
Slurpie: A Cooperative Bulk Data Transfer Protocol

Rob Sherwood Ryan Braud Bobby Bhattacharjee
Department of Computer Science, University of Maryland, College Park, Maryland, USA

{capveg, ryan, bobby}@cs.umd.edu

Abstract— We present Slurpie: a peer-to-peer protocol for
bulk data transfer. Slurpie is specifically designed to reduce
client download times for large, popular files, and to reduce
load on servers that serve these files. Slurpie employs a novel
adaptive downloading strategy to increase client performance,
and employs a randomized backoff strategy to precisely control
load on the server. We describe a full implementation of the
Slurpie protocol, and present results from both controlled local-
area and wide-area testbeds. Our results show that Slurpie clients
improve performance as the size of the network increases, and the
server is completely insulated from large flash crowds entering
the Slurpie network.

I. INTRODUCTION

Consider a situation where many Internet hosts all try to
simultaneously download a large file from a central server,
e.g. when a new CD image or critical patch is released for a
popular operating system. As the number of clients increases
beyond a critical threshold, the data rate each client receives
from the server tends towards zero. When the server is so
stressed, the processing and storage resources the server needs
to handle client connection state is exhausted, and new clients
are denied access to the server. Unfortunately, existing clients
do not get adequate service either, since their data connections
(using TCP) compete with each other and with new connection
requests. Under severe contention on the server access link, the
network regresses to congestion collapse and no client is able
to make progress. Thus, it is not uncommon for extremely
popular downloads to take many (tens of) hours or longer,
when uncontested, the file could be downloaded in minutes.
It is also not uncommon for the downloads to fail entirely,
because the TCP connections either do not get created or time
out due to packet losses.

In this paper, we present a protocol, named Slurpie1, to
handle this precise problem. Specifically, the goal of Slurpie
is to minimize client-side wall clock time taken to download
large, popular files. Our work on Slurpie is motivated by the
following observation: while the resources, both bandwidth
and processing, at the server are completely exhausted, the
clients themselves usually have ample spare capacity. Using
spare processing and bandwidth on inter-peer paths, Slurpie
creates a dynamic peer-to-peer network (Figure 2) of clients
who want the same file with the goal of reducing client
download time and server load. Our design goals for Slurpie
were the following:

1) Scalable: Slurpie should be scalable and robust: specif-
ically, the protocol should be able to handle very large

1Slurpie was originally designed as part of the CS 711 graduate networking
course at the Univ. of Maryland.

C C C C C C C. . .

Fig. 1. Traditional data transfer:
all data is transferred from the
server.

C

C

C

C

C

C

C

C

C

Fig. 2. Slurpie: Clients form a
mesh and most data can be gotten
from mesh neighbors.

(103–106) simultaneous clients. Further, an explicit goal
of our protocol is to maintain load at the server in-
dependent of the number of Slurpie clients. Thus, the
entire Slurpie client set should appear as a configurable
number of clients at the server, regardless of the size of
the Slurpie network.

2) Beneficial: Clearly, the first property implies that a
properly designed Slurpie protocol will reduce load at
the server. However, clients will not use Slurpie unless
their own download time is reduced. The second explicit
design goal of Slurpie is to minimize the client download
times; as we shall see, almost all clients decrease their
download times by using Slurpie rather than getting the
file directly from the server.

3) Deployable: A design goal of Slurpie is the ability to be
deployed without infrastructure support. Specifically, we
do not require deployment or router co-location of any
new dedicated servers and it is reasonably easy for any
ad-hoc groups of nodes to start their own instantiation of
Slurpie. As described in the protocol description, Slurpie
requires a demultiplexing host which it uses to locate
other peers; we have designed the protocol such that the
load —in terms of processing bandwidth, and state— on
this host is minimal.

4) Adaptive: Slurpie is designed to adapt to different net-
work conditions, and tailor its download strategy to the
amount of available bandwidth and processing capacity
at the client.

5) Compatible: Lastly, we designed Slurpie such that it
requires no server-side changes. In fact, a server that is
serving a set of Slurpie clients cannot determine whether
these clients are using Slurpie (except for the reduction
in server load). Thus, Slurpie can be used with existing
data transfer protocols including HTTP and FTP.

Inherent to our solution is the assumption that the server is
the data transfer bottleneck, and that clients have additional
resources (both processing and bandwidth) that they are will-

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

ing to use to decrease their download times. Additionally, we
also make the following assumptions:

• Slurpie will be used for bulk data transfer. Thus, latency
and jitter are of secondary importance to overall through-
put, and clients can receive and process data out of order.

• Users are not required to persist in the system after
they finish downloading their file. Of course, system
performance will increase if benevolent users choose to
persist, since they can then serve parts of the the file to
new users.

• An end-to-end data integrity check is available out of
band. The download protocols we consider, HTTP and
FTP, do not provide a cryptographically strong integrity
check on transferred data. The concern due to the lack of
a check is amplified when parts of the file are received
from unknown nodes in the network. We assume that an
application-level check is available out of band; note that
this is the current norm as most popular downloads are
accompanied with a MD5 checksum of the content.

A. Approach

Cooperative downloads, where the load on the server is
mitigated by using other network hosts, have previously been
studied and implemented in many forms. These prior efforts
fall into three main categories: infrastructure-based solutions
such as content-distribution networks (e.g. Akamai [1]) where
server providers provision in-network hosts to alleviate load
on the central server. The complementary approach is client-
deployed cache hierarchies (e.g. Squid [2]) that reduce client
access times (and in turn server load). There has been
significant work in deploying and choosing mirror servers
that replicate content. All of these approaches require fixed
investment in infrastructure support and work perfectly well as
long as the demand can be anticipated (and hence provisioned
for). A new generation of p2p protocols (NICE [3], Narada [4],
CAN-multicast [5], Scribe [6], etc.) have been developed
for application-layer multicast in which streaming content is
replicated and forwarded using the only resources of peers
who themselves want this data. The inherent advantage of
these schemes is extreme scalability. This is because, these
protocols proportionately increase the amount of resources
devoted to transferring data as the number of clients who
want the data increase. The research focus on application-layer
multicast has been on building efficient topologies that provide
low end-to-end latencies. Slurpie uses this same paradigm
in which peers form a dynamic structure without any extra
investment in infrastructure. However, unlike prior work, our
focus is on creating an efficient structure for quickly locating
and disseminating bulk data. The Slurpie protocol is loosely
based on the following schematic:

Suppose a popular file is available from a heavily
loaded web server (called the “source server” in the
rest of this paper). When a node wants to download
this file, it registers with a centrally known topology
server and retrieves a complete list of other nodes
downloading the same file. The file is logically

divided into fixed sized blocks, and successful com-
pletion of the download consists of downloading this
set of blocks. The set of nodes downloading the same
file form a per file mesh. Update messages of which
nodes have which blocks are propagated through the
mesh. With the update knowledge, each node can
either download a given block from a peer, or from
the source server.

The schematic described above is appealing, and has a
number of desirable properties (e.g. reduction in server load).
However, in practice, a number of problems have to be solved
in order to derive a usable solution. For example, the schematic
requires the topology server to maintain exact state about all
peers downloading a file. Clearly, this will not scale since
flash crowds of many tens of thousands can often request
the same file within a very small period of time. There are
many other practical problems, such as deciding on a “good”
number of blocks to divide the files into, and deciding how
many connections each peer should open. We also need to
decide precisely how the mesh is formed, how updates are
propagated, and how a peer decides to approach the server
as opposed to downloading a block from the peer network.
Finally, any cooperative download protocol must have a good
solution for the “last block” problem, where all the nodes in
the system have all but one block, and they all try to get the last
block from the server! This focus of this paper is on solving
precisely this set of problems, and developing a protocol that
meets our stated design goals.

B. Roadmap

The rest of this paper is structured as follows: in the next
section, we describe prior work, and compare Slurpie to related
work. In Section III, we present specifics of the Slurpie pro-
tocol. We present experimental results in Section IV, discuss
deployment issues in Section V, and conclude in Section VI.
This work was supported in part by NSF CAREER Award
ANI 0092806.

II. RELATED WORK

The general problem of getting popular content off of
heavily loaded servers is well studied. We divide existing
approaches down into categories of multicast, infrastructure-
based solutions, and existing peer-to-peer efforts. We also
discuss the effects of erasure encoding the data transfers.

A. Multicast

One method of reducing load at a server is to replace a
number of unicast streams with one single multicast stream.
This can be done either at the IP layer [7], e.g. using cyclic
multicast [8], or in the application layer [3], [4], [5], [6].
The main difference between these approaches and Slurpie is
that Slurpie incorporates both a discovery and a separate data
transfer phase, i.e. in Slurpie the decision of where to get the
next piece of data is made dynamically depending on network
conditions and on which nodes have what data. In contrast,
in all multicast-based schemes, the data source is, by default

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

the original server, and alternate paths are used primarily for
loss recovery [9], [10], [11]. Slurpie is also designed for bulk
data transfer, and downloads blocks in a random order, while a
number of the multicast protocols are optimized for streaming.
Compared to Slurpie, most multicast protocols are much more
careful about creating a topology that approximates a shortest
path tree (or some some other good topological property). The
Slurpie topology is essentially ad-hoc, and data transfer links
are added and kept only for transferring a few blocks. We
could potentially incorporate a more sophisticated topology
construction algorithm in Slurpie, but Slurpie peers stay in the
network for a very short period of time and our main objective
in creating the topology is minimizing control overhead, and
not necessarily network-level efficiency. Many (if not most)
multicast protocols will not operate well if peers stayed in the
network for only a few minutes, as is the norm in Slurpie.
Finally, Slurpie provides complete reliability, while for the
most part, reliable multicast is still has many difficult open
research issues.

B. Infrastructure-based Solutions

Content distribution networks (CDNs) such as Akamai [1],
[12] and web-caching hierarchies [2] are often used to al-
leviate load on popular servers. CDNs are deployed by the
content providers (i.e. the servers), and web-caches are usually
deployed by clients. A similar solution employed by some
content providers is to employ a fixed number of static
content mirrors (e.g. See http://www.gnu.org/prep/
ftp.html for GNU software mirrors). Regardless of how
these mirrors, caches, or CDN nodes are deployed, they are
explicitly provisioned for certain load levels, and if a flash
crowd exceeds this provisioned amount, then the performance
of the system degrades again. In contrast, resources available
to Slurpie increase as the client set increases, and thus, we
believe Slurpie is able to handle larger client sets.

C. Peer-to-peer Bulk Transfer Protocols

Two peer-to-peer projects, CoopNet and BitTorrent, imple-
ment cooperative downloads.

1) CoopNet: In CoopNet [13], clients get redirect messages
from the server to clients that have previously downloaded the
same file. Clients are expected to remain in the system for
some amount of time after they are finished downloading to
serve files to future clients. The server provides multiple peers
in the redirect, and an estimate of the best client is calculated.
The server stores the last n (n=5–50 in simulations) clients to
have requested the file, and the redirects are useful as long as
one of the n clients is still serving the file. All state is stored
at the server, and it is assumed that both the client and servers
are CoopNet aware.

The intended application of CoopNet is downloading small
HTML files, unlike Slurpie which targets bulk data transfer.
There is no notion of serving a partially downloaded file, and
all data transfers necessarily involve the server (in order to get
the redirect list).

2) BitTorrent: BitTorrent [14], [15] is the work closest
to Slurpie, as it targets bulk data transfer and has similar
assumptions. A “tracker” service is set up to help peers
downloading the same file find each other. A random mesh
is formed to propagate announcements, and peers download
from as many other peers as they can find. A novel feature
of BitTorrent is connection choking. Peer A will stop sending
blocks to peer B (this is called “choking” the connection) until
peer B sends A a block, or a time out occurs. The choking
encourages cooperation, as well as implicitly rate limits the
data going out of a loaded peer. It is assumed that a BitTorrent
client was started a priori on the web server, and that the client
stays in the system indefinitely serving the file. The web server
itself serves a file with a “.torrent” extension, which contains
both a set of hashes for the files contents, and a URL for
the tracker. From the BitTorrent documentation, it is not clear
how much state the tracker keeps, but from examining the
source, it appears to be O(n), where n is the number of nodes
downloading the file.

Compared to Slurpie, BitTorrent does not adapt to varying
bandwidth conditions, or scale its number of neighbors as
the group size increases. Each client appears to keep O(n)
state, and they periodically reconnect to the tracker to provide
update information. The tracker system limits the scalability
of the system to the order of thousands of nodes [15]. In
Section IV, we present performance comparisons that show
that Slurpie out performs BitTorrent, with respect to both
average download times and also download time variance.

D. Erasure Encoding

Erasure codes have been used to efficiently transfer bulk
data [16], [17]. With modest overhead, they have the benefits
of resilience to packet loss and eliminate the need for stateful
data transfers.

As pointed out in [16], the limitations of a stateful system,
like Slurpie, typically include: lack of data distribution, per
connection state, and the “last block” problem. Slurpie ex-
plicitly addresses each of these concerns via random block
selection, fixed state per node, and backing off from the web-
server, respectively. Finally, it is possible to incorporate erasure
coding and similar encodings into Slurpie to potentially further
improve performance. This is an avenue of future work.

III. SLURPIE: PROTOCOL DETAILS

The Slurpie protocol implements the basic schematic intro-
duced in Section I, but includes a number of refinements that
are necessary for proper functioning with large client sets. At a
high level, all nodes downloading the same file initially contact
a topology server (Figure 3). Using information returned by
the topology server, the nodes form a random mesh (Figure 4),
and propagate progress updates to other nodes (Figure 5). The
updates contain information about which blocks are available
where, and this information is used to coordinate the actual
data transfer (Figure 6). Slurpie uses an available bandwidth
estimation technique, described below, that returns three states:

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

TS

C8

Get file1

C7 C6 C5 C4 C3

Fig. 3. Get seed nodes from
topology server; topology server
keeps constant per file state.

C8

C4

C7

C5

C3C6

add neighbor

add neighbor

add neighbor

add neighbor

add neighbor

Fig. 4. Discover alive peers and
form mesh; mesh degree depends
on number of peers.

C8

C4

C8: X
YZ C

3: Y
AB

C4: A
BC C

10: Y
DE

C5

C3C6

C7

Fig. 5. Exchange updates with
mesh peers; update rate con-
trolled by bw adapatation alg.

C8

C6

C4

C7

C5

C3

WS
H

TTP G
et

Get
 A

Bloc
k A

Data

Fig. 6. Data Transfer. Server
visited only if no peer has needed
block.

underutilized, throttle-back, and at-capacity. Using this in-
formation, the protocol makes informed decisions about the
number of edges to keep in the mesh, the rate at which to
propagate updates, and the number of simultaneous data con-
nections to keep open. Slurpie coordinates group downloading
decisions without global information by employing a number
of techniques, such as a random back off which controls load
at the source server. It is not feasible for Slurpie clients to keep
per-peer state for large download groups; we employ a mesh
size estimation technique to determine the mesh size using
only data stored locally. In the rest of this section, we describe
different components of the Slurpie protocol, beginning with
the mesh formation.

A. Mesh Formation and Update Propagation

The join procedure discussed in Section I did not scale
because it assumed that the topology server kept state for the
entire set of nodes downloading the same file. However, note
that given a single seed node downloading the same file, a
newly joined node can receive updates from that seed, and use
the update messages to discover new peers and add new edges
in the mesh. Thus, the topology server only needs to maintain
information about a single node that is currently downloading
a file (instead of all nodes that are downloading the file). But
the question then becomes: which node id. does the topology
server store, and how does it guarantee that the node is still
in the system? In Slurpie, we always return the identity of
the last node to query the topology server (for that same
file). The intuition is that the node that most recently started
downloading a file is the node that most likely to be still
in the system. In practice, the topology server maintains and
returns the last ψ nodes, where ψ is a small constant. Note
that this procedure is identical to the mesh joining procedure
in Narada [4].

Given a set of seed nodes, the newly joined node makes bi-
directional “neighbor” links to a random subset of these nodes.
Each node has a target number of neighbors (η) that it seeks
to maintain. The value of η is continually updated depending
on available bandwidth, and as new neighbors are discovered.
The bandwidth estimation algorithm is run once a second, and
if it consistently returns underutilized, a new neighbor, picked
uniformly at random from the set of known peers, is added. In

general, each node tries to maintain η ≥ O(log n), where n
is the estimated size of the total number of nodes in the mesh.
Since the mesh is, at a first approximation, a random graph,
the O(log n) degree implies that the mesh stays connected
with high probability [18].

1) Update Propagation: Along each neighbor link, update
messages of the form 〈 IP-addr, port, block-list, hopcount,
node-degree 〉 are passed. These form the basic information
units that alert peers of new nodes joining the system, and
of who has which blocks. The rate of updates passed along
each link per second, σ, is subject to an AIMD flow control
algorithm [19], [20] which additively increases and multiplica-
tively decreases update rates depending on available bandwidth
estimates. The intuition behind controlling the update rate in
this manner is the following: when a node does not have
enough peers to download from to fill its bandwidth capacity, it
should increase its knowledge of the world (and thus increase
the rate at which it receives updates). Correspondingly, as
the node’s bandwidth becomes consumed with useful data
downloads, information about other peers becomes less useful.

a) The Update Tree: In Slurpie updates, the block list is
simply represented as a bit vector. There are certainly a number
of more sophisticated data structures, e.g. Bloom filters [21]
and approximate reconciliation trees [16] that we could use,
but for our purposes a simple bit vector has been sufficient.

0 ... 11 0 ...1 ...1 0 ...1

0 ... 111 ...11

... 11

0 0 0 1 0 0 0 0

1 0

11

Node 0 Node 1 Node 2 Node 3

logical OR
of child
vectors

Fig. 7. Update Tree: nodes with block zero are highlighted

Each node stores information about U other nodes, where U
is a constant chosen locally. The bit vectors within an update
are locally stored in a data structure known as the update
tree (see Figure 7). Bit vectors corresponding to individual

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

nodes form the leaves of the tree, each parent is a bit vector
of the logical OR of its children, and the root of the tree is
the logical OR of all updates. This structure can then be used
to efficiently answer queries of the form “which blocks have
not been retrieved from the web server”, and “which set of
machines has downloaded this specific block”. Only a single
bit vector is stored for any peer, and newer vectors from a
peer (with more bits set) replace any existing vectors from this
peer. The least hop count for a given node id is also saved;
this approximates the shortest path to the node, and is used in
estimating the mesh size (described next).

B. Group Size Estimation

A number of the algorithms that Slurpie uses assumes
that we know n, the total number of nodes downloading a
given file, so it is important to be able to accurately estimate
that number. Recall that U is the number of updates that
any node stores. If n ≤ U , then as time progresses and
updates propagate, each node receives information about every
other node in the system, and can very accurately estimate n.
However, the case where n > U is more interesting.

We know from random graph theory that for an r-
regular graph, the mean distance d between nodes is pro-
portional to logr−1n. Solving this equation for n, we get
n = O((r − 1)d). The mesh formed by Slurpie is not
exactly an r-regular graph, as nodes have different numbers
of edges, and it is impossible for a single node to know the
exact distance counts to all nodes in the system when n > U .
However, using the U updates in the update tree, it is possible
to estimate averages for both hop counts and degrees to gain
estimates for d and r, and thus an estimate for n. Note that
such an estimate becomes more accurate as n increases. In
Section IV, we show that in simulations, this approximation
provides reasonable estimates for n, even for relatively small
values of U .

C. Downloading Decisions

In Slurpie, blocks served by peers are downloaded before
blocks served by the source server. When multiple peers have
the same block, we choose a peer uniformly at random. In
an effort to take advantage of an open TCP window, once a
connection to a peer has been established, the node downloads
any blocks that it does not have from that peer.

In general, multiple downloading connections are opened
in parallel, and it is a non-trivial question to decide how
many connections is optimal. Here, Slurpie again makes use of
the bandwidth estimation algorithm. The algorithm is queried
every second, and if it returns underutilized, and there exist
hosts that have blocks that the local node does not have, a new
connection is opened.

D. Backing Off

Slurpie nodes only connect to the server if they have excess
capacity, and know of no other peers that can provide them
useful data blocks. Recall, however, that a design goal of the
Slurpie protocol is to control the load on the source server

independent of the number of peers in the Slurpie mesh. We
ensure this constant load property by employing a random
backoff, and in effect, system throughput increases as peers
do not go to the server, even if the server is the only node that
has a block they need. This is because if a large enough set of
nodes opened simultaneous connections to the server for even
a single block, none of the nodes would get their data, and
overall system throughput would tend to zero.

Ideally, the host with the best connection to the server would
be the sole machine connected to the server, and everyone else
would receive their data from this host. There are, however,
two problems with this method:

• The best host could download the data and then leave
the system, and the entire process would have to repeat
again; and

• Finding the best host is probably difficult, especially
since this has to be determined quickly, dynamically, and
without server support, and without probing the server
(path).

Instead, we use the following scheme: Every time period τ ,
each eligible peer decides to go to the server with probability
k/n where n is the estimate of the nodes in the system, and
k is a small constant. The effect is that, on average, there will
be k connections from the Slurpie mesh to the server at any
time, and the number of connections to the server over time
is exactly modeled by a binomial distribution with mean k.
Intuitively, k = 1 is optimal, as it is closest to the ideal on
average. However, setting k = 1 is too pessimistic, and results
in no connections at the server for extended periods of time
(about 30% of the time). In practice, we choose k = 3, which
assuming k << n implies there is at least one connection at
the server about 90% of the time.

If we view this backoff scheme as essentially time division
multiplexing, then the parameter τ becomes the length of the
time slice. Logically, τ should be chosen to be long enough
to guarantee some amount of progress, but short enough to
ensure some amount of fairness. In this way, even a set of
hosts with diverse bandwidth resources can make progress, as
statistically over long downloads all hosts will eventually fetch
some blocks from the server.

E. Block Size

The number of blocks a file is divided into presents a
trade off between download parallelism and overhead. A
small number of blocks is more efficient since it allows TCP
connection overheads to be amortized, but smaller blocks
reduce parallelism. As number of blocks increases, the size
of the bit vector and the Slurpie control overhead increases.
Instead of picking the number of blocks, we choose a fixed
block size, 256KB, and let the number of blocks vary with the
size of the file. We chose 256KB after conducting experiments
on an unloaded system with different block sizes. A 256KB
block was the smallest size at which the TCP overhead was
effectively amortized (< 1%). Further, the 256KB block size
keeps the bit vector to a manageable size for large files (50
bytes for a 100MB file). It is worth noting that modern HTTP

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

and FTP servers support downloading blocks of arbitrary sizes
and offsets. HTTP 1.1 implements this functionality via the
Range tag, and FTP can be made to simulate this behavior
with the restart (REST) command.

F. Bandwidth Estimation Technique

Slurpie requires that the bandwidth estimation algorithm
only report three different states: underutilized, at-capacity,
and throttle-back. The main design criterion of our bandwidth
estimation algorithm is efficiency: Slurpie peers cannot use
expensive probes [22], [23], [24] to determine precise band-
width usage or availability. Instead, the following simplistic
approach suffices: we assume that the user inputs a coarse
grained bandwidth estimate of the form “Modem”, “T1/DSL”,
“T3”, etc... that forms the initial maximum bandwidth estimate
Bmax. Next, we measure the sum of actual achieved through-
put over all data connections over a 1 second interval, and label
that Bact. We maintain a moving average of successive Bact

values, calculating an average throughput, and the standard
deviation std of that distribution. Using these numbers, if
Bact drops more than one standard deviation than the average,
we report throttle-back. If Bact is more than one standard
deviation less than Bmax, we report underutilized, else we
report at-capacity. If at any time Bact > Bmax, we set
Bmax = Bact.

IV. EXPERIMENTS

In this section, we present results from our implementation
of Slurpie, and compare against existing protocols. We begin
with a description of our implementation (Section IV-A), and
describe our experimental setup next.

A. Slurpie Implementation

Slurpie has been implemented in multi-threaded C on the
GNU/Linux system. It currently has a command line interface
similar to the popular program wget [25], taking a URL
and various options as parameters. The source code is avail-
able from the Slurpie sourceforge project[26], and should be
portable to a number of platforms.

B. Experimental Setup

We experimented with Slurpie on two different networks:
one on the local area network the other on the wide-area
network. We used a 48-node local testbed for runs where we
could precisely control the background traffic. These experi-
ments were useful to precisely quantify Slurpie overheads and
benefits, and also to compare Slurpie against BitTorrent in a
predictable environment. We also deployed both Slurpie and
BitTorrent on the PlanetLab wide-area testbed.

1) Local Testbed Setup: The testbed that was setup con-
sisted of an Apache 2.0.45 web server running on an unused
Linux machine with a 2.4.20 version kernel. The machine
was connected to a 10Mb hub, and the the hub to a 100Mb
switch, so as to force a 10Mb bottleneck at the server. The
clients consisted of 48 GNU/Linux machines with 100Mb
connections to a separate 100Mb switch, and the two switches

Switch
Ethernet

10 Mb/s

Switch
Ethernet

1 Gb/s

48 Linux Clients

. . .
100 Mb/s

Fig. 8. Local area testbed setup. The server is connected using a 10Mbps
link to force a bottleneck.

were connected by a series of gigabit Ethernet links, as shown
in Figure 8. Each client machine was a 650Mhz Pentium
III with 768MB of RAM. In each experiment, a 100MB file
was downloaded from of the web server by variable numbers
of clients concurrently. The 10Mb hub is important, as by
assumption, it is the server, not the client, that is the bottleneck.

2) PlanetLab Setup: We ran Slurpie on the PlanetLab[27]
wide area network. PlanetLab consists of 55+ different sites,
and 160+ different machines distributed geographically around
the world. The same web server was used from the local area
network tests, but with different network connectivity to the
clients. From the 100MB switch connected to the web server,
there is a 1Gb/s link to machines participating in Internet2,
and a 95Mb/s link to machines on the general Internet. A list
of machines was retrieved from the PlanetLab website, and
one machine per site was chosen at random.

C. BitTorrent Setup

To compare Slurpie’s performance to a comparable protocol,
we downloaded the most current version of BitTorrent (version
3.2.1). To facilitate scripting, all experiments were done using
Bit Torrent’s “headless” mode, as opposed to GUI or Curses.
BitTorrent’s normal mode of operation is not to terminate
after finishing downloading the file, but instead to persist
indefinitely. For our experiments, we modified the BitTorrent
code to terminate clients after a configurable wait after the
file download is complete. In all experiments, both Slurpie
and BitTorrent clients persist for the same amount of time
after each experiment.

D. Results

In the results that follow, unless otherwise stated, we use the
parameters listed in Table I. By default, for experiments with
concurrent clients, each successive client is started 3 seconds
after the previous one. (We also present results in which all
clients start simultaneously). In all of the experiments, we
consider the following performance metrics: total completion
time and server load. The first determines client benefit from
using Slurpie, and the second quantifies the benefit to the
server. Finally, we present simulation results that show how
our network size estimation algorithms perform.

1) Local Testbed Results: First, we compute a baseline
measure by measuring the time for a single client to download
the 100MB file uncontested using HTTP. The baseline was
measured 5 times, and the average value was used. It was

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Parameter Description Value
k k/n clients go to server 3
τ Server connection length 4 seconds
σ Initial Update Rate 8/second
η Initial Number of Neighbors 10
m Mirror Time (described below) 2 seconds
U Number of Updates Stored 100
ψ Per File State at Topology Server 5

TABLE I

DEFAULT SLURPIE PARAMETERS

assumed that all machines would have the same baseline. In
the first experiment, we vary the number of concurrent clients
that download the 100MB file from the server. In Figure 9,
we plot the completion time for plain HTTP, BitTorrent, and
Slurpie as a function of the pre-computed baseline time. For
example, with 48 concurrent clients, each client, on average
received only 2% of their baseline bandwidth with plain HTTP.
The performance was restored to 88% with BitTorrent, and
improved to 1.76 times the baseline with Slurpie. Each data
point is the average measurement across active clients and then
averaged across 10 runs.

As expected, these results clearly show how performance
deteriorates with plain HTTP as files gain popularity. In our
experiments, the BitTorrent protocol restores performance to
essentially the baseline. For the vast majority of clients using
Slurpie, performance increases as the number of peers in the
network increases (recall that in these experiments, we require
clients to persist only for 2 seconds after they have downloaded
the entire file). Overall, this is an encouraging result indeed,
and as we show later in this section, clients that join the
network late are able to download the entire file at their own
maximum download rate, regardless of the server capacity.

In Figure 10, we plot the cumulative distribution of the
completion times of clients from the 48 concurrent node runs.
Once again, each data point is an average of 10 runs. Com-
pared to BitTorrent, Slurpie decreases average download time
by 51%; more importantly, Slurpie provides more consistent
performance, and the worst Slurpie client (which is the first
client that joined) completes more than 5.4 times faster than
the worst BitTorrent client.

To understand the steady-state dynamic of Slurpie better,
we conducted a different experiment in which 245 clients
joined the network, once again separated by 3 seconds each.
In Figure 11, we plot the completion times of these clients.
The x-axis is ordered by the order of the clients’ arrival times
into the system. The horizontal line is the baseline completion
time (i.e. the amount of time a single client takes to download
the file using plain HTTP, if there are no other clients in the
system). There are several points to note: the first few clients
take longer than the baseline — this is because they have
to download the data mostly from the server, and pay for
Slurpie overheads as well. However, once the file permeates
the Slurpie mesh, the vast majority of clients get the file 2–4
times faster. There is an interesting periodic behavior evident

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients

slurpie
http

BitTorrent

Fig. 9. Normalized completion time for varying number of clients

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

C
D

F

Time (s)

Slurpie
BitTorrent

Fig. 10. CDF of completion times, 48 concurrent nodes

in the completion times. This is because once the complete
file is downloaded into the Slurpie network, it is distributed
quickly using the mesh. However, soon clients who have the
complete file leave the network (2 seconds after their download
is complete), and some blocks have to be fetched from the
server. This slows down completion time for a few clients who
have to wait for the slow source download. However, as soon
as these blocks reappear in the Slurpie network, performance
increases back up until these nodes leave the network and
the cycle repeats. The periodic behavior is mitigated if clients
persist longer in the network.

E. PlanetLab Results

We repeated the same experiment over the wide-area Planet-
Lab testbed. In Figure 12, we present the normalized comple-
tion times of varying numbers of clients using both BitTorrent
and Slurpie. Once again, Slurpie outperforms BitTorrent across
the client set, and our results show that both the average and
maximum time taken by Slurpie is better than BitTorrent in all
runs. Note that as the number of clients increases, the relative
performance with respect to the baseline reduces somewhat on

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

T
im

e
(s

)

Client Index, sorted by start time

Completion Time for Single Client
 with No Contention (93 seconds)

Fig. 11. Absolute completion times, 250 nodes

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients

Slurpie
Bittorrent

Fig. 12. Normalized completion time vs. number of clients on
the PlanetLab

the PlanetLab testbed (whereas on our local area network, the
relative performance increases). This is because the PlanetLab
hosts were being rather heavily used during the period we
conducted our tests, and many of the hosts do not have much
excess capacity for downloading faster from peers. Thus, as the
client set increases, the number of clients with extra resources
decreases as a proportion, and the average with respect to the
baseline also decreases. We believe the PlanetLab hosts are
uncommonly loaded compared to most Internet hosts, and in a
“real” deployment, Slurpie performance would indeed increase
with larger client sets.

1) Mirror Time: In Slurpie, we do not require nodes to
persist in the system after they finish downloading their file. It
is nevertheless interesting to study the effects of benevolence,
i.e. consider how completion times decrease as users stay
longer after completing their download. In Figure 13, we
plot completion times (again normalized against the baseline
completion time), for 48 concurrent users, as users persist in
the system. Interestingly, for Slurpie, almost all benefits of

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 0 5 10 15 20 25 30

F
ac

to
r

Im
pr

ov
em

en
t

Seconds in the System After Finishing

Fig. 13. Normalized completion time vs. mirror time

such mirroring is achieved if users stay in the system for only 3
extra seconds. For much larger files, we expect this number to
increase, but it is clear even nominal amounts of benevolence
leads to substantial benefit.

F. Coordinated Backoff

The most novel component of Slurpie is its coordinated
backoff algorithm. In this section, we show how performance
increases as the number of clients that go to the server is
carefully controlled. In Figure 14, we plot the number of
connections at the server with 48 concurrent clients with
and without the backoff algorithm enabled. Without backoff,
clients eventually all go the server together because some
blocks are not available in the Slurpie network. The backoff
algorithm carefully controls the number of clients that visit
the server, and on average, the Slurpie network maintains the
expected number of connections (3) to the server. Note that the
number of connections drops off around 100 seconds because
almost all clients complete their download by that time. As
expected, the backoff algorithm controls server load. Client-
side performance is also improved (Figure 15). Specifically,
without backoff, the Slurpie protocol is not able to ultimately
gain from the larger numbers of nodes in the network. A
closer look at our data shows that without backoff, the clients
all quickly download almost all blocks, and than all visit the
server for a few (sometimes just one) blocks. However, since
the server is heavily loaded, all benefits from having received
the other blocks quickly is negated.

1) Effects of Flash Crowds: In our previous experiments,
we start concurrent clients 3 seconds apart deterministically.
We have also experimented with random offsets between
clients. However, in the worst case, all clients would start
exactly at the same time. In Figure 16, we plot the number of
open connections at the web server over time as the number
of clients on the LAN that start at the same time is varied
from 10–48.

Recall that a client tries to estimate the number of nodes in

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 C

on
ne

ct
io

ns

Time(s)

No Backoff
With Backoff, k=3

Fig. 14. Number of Connections at the server, over time

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 15 20 25 30 35 40 45 50

F
ac

to
r

Im
pr

ov
em

en
t

Number of Clients, 3s Apart

Backing Off
No Backing Off

Fig. 15. Performance effects of the back off algorithm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

N
um

be
r

of
 C

on
ne

ct
io

ns
 a

t S
er

ve
r

time (s)

10 clients
20 clients
32 clients
48 clients

Fig. 16. Number of connections at server with different numbers
of clients, all started simultaneously

n 20 50 100
200 17.5% 13.2% 10.9%

1000 5.9% 4.2 % 2.6%
5000 11.3% 7.5% 6.0%
10000 3.8% 0.8 % 0.4%

TABLE II

% ERROR IN GROUP SIZE ESTIMATION

the mesh n, and tries to connect to the server with probability
k/n, where k is set to 4. The y-axis in the plot is set to the
same scale as Figure 14. Recall that in that experiment, without
backoff, even with clients started 3-seconds apart, the number
of simultaneous connections increased to more than 40. In
Figure 16, there are different curves for 10, 20, 32, and 48
simultaneous connections, but it is difficult to distinguish these
cases. Thus, the Slurpie size estimation algorithm is effective:
server load is independent of the Slurpie mesh size. We note
that 48 clients arriving at exactly the same time is indicative
of severe congestion (several thousand new connections per
second), and Slurpie is able to easily contend with such load
spikes.

G. Group Size Estimation

In an effort to gauge the quality of the group size estimation,
we simulated the neighbor mesh algorithm with large group
sizes. The simulator took three parameters, n, the number of
nodes in the system, r, the target degree of each node, and
U , the number of updates stored. Then, using the formula
described in Section III, the simulation returned n′, the average
estimate of the system size. We present results in Table II
for meshes with target out degree fixed at 10. The estimation
error levels decrease as the state per node increases, and as
the number of nodes in the system increases. This is because
the estimation is derived from an asymptotic formula which
provides better bounds with larger group sizes. Note that in
almost all realistic scenarios, we do not expect to use the
estimation with less than 1000 nodes in the system (with 1000
nodes, each client has to keep a maximum of 6MB of update
state for a 100MB file). Finally, note that the backoff algorithm
does not require very precise estimations of group size, e.g.
estimating n with ±33.3% error and k = 3 will, on average,
result in ± one extra connection to the source server.

V. DISCUSSION

In the results section, we have concentrated entirely on
the data transfer dynamics of Slurpie. In this section, we
discuss the implementation and deployment of the two other
components: the topology server and security issues.

A. Topology Server

The topology server in Slurpie serves the same purpose
as the rendezvous point in Narada [4] or the BSE in the
NICE [3] protocol. One possible concern is the scalability of
the Slurpie topology server: a scalable network does no good
if clients cannot join because the server required for joining

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

is overloaded! In practice, the topology server stores the IP
address and port of the last five nodes to request a given file.
This amounts to state of 30 bytes per file plus the file name, so
any reasonable machine can store state for millions of files.
Since the server performs no client-specific processing, the
processing requirements at the server are minimal.

Of more concern is the network overhead at the topology
server. Upon joining the system, every node makes a TCP
connection to the topology server, tells it which file they are
downloading, and then receives the IP address/port pairs of the
last 5 nodes to download that same file. The entire transaction
uses one packet in either direction, plus TCP overhead, so it is
conceivable for a single server to handle tens of thousands of
downloads per second. If the Slurpie system grows to the point
where this is insufficient, the topology server functionality
could be distributed. Specifically, a number of hosts that
provide this service could form a DHT [28], [29], [30], and the
file name could be used to look up the server responsible for
the specific file. However, we do not believe the scalability
of the topology server will be the limiting factor in the
deployment of a system such as Slurpie.

B. Security Concerns

Using Slurpie introduces potentially new security and data
integrity concerns for end hosts. In the best case, Slurpie
clients will download almost all parts of files from unknown
nodes on the Internet. However, we argue that this does
not add significantly new security risks. A security integrity
check should be performed for sensitive files, even if it is
downloaded from the source server. As we mentioned in
Section I, servers often publish an MD5 or similar checksum
which is used to verify file integrity. Such a checksum could be
used by Slurpie clients as well. It is possible for a determined
adversary to attack the Slurpie network by propagating both
false blocks and a corresponding false checksum. Note that
this is a problem even in the source download case, since a
determined adversary can mount any number of attacks that
base IP is susceptible to, including DNS spoofing or TCP
connection hijacking. The solution, of course, is to distribute
a signed integrity check, where the clients can independently
verify the checksum since it is signed by a trusted server. Such
a solution requires an out-of-band channel by which clients get
the server’s public key, and once implemented, is sufficient for
both plain IP and for Slurpie.

Another potential problem is a DoS attack against the
Slurpie topology server. If the topology server does not
function, new nodes cannot join the network. Once again, we
believe this is a general problem and not specific to Slurpie,
and the solutions are no different from the ones that can be
employed to protect any source server.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the Slurpie protocol for
scalable downloading of bulk data over the Internet. We
believe the Slurpie protocol fulfills its design goals of system
scalability, improved client performance, and insulation of

the server from load variance in the client population. We
have presented extensive experimental analysis of different
components of the Slurpie protocol using a complete imple-
mentation over a local- and wide-area testbed. Specifically,
our results show that client performance increases as the
client population increases. This is because clients can now
download parts of files from other clients without accessing
highly contested server resources. Further, our results indicate
that the Slurpie randomized back off scheme is effective, and
is able to precisely control server load regardless of the size
or variation in client population.

There are a number of interesting open issues with Slurpie
design. One issue is that a cooperative system like Slurpie is
only useful if many people use it, i.e. no benefits are gained
from using Slurpie if only one Slurpie client is downloading
a given file. One possible path to encourage Slurpie usage is
to make the topology server aware of well known mirror sites
(e.g. ftp.gnu.org has many mirrors), and in the joining
phase, can communicate multiple mirrors to the client. Then,
the client can adaptively download in parallel from multiple
source servers if there are not many Slurpie peers in the sys-
tem. A nice property of this type of system would be increased
performance independent of the number of users in the system.
Also, we believe it is possible to implement better estimates of
the network size, especially if the underlying graph structure of
the Slurpie mesh was studied in more detail. One problem with
the current interface is it is insufficient for mass deployment,
since it requires users to explicitly invoke the Slurpie protocol
to download popular files. An obvious extension is to deploy
a Slurpie proxy that intercepts all user download requests, and
automatically routes requests for popular files to a Slurpie
network. A number of the contributions of this work are
independent of the data transfer path, so another avenue of
research might be to implement Slurpie’s data transfer using
more sophisticated encoding schemes, e.g. erasure codes.

It is also worth considering schemes where (possibly with a
small amount of server side assistance), clients can quickly tell
whether a particular block they have downloaded is corrupt or
not. It is trivial to implement such a scheme with O(#blocks)
overhead, but it is not clear if an asymptotically better scheme
is feasible. Lastly, our evaluation was constrained to fifty node
testbeds. While this is a good beginning, evaluation on larger
networks would obviously provide more compelling evidence.

REFERENCES

[1] See www.akamai.com.
[2] See www.squid-cache.org.
[3] S. Banerjee, B. Bhattacharjee, and C. Kommreddy, “Scalable Applica-

tion Layer Multicast,” in Proceedings of ACM SIGCOMM, 2002.
[4] Y.-H. Chu, S. G. Rao, and H. Zhang, “A Case for End System Multicast,”

in Proceedings of ACM SIGMETRICS, June 2000.
[5] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-level

multicast using content-addressable networks,” in Proceedings of 3rd
International Workshop on Networked Group Communications, Nov.
2001.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “SCRIBE: A
large-scale and decentralized application-level multicast infrastructure,”
IEEE Journal on Selected Areas in communications (JSAC), 2002.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

[7] S. Deering and D. Cheriton, “Multicast Routing in Datagram Inter-
networks and Extended LANs,” in ACM Transactions on Computer
Systems, May 1990.

[8] K. C. Almeroth, M. H. Ammar, and Z. Fei, “Scalable delivery of web
pages using cyclic best-effort multicast,” in Proceedings of INFOCOM,
1998, pp. 1214–1221.

[9] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” ACM Sigmetrics, June 2003.

[10] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “Reliable
multicast framework for light-weight sessions and application level
framing,” in Proceedings of SIGCOMM, Cambridge, Massachusetts,
Sept. 1995. [Online]. Available: ftp://ftp.ee.lbl.gov/papers/srm.ps.Z

[11] X. Rex Xu, A. Myers, H. Zhang, and R. Yavatkar, “Resilient
multicast support for continuous-media applications,” in Proceedings
of NOSSDAV, St. Louis, Missouri, May 1997. [Online]. Available:
ftp://ftp.cs.cmu.edu/user/hzhang/NOSSDAV97.ps.Z

[12] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller,
“Construction of an efficient overlay multicast infrastructure for real-
time applications,” in Proc. IEEE Infocom, June 2003.

[13] V. N. Padmanabhan and K. Sripanidkulchai, “The case for cooperative
networking,” in IPTPS, 2002.

[14] See www.bitconjurer.org/BitTorrent.
[15] B. Cohen, “Incentives build robustness in bittorrent,” in P2P Economics

Workshop, 2003.
[16] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content

delivery across adaptive overlay networks,” in Proceedings of the ACM
SIGCOMM 2002 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM-02),
ser. Computer Communication Review, J. Wroclawski, Ed., vol. 32, 4.
New York: ACM Press, Aug. 19–23 2002, pp. 47–60.

[17] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Proceedings
of the ACM SIGCOMM ’98 conference on Applications, technologies,
architectures, and protocols for computer communication. ACM Press,
1998, pp. 56–67.

[18] B. Bollobas, Random Graphs. Academic Press, 1985.
[19] V. Jacobson, “Congestion Avoidance and Control,” in Proceedings,

SIGCOMM ’88 Workshop, ACM SIGCOMM. ACM Press, Aug. 1988,
pp. 314–329, stanford, CA.

[20] R. Jain and K. K. Ramakrishnan, “Congestion avoidance in computer
networks with a connectionless network layer: Concepts,,” Proceedings
of the Computer Networking Symposium; IEEE; Washington, DC,
pp. 134–143, 1988. [Online]. Available: citeseer.nj.nec.com/article/
jain97congestion.html

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the Association for Computing Machinery,
vol. 13, no. 7, pp. 422–426, 1970.

[22] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proceedings of INFOCOM,
Kobe, Japan, Apr. 1997.

[23] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic
model of packet delay,” in Proceedings of SIGCOMM, 2000, pp. 283–
294.

[24] A. B. Downey, “Using pathchar to estimate internet link characteristics,”
in Proceedings of SIGCOMM, 1999, pp. 222–223. [Online]. Available:
citeseer.nj.nec.com/downey99using.html

[25] “See http://www.gnu.org/software/wget/wget.html.”
[26] “http://slurpie.sourceforge.net.”
[27] See www.planet-lab.org.
[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the ACM SIGCOMM ’01 Conference, San Diego,
California, August 2001.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” in In Proceedings of the ACM
SIGCOMM 2001 Technical Conference, 2001.

[30] A. Rowstran and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), 2001.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

