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Abstract: The body of scientific literature on slum mapping employing remote sensing methods has

increased since the availability of more very-high-resolution (VHR) sensors. This improves the ability

to produce information for pro-poor policy development and to build methods capable of supporting

systematic global slum monitoring required for international policy development such as the

Sustainable Development Goals. This review provides an overview of slum mapping-related remote

sensing publications over the period of 2000–2015 regarding four dimensions: contextual factors,

physical slum characteristics, data and requirements, and slum extraction methods. The review has

shown the following results. First, our contextual knowledge on the diversity of slums across the

globe is limited, and slum dynamics are not well captured. Second, a more systematic exploration of

physical slum characteristics is required for the development of robust image-based proxies. Third,

although the latest commercial sensor technologies provide image data of less than 0.5 m spatial

resolution, thereby improving object recognition in slums, the complex and diverse morphology of

slums makes extraction through standard methods difficult. Fourth, successful approaches show

diversity in terms of extracted information levels (area or object based), implemented indicator sets

(single or large sets) and methods employed (e.g., object-based image analysis (OBIA) or machine

learning). In the context of a global slum inventory, texture-based methods show good robustness

across cities and imagery. Machine-learning algorithms have the highest reported accuracies and

allow working with large indicator sets in a computationally efficient manner, while the upscaling

of pixel-level information requires further research. For local slum mapping, OBIA approaches show

good capabilities of extracting both area- and object-based information. Ultimately, establishing a more

systematic relationship between higher-level image elements and slum characteristics is essential to train

algorithms able to analyze variations in slum morphologies to facilitate global slum monitoring.

Keywords: slums; informal areas; urban remote sensing; Global South; VHR imagery

1. Global Urbanization and Slum Dynamics: The Context

Currently, about one-quarter of the world’s urban population lives in slums, which are defined by

UN-Habitat as informal settlements [1] or areas deprived of access to safe water, acceptable sanitation,

and durable housing; in addition to being areas that are overcrowded and lack land tenure security [2].

Over the last 15 years, there has been renewed interest in slum improvement and eradication by local

and international organizations dealing with development issues. During this period, slums became a

more prominent subject of remote sensing (RS) image analysis. Supported by increased availability

of very-high-resolution (VHR) data and methodological advances, many RS studies [3–8] aimed to

produce information on the geography and dynamics of slums. Thus a multiplicity of images, concepts,
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algorithms and applications have become available. However, to upscale the existing knowledge

and set the stage for innovations, a systematic review of what works in which context is still lacking.

This article fills this gap by reviewing recent and contemporary approaches, indicators, data sources,

and lessons learned from empirical cases with respect to physical slum characteristics that could form

a basis for a systematic global slum inventory. Before doing so, we first introduce some aspects of slum

development in the Global South (the term Global South is commonly used in the field of development

studies and refers to developing countries, mainly located in the Southern Hemisphere; Global North

on the other hand refers to developed countries [9]).

Slum-identification studies are very much driven by the persistence and growth of slums and

emergence of new slums being inexorably part of contemporary urbanization processes, particularly

in the Global South where rapid slum development is linked to the failure of formal land markets and

low planning capacity. For example, the city of Hyderabad, India experienced a 70% increase of slum

areas between 2003 and 2010 [10], a situation that is by no means unique [11]. A recent UN-Habitat

report [12] stated that the urban population in Sub-Saharan Africa (SSA) is growing by 10 million

people annually, of which 7 million are likely to move into slums. Latest estimates by UN-Habitat [1]

suggest that, in Africa, 62% of the urban population is living in slums; in Asia, it is up to 30%; and

in Latin America and the Caribbean, the rates of living in slums is 24%. Over the last six to seven

decades, various policy discourses and programs addressing slums have emerged. During the 1950s

and 601s, slum settlements were often tolerated or neglected as “traditional villages.” As large-scale

evictions were found to be ineffective due to their impact on the livelihoods of dwellers [13,14],

in situ slum upgrading [13], and low-cost housing solutions such as site and service schemes and

guided land development emerged [15,16]. Resettlement programs often further contributed to

impoverishment [17], though some successful resettlement projects [18] showed that long-term

community empowerment programs are necessary to ensure lasting improvements [19] that may also

take several generations to materialize [20]. By contrast, in situ upgrading programs showed success

in many places [21]. Since the 901s, the global slum debate centered very much on ensuring land

tenure security [2,22], and slum upgrading is once more strongly favored above forced displacement.

Presently, many local governments do not fully “acknowledge the existence of slums and informal

settlements” ([1], p. 5), as available “data is often ad hoc and not connected to robust city-wide

monitoring and evaluation processes” ([1], p. 5). In support of such local and global information

needs for the development of pro-poor policies, innovative methods are required to enhance our

understanding of the spatial and temporal dynamics of slums towards the creation of knowledge

repositories on slums. For the development of such repositories, reliable and robust slum-detection

methods are required that would allow for a global comparison but also provide support to less

resourced countries and cities (e.g., allowing local adaptations of indicators in form of “slider widgets

and/or buttons in a graphical user interface (GUI)” ([23], p. 321). Such repositories can form a basis for

socioeconomic data integration [24] and offer essential information for “devising and implementing

customized approaches of slum upgrading” ([25], p. 276). Moreover, consistent global coverage of

slum data is required for international policy development and urban agenda setting at national levels.

UN-Habitat facilitates this process and produces global statistics on slum development and distribution

that are disseminated via its State of the World Cities reports [26,27] and other publications, but its

efforts have delivered estimates of slum dwellers rather than maps of slum extents, which would

provide a much-needed picture of the changing locations, extents and densities of slums.

2. The Utility of Remote Sensing for Slum Mapping

In many cities, slums are a major part of the urban housing stock and an important part of

the urban economy. It is important to realize that “slums disappear not through being removed,

but by being transformed” ([28], p. 1). However, we lack information about slums, specifically

their scale, location, extent, boundaries, populations, buildings and enterprises [29]. Consequently,

holistic strategies [22] that focus on understanding the local role of slums, the needs of their inhabitants,
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as well as their geography and spatial dynamics are required. Remote sensing can play a key role in

analyzing “space´time dynamics” [30], such as monitoring densification and expansion processes or

assisting in the implementation of slum improvement policies. Furthermore, it allows linking the urban

morphology with socioeconomic parameters [31]. Remote sensing is capable of mapping the amount

of slums in highly hazardous areas or the general environmental conditions [32] that play an important

role for urban health campaigns [29,33]. The utility of slum mapping has been stressed by Slum/Shack

Dwellers International (SDI), e.g., maps are an important historic archive in court cases protecting dwellers

against unlawful evictions [34]. In support of pro-poor policy formulation, it is important to combine such

spatial information with community-driven mapping to understand local needs [29,35].

Spatiotemporal information on slums is scarce at the city scale, while regional or global

knowledge will not be realized without utilizing RS techniques that allow for frequent coverage

of large areas. However, deriving this information from RS imagery is not a straightforward process

involving multiple choices as it can be done in many ways. A first attempt in bringing together the

methodological expertise on slum mapping and monitoring was an expert meeting in 2008 [36] with

the aim to review potential, limitations and methods for slum identification based on VHR imagery

that included: (a) visual interpretation; (b) object-based image analysis (OBIA); (c) texture-based

methods; and (d) community-based approaches. One of the identified challenges was that slum

conditions can take various forms and, therefore, no universal model of slums existed. This is due

to differences in slum-development processes [37], their age and thus developmental stages (infancy,

consolidation, maturity), geographical location and context (e.g., central versus peri-urban [38] or

arid versus tropical coastal cities [39]). Hence, the diversity of urban slums and geographic contexts

requires methodological adjustments. Another identified challenge was the “level (scale) of analysis,”

specifically object-based [40] versus area-based identification of slums [41]. While object-based analysis

concerns the extraction of urban objects such as slum roofs, area-based refers to the extraction of

homogeneous urban patches (HUP) [42], also called “analytical regions” [43] representing slum

neighborhoods. Since 2008, many studies have addressed some of these challenges. For instance,

a slum ontology was developed [5,7] to conceptualize the spatial characteristics of slums for OBIA.

Researchers applying several auxiliary methods (e.g., machine learning [44], statistical methods [6],

and image texture [45]) have improved the potential for slum identification. The use of large indicator

sets [6,46] has improved slum-identification accuracies.

The key role of remote sensing for slum detection was stressed in recent reviews on urban analysis

via RS applications [30,47,48]. However, neither review focused on the plurality of methods and their

relevance for slum detection. Therefore, this review presents the methodological and technological

advances in slum-identification methods and employed indicator sets that have emerged over the

last 15 years. In doing so, we identify RS imagery, methods and indicators relevant for a global slum

inventory in support of pro-poor policy implementations. The structure of the review is as follows:

Section 3 provides an overview of the employed methodology, followed by contextual factors, such as

terminology, purposes and mapped slum locations in Section 4. Section 5 discusses physical slum

characteristics and their diversity. Section 6 reviews data and requirements of slum studies. Section 7

reviews employed methods, while the eighth section discusses the most promising aspects for the

development of a global slum inventory. In the final section, we draw conclusions on the feasibility of

a global knowledge repository on slums.

3. Methodology of Review

Exploring potential and limitations of slum-identification methods based on RS imagery has

received increasing attention amongst RS experts. Although the underlying drivers for this rise in

interest is not exactly clear, it has been stimulated by growing international motivation to reduce the

numbers of slum dwellers that has created a demand for policy-relevant information [1]. Furthermore,

it has been stimulated by the widespread access to VHR satellite images and advances in geospatial

technologies that has essentially democratized space imagery and spatial mapping, accompanied by a
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growing number of algorithms for detecting and classifying urban areas, including slums. However,

the two main initiatives to generate a global up-to-date geo-database on the “location, shape, and

dynamics of built-up areas” ([49], p. 905), specifically the Global Human Settlement Layer (GHSL)

(using optical data) and the Global Urban Footprint (GUF) layer (using SAR data) [50,51], stressed

the difficulties of detecting the more organic patterns of slums [52]. Both initiatives focus on built-up

areas and not specifically on slum mapping. Reasons for low identification accuracies of slums

are attributed to their rather different morphological characteristics [53] (e.g., higher roof coverage

densities, more organic patterns, and small building sizes) compared to formal built-up areas (Table 1).

This methodological challenge has contributed to the large diversity in slum-mapping approaches and

employed image-based proxies.

Table 1. Morphological features typical for slum areas (adapted from [41,54]).

Features Slum Areas Formal Built-Up Areas

Size ‚ Small (substandard) building sizes ‚ Generally larger building sizes

Density
‚ (Very) high roof coverage densities

‚ Lack of public (green) spaces within or
in the vicinity of slum areas

‚ Low to moderate density areas

‚ Provision of public (green spaces)
within or in vicinity of planned areas

Pattern
‚ Organic layout structure (no orderly

road arrangement and noncompliance
with set-back standards)

‚ Regular layout pattern (showing
planned regular roads and
compliance with set-back rules)

Site Characteristics

‚ Often at hazardous locations (e.g.,
flood prone, close to industrial areas,
steep slope)

‚ Proximity to infrastructure lines and
livelihood opportunities

‚ Land has basic suitability for being
built-up

‚ (Basic) infrastructure is provided

This review analyzes the diversity of RS studies of the past 15 years that deal with the challenge

of extracting slums. It is based on a systematic literature search, performed in December 2015,

using several search engines (Web of Science, Science Direct, SpringerLink Journals, Taylor & Francis

and Scopus) and covers the keywords “slums,” “informal,” “unplanned,” “squatter,” “precarious,”

“spontaneous,” “illegal,” “deprived,” “irregular” or “substandard settlement/area,” “self-help

housing,” “shantytown,” “favela” or “bidonville” and “mapping” or “remote sensing.” The review

covers journal publications, book sections and conference publications that could be retrieved either via

the employed research engines or websites of the main RS conferences. Only English-language papers

are selected, and very similar publications by the same authors (e.g., journal and conference publication)

were counted only once. In total, 87 key publications ([3–7,10,23,25,31–33,38–41,43–46,54–121]) are

identified. A temporal analysis of the number of publications shows an increasing trend (Figure 1),

having a high linear correlation with the number of satellite launches (r2 = 0.75). Satellite launches

were derived from the following websites (including only the earth observation satellites with a spatial

resolution of 5 m and less):

‚ ITC’s database of Satellites and Sensors: http://www.itc.nl/research/products/sensordb/

searchsat.aspx

‚ Gunter’s Space Page: http://space.skyrocket.de/directories/chronology.htm

‚ Satellite on the Net: http://www.satelliteonthenet.co.uk/index.php/launch-schedule

In the mid-2000s, when more VHR satellites became available the number of related publications

increased. The same occurred for the period after 2010.

The analytical framework (Figure 2) for analyzing the retrieved publications, inspired by the

outcome of the expert meeting on slum mapping [36], forms the skeleton for this review. Figure 2

shows that slum formation and development in global cities are impacted by several contextual factors,

http://www.itc.nl/research/products/sensordb/searchsat.aspx
http://www.itc.nl/research/products/sensordb/searchsat.aspx
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such as geographic location and climate, the topography of the city, the location within the city

including proximity to services, and general socioeconomic and political factors (e.g., land governance).

For example, slum dwellers often trade off accessibility to livelihood opportunities with locations

exposed to hazards. Physical slum characteristics are often an expression of the slum-development

processes: i.e., from low-density at their infancy stage to high-density mature slums, sometimes also

including increasing building size and height. For example, slums can have multiple incrementally

constructed floors [2]. Patterns of roads, building layouts and general site characteristics define the

growth potential of a specific settlement. When mapping slums, physical slum characteristics need

to be well understood for translating them into image-based proxies. The data and requirements of

slum-mapping studies relate to imagery and ancillary data and the level (scale) of analysis, e.g.,

extraction of dwelling units (objects) versus delineation of settlements (areas). Thus the scale varies

from small objects (e.g., slum buildings that can be below 20 m2) to large settlements of several

hectares [8,82]. Furthermore, the required spatial, spectral and temporal resolution for slum mapping need

to be specified. These requirements are closely linked to extraction methods. Across studies, a multiplicity of

extraction methods for slum mapping have been employed, from classical visual image interpretation

to OBIA or machine learning, or a combination of methods, with the main methodological challenge of

translating a relevant set of slum characteristics into robust indicators (e.g., developing a slum ontology)

for image-based slum mapping [23] that would ultimately allow for a global slum inventory.

 

Figure 1. Number of publications on slums and remote sensing methods by year and successfully

launched VHR satellites (r2 is 0.75).

 

 

Figure 2. Analytical frame of the review: methodological challenge for a global slum inventory.

The overall purpose of this review is the identification of the variety of methodological advances

in slum mapping that are relevant for a global slum inventory. Four analytical sub-questions guide this

review. First, what are the main contextual factors and related slum terminologies of published studies

on slum identification via RS (Q1)? Second, what are the varieties of physical slum characteristics
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extracted in VHR imagery (Q2)? Third, what are the input data and requirements of slum-mapping

studies (Q3)? Fourth, which extraction methods have been used and what are their capacities,

accuracies and limitations (Q4)? Each sub-question is dealt within one of the following sections.

4. Contextual Factors

Context matters for slum mapping. We first provide an overview of the terminological differences

regarding settlements with poor living conditions as they affect the choice and definition of indicators.

We also summarize the purposes of slum-mapping studies linked to the socioeconomic and political

context. The final section gives an overview of geographic locations mapped by slum studies linking

to variation in climate and topography.

4.1. Terminological Differences

The nomenclatures of slum settlements vary depending on different connotations [41,122].

To some extent, these terms reflect the different views on such settlements. Terms such as

“informal,” “illegal” or “squatter,” for instance, focus on the land rights (tenure status) [24], whereas

“unplanned” relates to the planning context [41]. “Spontaneous” or “irregular” emphasizes the growth

dynamics [123], whereas “deprived,” “shantytown” and “sub-standard” are associated with poor

physical and socioeconomic conditions [54]. The recent revival in popularity of the rather political

term “slum” [122] is largely linked to the Habitat Agenda and the related development goals [27,124].

The analysis of the retrieved publications with respect to these terms in combination with RS methods

(see Table 2) identified “informal settlement/area” (47%) and “slum” (29%) as the most commonly

used terms in the RS community, among which some researchers use both terms interchangeably (6%).

Less frequently used terms that refer to the physical condition (e.g., “deprived/sub-standard”) focus

on a specific issue (e.g., “refugee camps”) or on a specific national context (e.g., “migrant housing”

or “urban villages” in China). Terms such as “squatter” or “unplanned,” which were common in the

1970s–1980s planning literature, are no longer commonly used. “Informal settlement/area” being the

most frequently used term in the RS literature is actually awkward as it constitutes the legal (tenure)

status of an area, which cannot be directly extracted from imagery. A change in tenure status does

not necessarily affect the physical characteristics. In this review, we use the term “slum” to refer

to urban areas with poor living conditions as this term expresses explicitly physical characteristics

such as high densities or irregular patterns, indicators that can be derived by means of RS methods.

Here, an ontological framework (e.g., developed by [5,7]) “provides a comprehensive description of

spatial characteristics and their relationships to represent and characterize slums in an image” ([31],

p. 155). Such an ontology framework—split in three phases: specification, conceptualization and

implementation [5]—provides a clear conceptual foundation for developing robust image-based indicators,

facilitating global knowledge acquisition and comparisons for the development of a global slum inventory.

Table 2. Frequency of publications using a specific term (within the reviewed remote

sensing publications).

Terms Frequency Percent (%)

Informal settlement/area 41 47.1
Slum 25 28.7

Slum and informal settlement/area 5 5.8
Squatter area 4 4.6

Unplanned area 3 3.5
Deprived area 2 2.3
Refugee camp 2 2.3

Sub-standard area 2 2.3
Informal homesteading 1 1.1

Informal and unplanned settlement 1 1.1
Migrant and informal housing 1 1.1

Total 87 100
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4.2. Purposes of Slum Mapping Using Remote Sensing

Our second contextual topic concerns the different purposes of RS-based slum-mapping studies.

The review has identified three key geographical questions—where, when and what?—as the main

objectives of studies. Often, researchers aim at the provision of basic information on “where” the

slums are located within the urban fabric and what their areal extent is. Such information allows

compensating for the non-availability of socioeconomic information (e.g., income levels) in many cities

of the Global South [31]. Besides its importance for urban development [68], the where question is also

relevant within a humanitarian context, for which several studies [67,76,109] developed methods to

map refugee camps (e.g., under Copernicus) [125].

While development dynamics of slums at the city scale are of particular interest for local planning

and decision support [10,126], only a few studies have focused on temporal slum dynamics (when)

(e.g., [10]). This could be related to challenges extracting these dynamics, in particular in terms of data

availability and obtaining local knowledge. Examples of studies on dynamics are the analysis of the

process of forced mass evictions in Harare (Zimbabwe) [104], the investigation of built-up changes for

large slum settlements such as Kibera-Nairobi [3] or the exploration of development dynamics of slums

in Delhi, showing stagnation in the center versus growth in the periphery [127]. Such multi-temporal

information can feed simulation models on the growth of slum areas, generating policy-relevant

information of future growth scenarios [48,128–132].

Several publications have focused on what’-related issues, such as the number of slum inhabitants,

since many census statistics slums are not well covered (with high uncertainty about the number

of inhabitants) [133]. Moreover, RS-based population estimates allow a more detailed spatial and

temporal disaggregation [133,134]. However, population estimates of slums can vary [4] as illustrated

for the case of Kibera (Nairobi) [3], where estimates differed by half a million people depending on

the sample data used. For the slums in Hyderabad, India, Kit et al. [134] computed slightly lower

image-based population figures than the figures reported by the census. Furthermore, relying on

physical proxies for population estimations can lead to errors for areas that have not yet been fully

occupied, e.g., new developments in outskirts [70]. Other what-related issues deal with boundaries

and effectiveness of policies for health campaigns [84,135], allocation of public services and protection

of environmentally sensitive areas [68] or spatial planning and policy formulation [69]. These efforts

are related to the fact that local planning authorities often lack elementary information on slums,

which “has led to a deficit in policy for these areas, as without quality map data, it is often difficult to

plan effectively for these areas” ([69], p. 390), leading to ad hoc plans that do not consider the specific

locational context. For example, for one settlement in Johannesburg, Gunter [69] mapped 10,000

more dwellings by using Google Earth (GE) images compared to the government estimates. Such

discrepancies are problematic for policy development and monitoring and may point to conceptual

differences in what constitutes a slum dwelling. Spatial information on slums can support local

governments in better determining the demand of basic services and other relevant amenities [136]

and monitor slums via RS-based proxies of “human deprivation or well-being” ([137], p. 68).

The potential application areas for RS-based information on the morphology and temporal

dynamics of slums are grouped into four major domains (Table 3, [21,54,77,120,138–152]): economy,

environment, governance and planning, and social applications. These domains reflect the reported

spatial information needs and lack of information on slums in locally available data sets [84]. Quite a

rich body of literature is connected to social issues, where “remotely sensed imagery can serve as data

source for inferring socio-economic variables” ([93], p. 69). Emerging applications areas are related to

land management [144,145], quality of life and crime studies [151,152].
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Table 3. Application domains of remote sensing-based information on the morphology and temporal

dynamics of slums.

Domain Application Areas

Economy ‚ Economic condition—poverty, e.g., [138]

Environment

‚ Environmental deprivation, e.g., [139]

‚ Environmental protection, e.g., [140,141]

‚ Hazards—vulnerability, e.g., [142,143]

Governance/Planning

‚ Land management—enumeration, e.g., [144,145]

‚ Planning interventions and growth models, e.g., [21,146]

‚ Urban governance, e.g., [54]

Social

‚ Health, e.g., [120,147,148]

‚ Humanitarian, e.g., [76,149,150]

‚ Quality of life and crime, e.g., [151,152]

4.3. Geographic Locations, Climate and Topography

Given the aim of identifying relevant issues for developing a global slum inventory, we analyze

the geographic distribution of RS-based information on slums by mapping the case study locations

found in English-language publications on top of a population density map (Figure 3). In the figure,

“slum cities” are grouped into locations where object-level information (roofs or roads), area-based

slum maps, or both were extracted. Object-level information is mainly available in SSA. Obviously,

there is a spatial relationship between areas of high urban population densities in the Global South

and the location of case studies. The highest concentrations are found in South-East Asia and SSA

(East and South). Some clusters also exist in North and West Africa and South/Central America.

Examples are even found in the Global North, dealing with the monitoring of informal development,

e.g., in Greece [153] and the US [119]. The cities covered range from (sub)tropic, Mediterranean,

arid and continental climates, as well as low-lying areas with rather flat terrain (e.g., Dhaka) up to

high-lying cities (e.g., La Paz) with steep slopes. Still, many urban regions with very dynamic urban

and slum developments are not well covered in English-language publications, e.g., areas in the

Caribbean, West and Central Africa or in South-East Asia. Also, areas in Europe might become a future

focus, considering the recent erection of refugee camps or examples of deprived Roma settlements in

European countries [144]. Many of the regions not covered belong to the least developed countries with

large income inequalities and/or instable political conditions, e.g., Liberia, Congo or Myanmar. In such

countries, ground-truth or reference data accessibility might be even more of a problem. Moreover,

many studies are about methodological developments and do not create exhaustive citywide slum

maps, illustrating that we are still far away from a global slum inventory.

 

 
 
 
 
 
 
 
 
 
 

 

Figure 3. Case study cities in publications (N = 87) on slum mapping via RS methods on top of a

population density map (base map: population density, Source: ESRI).
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The majority of the reviewed publications are authored by academic researchers, both from

universities in the Global North (48%) and Global South (21%) or combinations thereof (6%).

Fewer publications stem from research centers (including national RS agencies), in the Global North

(8%) and Global South (5%) and one by a commercial image provider (1%). Moreover, there is

some cooperation between research centers and university in the Global North (5%) and South (2%),

also across South and North (2%), or with an NGO (2%). The majority of English-language publications

from the Global North links to the global slum debate. South´North and South´South cooperation are

of particular relevance for knowledge exchanges and transfer, bridging technology gaps and for further

expanding our knowledge to more cities including also very instable regions like the Sudan [125].

5. Physical Characteristics of Slum Areas

VHR imagery provides a detailed representation of the physical elements of a landscape, capturing

physical characteristics of slums. This section conceptualizes these characteristics derived from imagery

and considers their diversity.

5.1. Characterization of Slum Areas

The definition of what constitutes a slum is complex. Variations exist between global, regional

and local slum definitions [154] that can result in large differences of mapped slum areas [64].

Many publications adopted the global UN-Habitat definition of slums (e.g., [4,43,155]), which consists

of five well-established indicators: secure tenure, adequate access to safe water, access to acceptable

forms of sanitation, overcrowding, and the durability of housing considering both the quality of

the structures as well as site conditions in terms of hazards. For instance, based on the work of

Weeks et al. [43], Duque et al. [61] used these indicators (i.e., wall material, overcrowding, access to

piped water, sanitation connection to sewers, and ownership) to build a slum index based on census

data for the city of Medellin (Colombia). This index, compared with image-based information on

land cover, structural and texture-based features, showed that the image-based information could

explain 59% of the slum index. A major problem in employing the UN-Habitat definition in RS-based

studies is that only the indicator “durability of housing conditions” has a direct link to information

extracted from imagery, namely location aspects (such as location on steep slopes, along major drainage

channels [112]), compliance with building codes measured via density, distance or roofing material [2].

Slums do not have “easily distinguishable spectral signatures” ([45], p. 661), meaning that roofing

material may vary within slums (e.g., plastic, iron, concrete, tin, asbestos) and between different slums

and globally between cities. For the example of Accra (Ghana), Engstrom et al. [64] concluded that

when using the UN-Habitat definition, most of the city is classified as slums, while an image-based

identification matched much better the local delineation of slums. These examples indicate that global

slum definitions need to be adjusted to the local context. However, most researchers fail to start with a

local characterization of the slum morphology and the development of related image-based proxies.

Table 4 presents an overview of physical characterizations of slums found in literature, split into

five major dimensions: building geometry, density, arrangement (pattern/road), roofing material,

and site characteristics. The most frequently used characteristics are small roof sizes, high density,

and irregular patterns (visible by irregular and narrow streets combined with heterogeneous building

orientation). Densities in Asian cities tend to have higher values than in SSA cities (Asia ~80% and

SSA ~60%) [5,41]. However, also in SSA, centrally located slums, such as those in Nairobi, Kenya

with an estimated roof cover of 50%–60%, have high densities [156]. For the group of roofing material

and physical site characteristics, there is a great deal of difference between cities across different

geographic regions and even across slums. For instance, in Dehradun, slums are characterized by

tone differences due to different roofing materials (e.g., plastic, wood etc.) [75], but in Guangzhou [97]

or Ahmedabad [5], spectrally similar roofing material characterizes slums. Regarding physical site

characteristics, there is also no general agreement; however, slums are often located in areas that are

not suitable for constructions (e.g., on a flood plain, steep slope or other hazardous locations) [157].
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Table 4. Physical characteristics of slums in selected journal papers.

Geographical Area Building Geometry Density Arrangement Pattern/Roads Roofing Materials Site Characteristics

A
S

IA

Ahmedabad [5] Small roof sizes, number of floors High density
Absence and/or irregular
roads (width/unpaved)

Specific roof materials (e.g.,
iron, plastic)

Lack of green/open spaces,
irregularly shaped boundaries

Bangalore [84] Low building height
Limited space between shelter

units
Lack of access roads and

irregular patterns
Specific (brown or grey roofs) Lack of shadow

Dehradun [75] Small roof sizes Irregular patterns
Diverse (plastic, wood,

cement/concrete)

Delhi [54] Small roof sizes High density ~80%
Irregular patterns; no access

roads
Hazardous locations (e.g.,
railway, river, highway)

Delhi [94] Small roof sizes, mostly 1–2 floors High density
Irregular patterns; narrow
streets in bad conditions

Diverse poor and
non-permanent materials

Complex settlement shape,
hazardous locations)

Hyderabad [10,45] Small roof sizes High density
Irregular patterns;

narrow streets
Often at city edge and close to

industrial sites.

Mumbai [4]
Small roof sizes (<60 m2,
average height 2.3 floors)

High density >50%: narrow
streets/footpaths (below 1 m)

Low heterogeneity of spatial
patterns

Guangzhou [97]
Mostly square roofs (~12 ˆ 12 m),

additional floors
High density; distance between

shelters 1 to 3 m
Patterns vary depending on

location
Specific (spectrally similar)

Shenzhen and Wuhan [72] Small roof sizes High density Irregular patterns
Often specific

roofing material
Little vegetation and other

open spaces

A
M

E
R

IC
A

S

Guatemala City [6]
Small roof sizes, simple shapes,

diverse orientation
High density Irregular patterns Diverse

Dirt roads; less green; poor
accessibility; steep slope;

proximity to hazards

Medellin [61] Small roof sizes High density Complex patterns Diverse

Rio de Janeiro, Brazil [44] Small roof sizes High density Irregular patterns

Sao Paulo State [96] Small roof sizes High density
Specific (ceramic tile

and asbestos)
Lack of vegetation

S
S

A

Accra [120] Small roof sizes High density Specific (spectrally similar) Lack of vegetation

Cape Town [87] Small roof sizes
Diverse (e.g., plastic,

tin, wood)
Degradation of the local

ecosystem

Nairobi [74] Small roof sizes High density; narrow roads Irregular patterns
Specific (with low

reflectance)

A
C

R
O

S
S

Caracas, Kabul, Kandahar,
La Paz [46]

Small roof sizes High density
Heterogeneity in building

orientation, irregular streets
Diverse

Proximity to
hazardous locations

Cape Town,
Rio de Janeiro [7,71]

Small roof sizes High density
Irregular patterns, small

road segments
Irregular building materials

Only small patches of
vegetation cover

Delhi, Dar es Salaam [41] Small roof sizes High density Irregular patterns

Frequency: Asia: 11, Americas: 6, SSA: 5 19 17 16 14 12
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To conceptualize such physical characteristics, Kohli et al. [5] developed a slum ontology (Figure 4),

based on Hofmann et al. [7], which consists of three spatial levels (object, settlement and environs).

For each level, indicators identify specific physical slum characteristics. Yet the ontology requires a

local adaption as not all indicators are relevant for a specific local slum identification [158]. Thus slums

are different from non-slum areas, but are not homogeneous [4].

 

 
 
 

 

 
 
 
 
 
 
 
 

Figure 4. Slum ontology—indicators associated with the three spatial levels [5].

5.2. The Diversity of Slums

Besides the commonalities of slums in terms of physical characteristics, we also explore the

heterogeneity of slums. Already in 1962, Charles Stokes differentiated between “slums of hope”

and “slums of despair” [159]. Slums vary between and within cities and within slums in terms of

sub-standard living conditions [122,160]. Therefore, recently, some researchers have been exploring

different slum typologies based on building sizes, density, pattern or location (Table 5). However,

slums are often not the worst off areas in terms of socioeconomic conditions [31,114,161]. Thus,

such typologies include also fuzzy classes (i.e., semi-formal), reflecting the dilemma that some areas are

formal but are physically and/or socioeconomically similar to slums, e.g., high-density resettlement

colonies in Delhi [54]. On the contrary, areas can have morphological characteristics that align with

slums, but on the ground, they are not slums like historic core areas.

Table 5. Slum typologies and their categories.

No. Categories Geographical Area

2
‚ Semi-formal low-cost housing

‚ Slum
Quezon City [65]

2

‚ Type I: small- to medium-sized buildings,
narrow/irregular streets

‚ Type II: very small buildings and high building
density, unidentifiable roads

Caracas, Kabul Kandahar, La Paz [46]

3

‚ Informal A (squatter settlement)

‚ Informal B (precarious encroachments)

‚ Basic formal areas (often resettlement colonies

Delhi [54]

5

‚ Slum pocket

‚ Slum area with small buildings

‚ Slum area with mix small/large buildings

‚ Slum area with larger buildings/chawls

‚ Basic formal areas

Mumbai [85]

The established typologies (Table 5) range from two to five categories. The main factor that

influenced authors to develop such typologies is the diversity on the ground, e.g., very deprived areas

and areas that have an unsecure tenure status but are better off in terms of building characteristics.

Some differences are visible in imagery and may assist in a semi-automatic slum identification.

However, none of the reviewed studies established an (semi)-automatic image-classification approach

to extract slum typologies.
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6. Data Availability and Spatial Requirements

The complexity of physical slum characteristics requires advanced sensor systems for mapping

purposes. This section focuses on available imagery data and the spatial requirements in terms of

spatial resolution and extent (settlement to urban region level) of reviewed studies.

6.1. Our Remote Eyes: Available Sensors

The successful launch of Ikonos-2 on 24 September 1999 heralded a new era of urban RS.

The increased availability of high and very-high-resolution imagery produced by sensors such as

Ikonos, QuickBird, WorldView (very-high-resolution sensors (VHR) have spatial resolutions of the

PAN band of 1 m and below, while high-resolution (HR) sensors have between 1 and 5 m spatial

resolutions) have provided a new and rich data repository for urban research in general and for

slum-related research in particular, as it allows for a more detailed spatial analysis [162]. Besides

commercial VHR imagery, since 2005, GE has provided universal web-based access to VHR imagery,

although not providing the original spectral bands, which limits potential analysis.

An increasing number of multi-spectral (MS) and panchromatic (PAN) VHR sensors has become

available (see Figure 5). For instance, since August 2014, the first commercial satellite with a spatial

resolution of 0.31 m (PAN) and 1.24 m (MS) allows an improved object-level analysis. While the first

sensors were launched by countries in the Global North, there is an increasing number of launches

of (V)HR sensors by countries in the Global South (such as NigeriaSat). Also, China has launched a

large number of (V)HR sensors; however, access to data from outside China is an issue. Besides optical

systems, synthetic aperture radar (SAR) systems are gaining an increasing role in extracting information

on slums, especially since the availability of (V)HR systems, e.g., PALSAR: 7 m (2006), Terra SAR-X: 1 m

(2007), SENTINEL-1: 5 m (2014).

 

 

Figure 5. Overview spatial and temporal characteristics of very high and high-resolution satellites;

in brackets: percentage of image data sources of reviewed publications (percentages are displayed

for the MS bands (when available): this combines the percentage of MS and PAN bands) (N = 122,

some publications use multiple image data, in addition to aerial sensors: 8.2%, GE: 6.6%, and moderate

resolution systems: Landsat: 8.2%, Envisat ASAR: 4.9%, Terra ASTER: 2.5%, PALSAR: 1.6%, MODIS: 0.8%).
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Analyzing the imagery used in the reviewed studies (Figure 5), we identify QuickBird, launched

in 2001 with a spatial resolution of 0.61 and 2.44 m (PAN and MS) and a revisit time of 3 days, as the

most frequently used sensor (33%). The revisit time does not equal repetition rate, e.g., WV-3 needs

4.5 days until capturing a scene with the same geometric characteristics (20˝ off-nadir or less at exactly

the same position). While, images taken <1 day might have different geometric characteristics, e.g.,

causing problems for multi-temporal image comparison. The second most frequently used sensor is

Ikonos (11%), with a spatial resolution of 1 and 4 m and the same revisit time. This is followed by

SPOT (mainly SPOT-5) (9%), with a slightly lower spatial resolution (SPOT-5: Pan: 2.5/5 m and MS:

10 m) and revisit time of 5 days; Landsat (9%) and aerial photos/imagery (8%). The latter have been

an important spatial information source in mapping and analyzing (e.g., [163,164]), in monitoring

growth processes (e.g., [73]) and in extracting buildings in slums (e.g., [102]). The main advantages of

aerial photographs are that archives often cover long time series and have very high spatial resolutions

(in cm range). Apart from the V(HR) imagery, some studies employed moderate resolution imagery

(e.g., Landsat, Terra ASTER), e.g., analyzing vegetation cover in slums [110], which is often a good

proxy for deprivation [165].

6.2. Spatial Requirements of Slum-Mapping Studies

Spectrally most of the imagery have 2-3 VIS bands and 1-2 IR bands, and the availability of

more VHR sensors with more spectral bands (e.g., Worldview-2 with 8 bands) producing images of

improved spatial resolutions raises the question of what is an optimal or minimum spatial resolution

for slum mapping. In this respect, Jacobsen and Büyüksalih [166] determined the required GSD

(ground sampling distance) for building objects to be 2 m and for footpaths 1–2 m, while for minor

roads 5 m was considered sufficient. However, detailed building object information requires below

0.5 m and a sufficient contrast between buildings and their surrounding [167]. Moreover, this may

vary in different urban environments. For instance, in cities with a high clustering of buildings, such as

in many Asian cities, a resolution of 2 m does not allow the extraction of roof objects [41]. Furthermore,

according to Pesaresi and Ehrlich ([168], p. 45), when “assuming a typical minimal built-up element in

a settlement, having a size of 10 ˆ 10 m, we need at least 0.5 m.” Many slum buildings are, however,

considerably below 100 m2. Moreover, roof surfaces are frequently not homogeneous; for instance,

when using a VHR sensor, the majority of the roof pixels will be “mixed pixels” (due to different

materials/shadow/illumination) [168]. Consequently, not only the high densities of roofs, but also

the heterogeneity of roof surfaces causes serious limitations for automatically extracting roof objects,

subsequently requiring manual editing for producing reliable information [169]. There is as of yet

no systematic study that analyzes the impact of different spatial and spectral resolutions on the

accuracy of extracting object-level information in slums. It is also interesting that most studies on

roof [55,73,87,91] or road extraction [95] are from African cities (see also Figure 3), where coverage

densities and clustering of roofs are in general a bit lower than in Asian cities [5].

Considering the high costs for commercial VHR imagery and the required processing resources,

many studies have focused on methodological advances and therefore only used as spatial extent

small areas, e.g., subsets of scenes (34%) and settlements (24%) or administrative units (9%) (Table 6).

Methods developed for one scene segment are not necessarily transferable to other scenes [105].

However, more than one-quarter performed the analysis for an entire city (28%) or at urban region

scale (5%). The city and urban regional scale are important stepping stones for building a global slum

inventory. A further stepping stone towards a global slum inventory is a recent pilot study to map

slums of an entire country (South Africa) [77].
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Table 6. Spatial extent (scale) of slum-mapping case studies found in literature.

Scale Frequency Percent (%)

Settlement 21 24.1
Ward/district 7 8.1

Subset 30 34.5
City 24 27.6

Urban region 4 4.6
Country 1 1.1

Total 87 100

7. Slum-Mapping Approaches

Among the reviewed studies, multiple methods have been used to map slums. This section

focuses on the most promising methods with respect to extracted information level (objects or areas)

and achieved accuracies. In general, the level of analysis depends on the spatial resolution of available

imagery, the specific urban morphology and the information requirements.

7.1. Methods Employed for Slum Mapping

In order to explore the discursive context of slum-mapping efforts, we analyze the actual

information that is extracted in the reviewed case studies (Table 7 rows). The majority (55%) of

studies identify entire slum areas [74,82,100], and fewer studies aim at extracting objects in slums

(15%), i.e., roofs [40,87] or roads [95]. The extraction of object-level information depends largely on the

relation between (available) data sources and morphological characteristics of the study area, meaning

that roof or road extraction works well when objects have clearly visible spacing and contrast in the

imagery. The more classical focus on extracting land use/cover information is addressed by 17% of the

publications (e.g., [96,101]). Within this category, a recent research stream aims at mapping built-up

areas using, for example, texture measures. Here, the co-occurrence matrix (GLCM) is commonly used

(e.g., [62,170,171]), which is also the basis for the “anisotropic rotation-invariant built-up presence

index” (Pantex) [172]. Finally, a limited number of studies develop methodologies to analyze the link

between image-based and socioeconomic indicators (6%) (e.g., [173]) or the diversity of slums (7%)

(e.g., [85]).

Table 7. Frequency of methods versus main focus for slum mapping using VHR imagery.

Methods

Total Number
(Percentage)Contour

Model
Machine
Learning

Object-
Based

Approach

Pixel-Based
Approach

Statistical
Model

Texture/
Morphology

Visual Image
Interpretation

F
O

C
I

Analysis of types of
informal/slum areas

0 1 1 0 1 1 2 6 (6.9%)

Correlation with
socioeconomic indicators

0 0 1 3 0 0 1 5 (5.7%)

Identification of slum areas 0 8 15 3 2 9 11 48 (55.2%)

Extractions of roofs/roads
(objects)

4 0 7 0 0 1 1 13 (14.9%)

Land use/cover mapping 0 2 4 5 1 3 0 15 (17.2%)

Total Number (Percentage) 4 (4.6%) 11 (12.6%) 28 (32.2%) 11 (12.6%) 4 (4.6%) 14 (16.1%) 15 (17.2%) 87 (100%)

Since the expert meeting on slum mapping in 2008 [36], more methods and cases on slum

cities have been explored, expanding the global knowledge repository of slum characteristics and

their variability. Brito and Quintanilha [174] stated that in recent years many methods have been

based on feature extraction but there is no clear agreement on the most successful method(s), where

the majority of studies rely on optical data. The availability of imagery with sub-meter resolution

still has many unresolved technical challenges for the characterization of slums, such as mixed
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pixels or the obliqueness of images. Thus, there is “a strong need of new approaches for automatic

image understanding on remote sensing data bridging the gap between visual and automatic image

interpretation” ([175], p. 3). In this respect, also complex (visual) interpretation elements (e.g., height,

shadow, pattern and site) (Figure 6, [41,176,177] ) need to be more systematically explored [177].

 

 
Figure 6. Complexity of image interpretation elements (adapted from [41,176,177]).

Already in 1998, Mason and Fraser [178] specified three main characteristics of an effective

system to map/monitor slums, specifically low-cost (data acquisition and processing), semi-automated

processes (fast and reliable results) and simple usage by low-skilled operators (standard software).

The analysis of the employed methods in the reviewed slum publications shows that most studies

used commercial and rather expensive imagery. Only very few studies used free data sources such

as GE image, mostly for visual image interpretation (e.g., [69,84,119]), visualization of slums [90]

or combining GE with commercial imagery [72,80], whereas Praptono et al. [98] used GE images

to automatically detect slums employing a Gabor filter and GLCM with a promising accuracy of

74%. Many of the methods used commercial software solutions, but to some extent also open-source

software. Nevertheless, both are not easy to be operated by non-RS experts.

Overall, the methods to extract slums are rather diverse (Table 7 columns). The most frequently

used method in the last 15 years was OBIA (32%), also referred to as GEOBIA [179]. For OBIA,

the transferability [82] or robustness [71] of rules and indicators is a critical issue, which is a stronger

feature of texture or morphology-based methods [82], accounting for 16% of the studies. Significantly,

Hofmann et al. [180] stressed that a systematic adaption of segmentation parameters is crucial to transfer

rules from one image to another. Several studies focused on the optimization of scale parameters [181],

where the tool Estimation of Scale Parameters (ESP) allows optimizing the scale based on patterns in

the data [182].

Apart from OBIA, visual image interpretation (17%) and standard pixel-based image classification

were employed (13%). However, the reliance on standard pixel-based classification methods is not that

appropriate for analyzing a complex urban environment having high spectral diversity, very small

and clustered objects and diverse morphological characteristics. Therefore, many researchers used

machine-learning algorithms (14%) such as neural networks [59], random forest (RF) or support vector

machines (SVM) [72]. Machine-learning approaches are information-driven approaches that allow for a

repetitive learning from a large and rich set of training data [94]. However, those approaches are mainly

pixel-based methods, which are “not very effective in high-resolution urban image classification”

procedures ([116], p. 869). Therefore, a large spatial context of many neighboring pixels is necessary,

such as multi-instant learning [116] or Markov random fields [46]. Given that neighborhoods or wards

are relevant spatial units of policy and decision-making processes, the issue of aggregation is important,

via segments (e.g., [41,88]), regular grids (e.g., [104]) or non-overlapping block [173].
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Crossing the main foci and methods (Table 7), OBIA appears to be the most common method for

extracting both slum areas and objects in slums. Although rather labor intensive, visual interpretation

is still used for slum identification, producing reliable results by skilled interpretations; however,

texture/morphology and machine-learning methods are increasingly being used.

7.2. Accuracy Levels and Employed Methods

The last dimension of the analysis deals with the performance of indicators and methods,

measured by accuracy levels. Across the studies, there is much diversity with respect to these levels.

For instance, Ella et al. [63] compared various texture features (e.g., local binary pattern (LBP), GLCM,

lacunarity) by training a support vector machine. While LBP achieved the highest accuracy of 98%,

GLCM had an accuracy of 94%. Based on single indicator approaches, lacunarity was identified as

having a high utility for extracting slums (e.g., [45,57]); however, lacunarity cannot identify small

slum pockets as it requires a rather large window size [10]. Verzosa and Gonzalez [118] suggested

entropy for monitoring uncontrolled sprawl, while the morphology of slums can be described by

spatial metrics [41,83] with reported accuracies of not more than 70%. Besides the use of single or a

small set of indicators, several studies used large sets of indicators. For example, Owen and Wong [6]

performed a systematic comparison between indicators to distinguish formal and slum areas using

24 spectral, accessibility, texture, scale-based and morphological indicators. The result showed that

the best indicators were entropy of roads, vegetation patch size, and vegetation patch compactness.

Similarly, Graesser, Cheriyadat, Vatsavai, Chandola, Long and Bright [46] focused on the development

of consistent predictors for formal and slum areas by a decision tree using GLCM, lacunarity, histogram

gradients, linear feature distribution, line support regions, vegetation indices, and textons (texture

patches). Their result showed that texton features were most robust for all included cities (i.e., Caracas,

Kabul, Kandahar, and La Paz), achieving a maximum accuracy of 92% [43]. Thus, a fully automatic

system for mapping slums with 100% accuracy is not in sight. However, reported accuracy levels show

promising developments for semi-automatic methods.

Apart from comparing the capacity of indicators, the performance of methods is evaluated.

In general, advanced approaches (such as mathematical morphology analysis) have a better

performance than standard classification approaches [67]. To evaluate the performance of methods,

we compare the accuracy of all reviewed slum-mapping publications (Figure 7). The highest mean

accuracy is obtained by machine-learning approaches, but also texture and statistical-based approaches

show promising results, while the variance of the performance of OBIA is rather large. The cases of

lower accuracies of OBIA are often related to very complex urban environments such as Indian cities

where slum areas are very diverse and often have similar spatial characteristics compared to formal

areas. Thus obtained accuracy levels not only depend on the methodology, but also on the urban

morphology and how well slum characteristics are captured by image-based proxies. To address this,

Shekhar [105] proposed an OBIA procedure, identifying first formal areas; the remaining built-up

areas are then classified as slums achieving an overall accuracy of 87%.

In conclusion, machine-learning methods seem to be more successful when aiming at extracting

slum areas at the city scale, whereas OBIA was found to work well for the extraction of objects (e.g.,

roofs, roads) on settlement level when the urban morphology combined with a sufficient resolution

image allowed their extraction. Both methods can be combined, e.g., using image segmentation

together with machine-learning approaches [183], which allows combining the advantages of

both methods.
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Figure 7. Reported accuracies for different image analysis methods on slum mapping.

8. Challenges and Promising Aspects for a Global Slum Monitoring System

Based on the results presented in the previous sections, the most promising aspects of the reviewed

studies (in terms of context, physical characteristics, data and requirements, and methodologies) for

developing a global slum inventory are explored.

8.1. Access to Image Data and Contextual Factors

Our geographic “ground” knowledge on slums is limited to a few urban regions. Therefore,

Owen and Wong [38] recommended more systematic comparisons between different slum settlements,

done by very few studies (e.g., [46]). It would be important to compare the performance of indicators,

methods, and image data for different urban contexts across the globe to obtain an overview of robust

indicators, methods, and required data. A major initiative in this respect is performed by the Oak Ridge

National Laboratory, where researchers are working on “a computationally efficient and automated

framework that is capable of detecting new settlements (especially slums) across the globe” ([117],

p. 1425). To promote large-scale slum-mapping programs, clear guidelines and continuous political

support is necessary, shown by the challenges of implementing, for instance, past slum-mapping

programs in Indian cities (RAY; the vision of a slum-free India) [184].

A major bottleneck (besides image costs) is image availability due to frequent cloud cover in

tropical cities. However, since the massive increase of VHR sensors, we can expect an improvement of

image availability. To further overcome this problem, more (V)HR resolution SAR sensors are available

(e.g., TerraSAR-X) that penetrate clouds, being suitable for texture analysis of slums [60,89]. Also,

LIDAR data have enormous potential for object extraction with their capability of extracting building

heights [185], a relevant indicator for slum mapping [4]. Furthermore, drones (UAVs) are able to fly

below clouds to capture settlement details [186], but to cover entire cities would be computational

challenging, in addition to the inevitable privacy issues. In addition, other image data sources have

potential, e.g., night-light images. Unfortunately, the resolution of sensors like OLS is too low to map

detailed inner urban night-light variations. On a metropolitan scale, researchers successfully correlated

poverty rates with observed night-time lights (e.g., [187]). Alternative image sources for global slum

mapping are, for instance, GE images that allow working with VHR imagery free of charge (democratizing

data access), where texture-based image analysis showed promising accuracies [98]. To increase the

classification accuracy, several studies have proposed the use of auxiliary data, such as the utility of DSM

for built-up or roof extraction [153] or the usage of VGI (volunteered geographic information) [69].

8.2. Systematic Conceptualization of Slums: Methods and Slum Characteristics

Regarding the transferability and robustness of OBIA-based methods (across different data and

locations), locally developed rule sets have their limitations, compared to the better performance

of texture-based or machine-learning algorithms [188]. Furthermore, the latter have the capacity to
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deal with multilayer inputs of spectral, texture or spatial´physical indicators (e.g., [46]). However,

machine-learning algorithms (both parametric and non-parametric) mostly employ per-pixel classifiers.

Only a few examples extracted area-based layers (e.g., via segments) [188], which would be

more relevant for slum mapping towards informing pro-poor policies. Thus, besides setting

up a well-structured conceptual framework in form of a slum ontology [71] and developing a

consistent framework for assessing the transferability and robustness of slum extraction methods [23],

the advantages of both methods—OBIA and machine learning—need be combined.

One major dilemma when assessing the performance of slum-mapping methods is access

to reference data. In general, studies use ground truth data (collected in the field) (e.g., [45]),

expert delineations (e.g., [82]), or available municipal data sets (e.g., [183]). All data sets have

the inherent dilemma of “what is a slum,” as slum definitions vary between and within countries

but even within a city, and different institutions can have different slum definitions and therefore

slum maps (e.g., in Jakarta [189]). These uncertainties have a negative impact on classification

accuracies [158], and reduces the comparability of the performance of different slum-mapping methods.

In Sections 5 and 7 the role of systematically selected image-based proxies (e.g., in form of a slum

ontology) for methodological advances in slum mapping has been stressed. Therefore, a more

systematic exploration of potential proxies to describe differences within slums and slums versus formal

areas is needed. A first starting point is the relation between classical visual image interpretation

elements [116] and physical characteristics of slums. This would allow developing systematic rules for

OBIA or training machine-learning approaches similar to how human interpreters recognize slums.

An overview of proxies is presented in Table 8.

Table 8. Overview of successfully documented image-based proxies (indicators).

Interpretation Elements Building Geometry

Physical Characteristics

Density Arrangement Pattern
Roof
Materials

Site Characteristics

H
ig

h
e
r

Site/Association Heterogeneity [4]
Roof density [4],
vegetation
density [120]

Line segment
heterogeneity [78]

Settlement form and
distance to river [82],
accessibility and slope [6],
border length and
distances to hazardous
areas [105]

To be explored

Surrounding
building typology,
variation of
building distances

Heterogeneity of
roof density

Heterogeneity of
building height

Heterogeneity
of roofing
material

Distance to livelihood
sources, basic
infrastructure and service
provision

T
e
rt

ia
ry

Pattern/Height/Shadow

Building distance
and height [4],
building
orientation [72] and
shadow [71]

Patch density
pattern [41]

Line orientation and
distribution [46],
entropy of objects (e.g.,
roads) [6], LBP [63],
vegetation pattern [54],
aggregation [41], Fourier
transformation [190]

Vegetation patch
compactness [6]

To be explored Shadow variation Shadow density
Connectivity of
roads/footpaths

Pattern of
roofing
material

Pattern of
vegetation cover

S
e
co

n
d

a
ry Shape/Size/Texture

Asymmetry and
size of roofs [71],
shape of roofs [149]

NA Texton [46]; GLCM [109] NA
Vegetation patch size [6]
or percentage [111]

To be explored Shadow sizes
Size variations
(diversity/evenness)

Object size and shape
variations

P
ri

m
a
ry Color/Tone NA NA

Roof colors/
material [82]

NDVI [72], road
material [96], soil
index [104], V-I-S
model [43,135]

To be explored Pattern of roof material
Variation of
roof material

Land cover variation

In the literature, many interpretation elements have been employed—simple (primary) ones based

on color, or complex (tertiary and higher) ones, based on pattern or site. However, many potentially

interesting combinations have not been systematically explored (Table 8), e.g., homogeneity of
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roofing material at settlement level. Building height has only been used in an explorative study [4].

Other site/association-related proxies have only been used in a few OBIA studies (e.g., [78,82]).

Promising proxies relate to distance to livelihood opportunities and services, road features (e.g.,

available from OSM) or general line features and their orientation and pattern. For example, we know

that lines in slums are generally much more irregular and heterogeneous in orientation compared to

formal settlements [78]. Furthermore, the analysis of heterogeneity (versus homogeneity) and patterns

of density, roof materials, shadow, vegetation, and other land cover types could provide promising

proxies. Thus a more systematic inclusion of all levels of interpretation elements will be important to

improve slum extraction approaches. To avoid high dimensionality of large proxy sets, automatized

feature selection will be the road forward [191], allowing the selection of the most relevant features

(indicators) while excluding redundant ones.

Presently, we know too little about the global diversity of slums and how to capture this diversity

by robust image-based proxies. Thus, a more systematic exploration of potential proxies is required

for the development of a global slum inventory. Besides the establishment of a global slum inventory,

regular monitoring systems at local level are necessary for the detection of changes but also as an

instrument to monitor policy implementation or to protect slum dwellers against illegal evictions.

9. Conclusions

In this review, we identified the variety of methodological advances in slum-mapping studies that

are relevant for developing a global slum inventory. The reviewed literature shows that the current

geographic knowledge on slum characteristics is rather limited. This knowledge needs to be extended

to cover the main urban regions in the Global South, especially where urban growth rates and poverty

levels are high. Specifically, more comparative studies on proxies are needed across the globe, using

a systematic depiction of established slum characteristics (i.e., building geometry, density, pattern,

roof material and site characteristics) versus image (interpretation) elements for the development of

robust image-based proxies. This also requires a clear conceptual frame to assess their transferability

and robustness. The same is required for methodologies. On the basis of the reported accuracies

and the ability to process larger data and indicator sets, the most promising methods for a global

slum inventory use machine-learning approaches. Several important recommendations for future

methodological developments are: (1) include better contextual properties (larger neighborhoods);

(2) avoid pixel-based approaches; (3) employ scalable aggregation levels that allow the mapping of

smaller slum pockets as well as larger slum areas; (4) include more complex interpretation elements

(site and association) and proxies based on ancillary data; and (5) examine the impact of different

sensor characteristics on classification accuracies.

For OBIA, extracting object-level information on roofs or roads, often required for counting

dwellings or estimating population, the availability of VHR imagery in the range of 30 cm might

open up new avenues, in particular for very high-density slums in Asian cities. For the further

development of OBIA approaches that are fit for city or settlement-level information extraction,

the important recommendations and considerations are: (1) select suitable sensors for the local

context; (2) systematic slum characterization should be translated into robust and transferable rule

sets; (3) include readily available ancillary data in the classification process; (4) link image-derived

products with socioeconomic data.

Locally feasible and quick monitoring approaches could rely on both, OBIA or machine learning,

but also single indicator approaches (e.g., GLCM or lacunarity) have the potential to capture quickly

the location and extent of slum areas in support of pro-poor policy implementations. Therefore,

capturing the local slum morphology with the most suitable indicator(s) transferable to imagery

of different sensors or different years is crucial. Nevertheless, a global slum inventory must

acknowledge the diversity of slums within and between cities. Therefore, besides the mapping of slums,

the identification of contextual slum typologies is an important research direction; such information

will allow the combination of image-based information with socioeconomic characteristics, which may
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ultimately lead to a better targeting of pro-poor policy interventions. Finally, the information gap

and access to data between the Global South and North needs to be better bridged by making data

and tools globally accessible to local actors with appropriate attention for capacity building to ensure

proper understanding and application.
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