation (A14) becomes

∂tv + v · ∇v = −(1/ρ)∇P − r̂ r̂ · xN2 + vA · ∇vA, (A24)

where we have taken the entropy gradient to be in the radial direction and omitted the Coriolis effect for simplicity. Once more inserting the

new acceleration into equation (A7), we obtain

∂tw± ± vA,0 · ∇w± = −w∓ · ∇w± − (1/ρ)∇P − r̂ r̂ · xN2. (A25)

We may approximate the displacement as

x ≈
1

ω
v, (A26)

where ω is the linear frequency associated with any given mode. Hence

r̂ r̂ · xN2 ≈ r̂ r̂ · v
N2

ω
≈ r̂ r̂ · (w+ + w−)

N2

ω
. (A27)
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It follows that this term, like the Coriolis one, produces mixing between w±. Because the real and imaginary parts of ω are both of order

ω2
A/�, this may be written as

r̂ r̂ · xN2 ≈ �r̂r̂ · (w+ + w−)
N2

ω2
A

. (A28)

Noting that

v · r̂ ≈
ωA

N
v (A29)

we see that

r̂ r̂ · xN2 ≈ �v
N

ωA

r̂ . (A30)

We again use magnetogeostrophic balance to obtain

v ≈
ωA

�
w± (A31)

so

r̂ r̂ · xN2 ≈ w±Nr̂. (A32)

Finally we must project away the component along k, because this is eliminated by the pressure gradient in geostrophic balance. Because k⊥
≈ krωA/N, we find
(

I − k̂ ⊗ k̂
)

· r̂ r̂ · xN2 ≈ ωAw±. (A33)

It follows that this acceleration produces the same mixing and hence the same cascade rate as the Coriolis effect.

The cascade rate we have found determines the non-linear damping of the magnetic energy, so that

d

dt
(δvA)2 ≈ −t−1

cas (δvA)2 . (A34)

Or phrased in terms of the linear magnetic field,

d(δvA)

dt
≈ −

δvA

tcas

≈ −δvA min
(

ωA,
w∓

�

)

. (A35)

Substituting

w∓ ≈ δvA (A36)

we find

d(δvA)

dt
≈ −δvA min

(

ωA,
δvA

�

)

, (A37)

such that the effective damping rate is

γ ≈ min

(

ωA,
δvA

�

)

(A38)

For Tayler instability, the wavelength � of the fastest growing modes is � ≈ 1/kφ ≈ r/m ≈ r. In the main text, we show that δvA/r ≪ ωA,

such that the effective damping rate is

γ ≈
δvA

r
. (A39)

We note that a similar result can be obtained using the heuristic argument of Lithwick & Goldreich (2003). For Tayler instability, � ≈ λ ≈ r.

Unlike isotropic magnetic turbulence, rotating Tayler instability is composed of magnetic perturbations that travel at group speed vg ≈ ω2
Ar/�.

Then each scattering event occurs over time-scale tscat ≈ r/vg ≈ �/ω2
A. Following the same argument used to derive equation (A11), the

cascade rate is then

t−1
cas ≈

�δv2
A

r2ω2
A

. (A40)

Using this result (instead of equation A39) in equation (13) yields an identical result. Additionally, we note that our saturated solution entails

that

χ ≈
δvA�

vgλ
≈ 1 (A41)

where χ > 1 entails strong MHD turbulence and χ < 1 entails weak MHD turbulence, as defined by Chandran (2004). For strong MHD

turblence, the cascade rate is tcas ≈ δvA/λ ≈ δvA/r, again equal to our result above.
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APP ENDIX B: ENERGY D ISSIPATION BY D I FFUSI VELY AI DED FI ELD MI GRATI ON

Magnetic energy in axisymmetric loops can be dissipated near the poles of the star by reconnection that connects magnetic field lines of

opposing polarity. This only happens sufficiently close to the pole, where either diffusion can act across a magnetic field loop, or horizontal

displacements compare to the size of the loop. Below we will show that the latter length-scale is larger and hence the relevant scale where

dissipation occurs. The overall picture is that magnetic loops ‘migrate’ both poleward and equatorward due to reconnection following a

Tayler displacement. After one oscillation cycle, the maximum distance a loop can migrate in the latitudinal direction is ξ⊥, the horizontal

displacement of a loop caused by the Tayler instability. Its value is

ξ⊥ =
δv⊥

ω
∼

δv⊥�

ω2
A

(B1)

where we have used the fact that the Tayler instability growth rate and oscillation frequency (i.e. the imaginary and real components of the

frequency) are both ω ∼ ω2
A/�. In what follows we assume ωA < � < N as expected in stars.

Now, as shown in the text, the horizontal velocity is related to the perturbed magnetic field by δv⊥ ∼ (ωA/�)δvA. Then

ξ⊥ ∼
δvA

ωA

. (B2)

We argue in the text that growth and damping of the instability are balanced when ω2
A/� ∼ δvA/r . We show below that δvA/r remains the

relevant damping rate of the instability in spite of magnetic dissipation near the pole and any loop migration. Then we have

ξ⊥ ∼ r
ωA

�
. (B3)

These calculations are meant to be a mid latitudes where the cylindrical coordinate R is comparable to the radial coordinate r. Some quantities

will have different values very near the pole where R ≪ r, but the migration time is dominated by mid latitudes where R ∼ r, so magnetic

energy can only be dissipated at the pole as fast as it migrates from mid latitudes.

Assuming loops of azimuthal field are totally dissipated near the pole, their effective damping rate is equal to their migration rate γ mig.

Because the loop migration is essentially a random walk process, the migration time-scale is

tmigrate ∼ N2
steptstep (B4)

where Nstep is the migration length divided by a step length, and tstep is the time it takes to complete each step. The number of steps is Nstep ∼
r/ξ⊥. The time of each step is a magnetic diffusion time across a radial wavelength, t−1

step ∼ k2
r η. In order for the the instability to grow, this

diffusion rate must be smaller than the growth rate ω2
A/�. So we have tstep � �/ω2

A. Then using equations (B3) and (B4), we have

γmigrate = t−1
migrate �

ω4
A

�3
. (B5)

This maximum migration rate will be realized when ωA ∼ ωc, with the critical field strength ωc defined by equation (1). When ωA ∼ ωc, field

loops can reconnect with loops of opposite oscillation phase (i.e. those separated by radial distance ∼1/kr) after ∼1 oscillation cycle, such

that they can migrate by a distance ∼ξ⊥ each oscillation cycle. When ωA > ωc, reconnection requires many oscillation cycles, the migration

rate will depend on the magnetic diffusivity, and it will be smaller than equation (B5).

Why do we still think the instability damping rate is δvA/r? Let’s consider whether migration of magnetic loops toward the pole can destroy

them at faster rates. Assuming a loop reconnects with its neighbour after being displaced horizontally by ξ⊥ at a rate ω2
A/�, the two loops

have moved apart from one another at a speed v ∼ ω2
Aξ⊥/� ∼ δv⊥. Then the maximum rate at which the instability can be damped due to

loops migrating to the pole is

γdiss <
δv⊥

r
∼

ωA

�

δvA

r
. (B6)

But since ωA < �, γ diss is smaller than the damping rate δvA/r. The actual destruction rate is likely much slower due to the random walk

process discussed above, and is given by equation (B5). This means that unstable perturbations will damp faster by weak turbulence than they

will by migrating toward the pole. So the instability is still limited by weak turbulence, and setting the growth rate equal to the damping rate

still implies

ω2
A

�
∼

δvA

r
. (B7)

The migration rate of equation (B5) implies that the background field, whose energy density is ∼B2
φ , is destroyed at this rate. The assosiated

energy damping rate per unit volume is

Ėdamp �
ω4

A

�3
B2

φ . (B8)

The turbulent energy damping discussed in the paper will operate regardless of the loop migration, and will be more important when the

reconnection time-scale is longer than an oscillation times scale. Hence, while damping from loop migration may be relevant when ωA ∼ ωc,

we do not expect any of our scaling arguments or results to be altered.
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3676 J. Fuller, A. L. Piro, and A. S. Jermyn

APPEN D IX C : EFFECTIVE STRATIFICATI ON

As discussed in Spruit (2002), the effective Brunt–Väisälä frequency Neff depends on the thermal diffusion time-scale across the

Tayler instability length-scale. This thermal diffusion time-scale in turn depends on Neff. Spruit (2002) considered the limit of pure

thermal/compositional stratification, but in red giant cores, both components are important. Here we derive an improved method for

incorporating thermal diffusion in the general case.

Following the suggestion by Spruit (2002), thermal diffusion reduces the thermal component of the effective stratification NT by roughly

N2
T,eff =

N2
T

1 + k2χ/ω
, (C1)

where k is the instability wavenumber, χ is the thermal diffusivity, and ω is the instability time-scale. The fastest growing modes have rk ∼
Neff/ωA and ω = ω2

A/�. Using the saturated value of ωA from equation (34), we have

N2
T =

(

1 +
ωt

�

)

N2
T,eff . (C2)

The effective stratification is N2
eff = N2

T,eff + N2
μ, where Nμ is the compositional component of the stratification. Substituting for NT, eff, we

find

N2
eff − N2 + (N2

eff − N2
μ)

ωt

�
= 0. (C3)

Equation (C3) can be solved for the appropriate value of Neff given a stellar structure. Inspection reveals that it reduces in the appropriate

limits. When χ → 0, we recover Neff = N. When χ → ∞, we recover Neff = Nμ. And when Nμ → 0 and thermal diffusion is large, Neff ≪ N

and we find Neff = (r6q4α12�13N6/χ3)1/16. We have not yet implemented numerical solutions of equation (C3) into our MESA routines, but

we plan to do this in future work.

APPENDIX D : M ESA M ODEL INLISTS

We use the MESA stellar evolution code Paxton et al. (2011, 2013, 2015, 2018) version 10108 to generate our stellar models. The in-list for

our models is as follows:

&star job

pgstar flag = .true.

new rotation flag = .true.

change rotation flag = .true.

change initial rotation flag = .true.

new omega = 3.64e-5

set initial omega = .true.

/ ! end of star job namelist

&controls

!------------------------ MAIN

initial mass = 1.6

initial z = 0.02

use Type2 opacities = .true.

Zbase = 2.d-2

set min D mix = .true.

min D mix = 1d1

mesh delta coeff = 0.7

varcontrol target = 0.7d-3

predictive mix(1) = .true.

predictive superad thresh(1) = 0.005

predictive avoid reversal(1) = ’he4’

predictive zone type(1) = ’any’

predictive zone loc(1) = ’core’

predictive bdy loc(1) = ’top’

MNRAS 485, 3661–3680 (2019)
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Slowing stellar spins 3677

dX div X limit min X = 1d-4

dX div X limit = 5d-1

dX nuc drop min X limit = 1d-4

dX nuc drop limit = 1d-2

!--------------------- Rotation

am nu ST factor = 0

use other am mixing = .true.

am time average = .true.

premix omega = .true.

recalc mixing info each substep = .true.

am nu factor = 1

am nu non rotation factor = 1d0

am nu visc factor = 0.333

angsml = 0.0

!------------------------- WIND

cool wind RGB scheme = ’Reimers’

cool wind AGB scheme = ’Blocker’

RGB to AGB wind switch = 1d-4

Reimers scaling factor = 0.2

Blocker scaling factor = 0.5

use accreted material j = .true.

accreted material j = 0

!------------------- OVERSHOOTING

overshoot f above nonburn core = 0.015

overshoot f0 above nonburn core = 0.005

overshoot f above nonburn shell = 0.015

overshoot f0 above nonburn shell = 0.005

overshoot f below nonburn shell = 0.015

overshoot f0 below nonburn shell = 0.005

overshoot f above burn h core = 0.015

overshoot f0 above burn h core = 0.005

overshoot f above burn h shell = 0.015

overshoot f0 above burn h shell = 0.005

overshoot f below burn h shell = 0.015

overshoot f0 below burn h shell = 0.005

overshoot f above burn he core = 0.015

overshoot f0 above burn he core = 0.005

overshoot f above burn he shell = 0.015

overshoot f0 above burn he shell = 0.005

overshoot f below burn he shell = 0.015

overshoot f0 below burn he shell = 0.005

/ ! end of controls namelist

Some important controls include the use of predictive mixing to help mitigate ‘breathing pulses’ in the size of the convective helium-burning

core during the clump. Additionally, the use ofam time average,premix omega, andrecalc mixing info each substep helps

reduce numerical artefacts related to AM transport. Smoothing the shear and AM diffusivity (see the next section) also helps reduce these

numerical instabilities. The artefacts arise because large MESA time-steps can cause AM transport to artificially create step-like features in

the stellar rotation profile. The steps arise where AM transport in some grid cells is slightly more efficient than neighbouring grid cells due to

the discrete grid size and inaccurate numerical derivatives. A large time-step will cause the rotation profile to flatten in grid cells with larger

AM diffusivity, and steepen in neighbouring grid cells with smaller AM diffusivity. The controls above help mitigate these effects, but in

some cases enforcing smaller time-steps may be useful.
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3678 J. Fuller, A. L. Piro, and A. S. Jermyn

The initial masses and rotation rates are adjusted as described in the text. In some models we adjust the wind scaling factors on the AGB

in order to avoid late helium flashes. We also enable MLT+ + to evolve more massive stars from the AGB to the WD cooling track:

okay to reduce gradT excess = .true.

gradT excess max change = 1d-2

and in some cases we remove the last few hundredths of a solar mass of the hydrogen envelope using

remove H wind mdot = 1d-4

remove H wind H mass limit = 1d-5

We have performed some basic resolution testing to verify our results are very insensitive to the model’s grid resolution and time-stepping.

D1 Implementation of angular momentum transport

Our run star extras.f code for implementation of AM transport in our MESA models is as follows:

subroutine TSF(id, ierr)

integer, intent(in) :: id

integer, intent(out) :: ierr

type (star info), pointer :: s

integer :: k,j,op err,nsmooth,nsmootham

real(dp) :: alpha,shearsmooth,nu tsf,nu tsf t,omegac,omegag,omegaa,omegat

real(dp) :: difft,diffm,brunts,bruntsn2,logamnuomega,alphaq

call star ptr(id,s,ierr)

if (ierr / = 0) return

alpha = 1d0

nsmooth = 5

nsmootham = nsmooth-3

shearsmooth = 1d-30

op err = 0

!Calculate shear at each zone, then calculate TSF torque

do k = nsmooth + 1,s% nz-(nsmooth+1)

nu tsf = 1d-30

nu tsf t = 1d-30

!Calculate smoothed shear, q = dlnOmega/dlnr

shearsmooth = s% omega shear(k)/(2.∗nsmooth+1.)
do j = 1,nsmooth

shearsmooth = shearsmooth + (1./(2.∗nsmooth + 1.))∗(s% omega shear(k-j) + s%

omega shear(k+j) )

end do

!Magnetic diffusivity

diffm = diffmag(s% rho(k),s% T(k),s% abar(k),s% zbar(k),op err)

!Thermal diffusivity

difft = 16d0∗5.67d-5∗(s% T(k))∗∗3/(3d0∗s% opacity(k)∗(s% rho(k))∗∗2∗s% Cv(k))

!Alfven frequency at saturation

omegaa = s% omega(k)∗(shearsmooth∗s% omega(k)/sqrt(abs(s% brunt N2(k))))∗∗(1./3.)
!Thermal damping rate assuming adiabatic instability

omegat = difft∗pow2(sqrt(abs(s% brunt N2(k)))/(omegaa∗s% r(k)))

!Suppress thermal part of brunt

brunts = sqrt(abs(s% brunt N2 composition term(k) +
(s% brunt N2(k)-s% brunt N2 composition term(k))/(1d0 + omegat/omegaa) ))

!Effective brunt for isothermal instability

bruntsn2 = sqrt(abs(s% brunt N2 composition term(k) +
(s% brunt N2(k)-s% brunt N2 composition term(k))∗min(1d0,diffm/difft) ))

!Choose max between suppressed brunt and isothermal brunt

brunts = max(brunts,bruntsn2)

!Don’t let Brunt be smaller than omega

brunts = max(s% omega(k),brunts)

!Recalculate omegaa

omegaa = s% omega(k)∗abs(shearsmooth∗s% omega(k)/brunts)∗∗(1./3.)
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Slowing stellar spins 3679

!Calculate nu TSF

if (s% brunt N2(k) > 0.) then

if (pow2(brunts) > 2.∗pow2(shearsmooth)∗pow2(s% omega(k))) then

!Critical field strength

omegac = 1d0∗s% omega(k)∗((brunts/s% omega(k))∗∗0.5)∗(diffm/(pow2(s% r(k))∗s%
omega(k)))∗∗0.25

!Suppress AM transport if omega a<omega c

nu tsf = 5d-1 + 5d-1∗tanh(5d0∗log(alpha∗omegaa/omegac))
!nu omega for revised Tayler instability

nu tsf = nu tsf∗alpha∗∗3∗s% omega(k)∗pow2(s% r(k))∗(s% omega(k)/brunts)∗∗2
end if

! Add TSF enabled by thermal diffusion

if (pow2(brunts) < 2.∗pow2(shearsmooth)∗pow2(s% omega(k))) then

nu tsf t = alpha∗abs(shearsmooth)∗s% omega(k)∗pow2(s% r(k))

end if

s% am nu omega(k) = s% am nu omega(k) + max(nu tsf,nu tsf t) + 1d-1

end if

end do

!Smooth nu omega

logamnuomega = -3d1

do k = nsmootham + 1,s% nz-(nsmootham+1)

!Don’t smooth convective diffusivity into non-convective zones

if (s% mixing type(k)==1) then

s% am nu omega(k) = s% am nu omega(k)

!Smooth zones if not including a convective zone

else

logamnuomega = log10(s% am nu omega(k))/(2.∗nsmootham+1.)
end if

do j = 1,nsmootham

!Don’t smooth convective diffusivity into non-convective zones

if (s% mixing type(k-j)<3.5) then

logamnuomega = log10(s% am nu omega(k))

!Smooth zones if not including a convective zone

else

logamnuomega = logamnuomega + (1./(2.∗nsmootham + 1.))∗log10(s% am nu omega(k-j))

end if

end do

do j = 1,nsmootham

!Don’t smooth convective diffusivity into non-convective zones

if (s% mixing type(k+j)<3.5) then

logamnuomega = logamnuomega

!Smooth zones if not including a convective zone

else

logamnuomega = logamnuomega + (1./(2.∗nsmootham + 1.))∗log10(s% am nu omega(k+j))
end if

end do

s% am nu omega(k) = 10.∗∗logamnuomega
end do

!Values near inner boundary

do k = s% nz-nsmootham,s% nz

s% am nu omega(k) = s% am nu omega(k-1)

end do

!Values near outer boundary
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3680 J. Fuller, A. L. Piro, and A. S. Jermyn

do k = nsmootham,1

s% am nu omega(k) = s% am nu omega(k-1)

end do

end subroutine TSF

These controls work well for our models, but we caution that they may not work well in different situations. For instance, we estimate Neff

in a way that is accurate for our models but may be problematic in some stars. Magnetic diffusivity is calculated via the modules included

in MESA’s default implementation for TS torques. To disable our AM transport prescription when ωA < ωc, we use a tanh function to

smoothly transition from no torque at ωA < ωc to full torque at ωA > ωc. Additionally, we smooth the dimensionless shear by 5 grid cells on

each side, and we smooth the AM diffusivity by 32 grid cells on each side. In our models, this level of smoothing helps suppress numerical

instabilities but does not strongly affect the evolution because larger smoothing lengths deliver nearly identical results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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