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Abstract

The goal of this study is to analyze the steady flow of a Newtonian fluid mixed with spherical particles in
a channel based on a continuum model, where the constitutive behaviour of the slurry is approximated
by an empirical formula. In order to account for the gravitational settling of particles, two-dimensional
flow needs to be considered as the pressure gradient and gravity may not always be collinear. It is shown
that the problem under consideration features a boundary layer, whose size is on the order of the particle
radius. The expressions for both the outer (i.e. outside the boundary layer) and inner (i.e. within the
boundary layer) solutions are obtained in terms of the particle concentration, particle velocity, and fluid
velocity. Unfortunately, these solutions require numerical solution of an integral equation, depend on the
ratio between the pressure gradient and the gravity force, and the orientation of the pressure gradient
relative to the gravity. Consequently, the development of a proppant transport model for hydraulic
fracturing based on these results is not practical. For this reason, an approximate solution is introduced,
where the effect of gravity is accounted for in an approximate fashion, reducing the complexity of the
slurry flow solution. To validate the use of this approximation, the error is estimated for different regimes
of flow. The approximate solution is then used to calculate the expressions for the slurry flux and the
proppant flux, which are the basis for a model that can be used to account for proppant transport with
gravitational settling in a fully coupled hydraulic fracturing simulator.

1 Introduction

The flow of a slurry is a problem that is relevant to many natural processes, such as mud flows or landslides,
as well as to industrial applications, such as the flow of a cement slurry. This study, however, addresses
the problem of slurry flow in the context of hydraulic fracturing that is relevant to oil and gas reservoir
stimulation [1]. Typically, proppant is used to prevent the fracture from closing once the well is depressurized.
In this case, modelling the fracture propagation driven just by a viscous fluid is not sufficient, since the
proppant, blended with the fracturing fluid, alters the properties of the latter. In this situation, it is
necessary to consider the effects associated with the flow of a slurry as well as the proppant transport in
hydraulic fractures. As mentioned in [2], for the purpose of hydraulic fracturing, the slurry is typically
modelled as a Newtonian fluid, whose viscosity dependence on proppant content is calculated based on an
empirical formula. Moreover, the particle distribution across the fracture is assumed to be uniform and only
the slip velocity due to gravity is considered. While all the aforementioned simplifications could potentially
lead to sufficiently accurate results in some cases, it is nearly impossible to judge the accuracy without
having a higher-level, more accurate model. To obtain a more accurate model, this study aims to analyze
the steady flow of a slurry in a channel based on a recently introduced constitutive model [3], and to establish
a framework necessary to formulate the problem of hydraulic fracturing by a slurry, which accounts for the
proppant transport, gravitational settling, as well as formation and growth of packed regions.

To simplify the analysis, it is assumed that the proppant particles are spherical and that they all have
the same size. In order to describe the motion of a viscous fluid with monodisperse spherical particles, it is
necessary to distinguish between different flow regimes. Following [4], there are two primary dimensionless
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groups that control the type of motion, namely the Reynolds and Peclet numbers, that are defined as

Re =
ρfa2γ̇

µf
, P e =

6πµfγ̇a3

kBT
. (1)

Here ρf and µf denote the mass density and the viscosity of the fluid respectively, a is the particle radius, γ̇ is
the magnitude of the shear rate, kB is Boltzmann’s constant, while T is the absolute temperature. Note that
one may replace ρf in (1a) by ρp+1

2ρ
f (ρp is the mass density of particles), in which case the Reynolds number,

Re, would reflect the ratio between inertia forces (accounting for the added fluid mass) and viscous forces.
On the other hand, the Peclet number, Pe, reflects the effects associated with chaotic thermal motion and
controls the transition from Brownian to non-Brownian motion. By dealing with sufficiently large particles
and a sufficiently viscous fluid, this study is focused on the case where

Pe→ ∞, Re→ 0,

which corresponds to non-Brownian motion of particles in highly viscous fluids. This regime has been studied
from both theoretical and experimental prospectives [5, 6, 7, 8, 9], where one of the main objectives was the
study of particle migration in shear flow. In simple words, the particles try to avoid high shearing and to
move towards the regions with smaller shear rates. Note that this phenomenon is different from the Segre-
Silberberg effect [10], since the latter is observed in the inertial regime, where the viscosity of the carrying
fluid is small. One very important parameter in the analysis of particle migration is the characteristic time
scale for reaching steady-state flow. As noted in [6], some earlier experimental studies failed to show the
effect of particle migration due to the fact that the flow was not in the steady-state regime. As also discussed
in [6], the characteristic length, required to establish a steady flow for dense suspensions can be estimated
as

L

w
∼

(w

a

)2

, (2)

where w is the characteristic width of the channel and a is the particle radius.
A great deal of effort has been devoted to developing an accurate constitutive model for a mixture of a

Newtonian fluid with spherical particles. It started with [11], who introduced a first-order correction to the
viscosity of dilute suspensions. Later, a second-order correction was made by [12]. The most challenging
problem, however, was to establish a constitutive model that captures the behaviour of dense suspensions
with high particle concentrations where the interaction between particles plays a crucial role. For instance, a
comparison of various approaches for modelling dense suspensions can be found in [4]. Another constitutive
model has been recently proposed by [3], where experimental observations were used to establish empirical
relations between shear and normal stresses versus particle concentration. This, the latest model, appears
to be the most accurate to date, and, for this reason, is chosen for the analysis in this paper.

The paper is organized in the following way. First, the governing equations for the slurry flow, based on
the empirical constitutive model are in formulated in Section 2. Then, the resulting equations are used to
solve the problem of slurry flow in a channel, which is described in Section 3. Recognizing the complexity
of the solution, Section 3 also introduces an approximate solution and estimates the errors caused by this
approximation. Finally, Section 4 utilizes the approximate solution of the channel problem to find the mass
balance laws for the slurry and the particles, which feature the average flow of the slurry and the proppant
through the channel.

2 Governing equations for motion of fluid with spherical particles

To formulate the governing equations for the motion of the slurry (i.e. the mixture of viscous fluid and
particles), this study follows an approach described in [8]. The main difference comes from the constitutive
behaviour, which is based on recent experimental results by [3]. The balances of linear momentum and mass
for the particles are taken in the following form

φρp
(∂vp

∂t
+ vp ·∇vp

)

= −∇·(Qpp) + 2∇·
(

µp∇s
0v

p
)

+ φρpg + fpf,

∂φρp

∂t
+∇·(φρpvp) = 0. (3)
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Here φ is the volume fraction of the particles, ρp is the particle mass density, vp is the velocity associated
with the macroscopic movement of the particles, pp is the pressure due to the particle collisions (defined
as the time-averaged momentum transfer per unit area), µp is the effective viscosity associated with the
particles, ∇s

0v
p= 1

2 (∇vp+∇Tvp−2
3∇·vp I) is the deviatoric strain rate tensor, g is the gravity force per unit

mass, and fpf is the interaction force between the viscous fluid and the particles. As follows from [8], the
second-order tensor Q describes the anisotropy of the normal stresses and can be represented as

Q =
3

∑

i=1

λiei ⊗ ei,

where λi are dimensionless constants and ei are unit vectors in the direction of the flow (i= 1), gradient
(i=2), and vorticity (i=3). Note that one of the λi is always equal to unity since the stress magnitude is
reflected in pp. The governing equations for the fluid can be written in a similar fashion as

(1−φ)ρf
(∂vf

∂t
+ vf ·∇vf

)

= ∇·σf + (1−φ)ρfg − fpf,

∂(1−φ)ρf
∂t

+∇·
(

(1−φ)ρfvf
)

= 0, (4)

where ρf, pf, and vf denote the mass density, pressure, and macroscopic velocity associated with the fluid
respectively, σf = −pfI+2µf∇s

0v
f is the fluid stress tensor, while µf is the fluid viscosity. Note that the mass

density of the mixture is ρ = (1−φ)ρf + φρp, the total pressure (i.e. total normal force per unit area acting
on a wall or imaginary plane, neglecting viscosity) is p = pf + ppn·Q·n, while the total shear force also has
contributions from both the particles and the fluid. Note that it is very important to understand that the
particle pressure is defined as an average momentum transfer (due to collisions) per unit time per unit area
– similar to gases. So, one may regard the slurry as a mixture of two gases with partial pressures pp and pf.
This is consistent with the way pp is defined in the experiments [3], since the total force per unit area acting
on the top plate from the top (see Fig. 1b in [3]) is pf + pp, and this should match the total force per unit
area coming from the slurry, so the total pressure of the slurry is pf + pp. Similar governing equations were
also used by [13] in the context of sediment dynamics.

On considering both the viscous fluid and the particles to be incompressible, the remaining task is to
specify pp, µp, fpf and λi (i=1, 2, 3). By generalizing the constitutive model, that is proposed in [3], one
may take

pp = µf A(φ)−2
√

2∇s
0v

p :∇s
0v

p,

µp = µf

[

5
2φmA(φ)−1+

(

µ1+
µ2 − µ1

1+I0A(φ)−2

)

A(φ)−2

]

, A(φ) = φm/φ− 1, (5)

where the maximum volume fraction φm=0.585, and the constants µ1=0.32, µ2=0.7 and I0=5×10−3 are
empirical and based on experimental observations. Note that A(φ)n is a short-hand notation for

(

A(φ)
)n

.
Since the flow regime under consideration assumes small Reynolds numbers, the viscous part of the interaction
force can be deduced from Stokes’ law, while the second part of the force comes from the effect of buoyancy,
so that

fpf = η(φ)(1−φ)(vf − vp) + φ∇·σf, η(φ) =
9µfφ

2a2(1−φ)ᾱ , (6)

where an additional correction term (1−φ)ᾱ in the expression for η(φ) accounts for interaction between the
particles at high values of φ (see e.g. [8]). Note, that these authors defined the slip velocity as vf−〈v〉=
vf−φvf−(1−φ)vp=(1−φ)(vf−vp), so that their α is related to ᾱ by ᾱ = α−1. This parameter was chosen
α=4 in [8], while according to [14] and [15], α = 5.1 provides a better fit. For this reason, ᾱ = 4.1 is chosen
for further computations. Finally, the values of λi (i=1, 2, 3) are estimated in [16] as

λ1 = 1.05, λ2 = 1, λ3 = 0.65.

As also noted in [16], λi satisfy λ1 > λ2 > λ3, λ1 ≃ λ2, and λ3 ≃ 1
2 . As will be shown shortly, these values

of λi (i = 1, 2, 3) are not essential for the problem under consideration.
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3 Slurry flow in a fracture

3.1 Problem formulation and assumptions

This section aims to analyze the steady motion of a slurry in a fracture, which for our purposes is modelled
as a channel of width w. Since the gravity and the pressure gradient may act in different directions and the
problem is nonlinear (i.e. superposition does not apply), it is necessary to consider two-dimensional flow
inside the fracture. To this end, we introduce a coordinate system (x, y, z), where x is the horizontal axis
along the fracture, z is the vertical axis, while y is the coordinate across the fracture, as shown in Fig. 1.
Assuming a steady flow, the governing equations (3a) and (4a) can be reduced to

2a

x

y

z
−gez

x

z

w

v
p

Figure 1: Schematics of the hydraulic fracture (left) and the slurry flow inside it (right).

∇·(Qpp) =
∂

∂y

(

µp(φ)
∂vp

∂y

)

+ η(φ)∆v − φ(ρp−ρf)gez,

∇p̃f = µf ∂
2vp

∂y2
+ µf ∂

2∆v

∂y2
− η(φ)∆v + 〈φ〉(ρp−ρf)gez, (7)

where ∇ = (∂/∂x, ∂/∂z), and vectors vp and ∆v = vf − vp also have only x and z components, 〈φ〉 denotes
average particle concentration across the channel, while

p̃f = pf + (ρfg + 〈φ〉(ρp−ρf)g)z,

is the pressure that accounts for hydrostatic pressure. The particle pressure and effective shear viscosity of
the particles are given respectively by

pp = µf A(φ)−2
∣

∣

∣

∂vp

∂y

∣

∣

∣
,

µp = µf
(

5
2φmA(φ) + µ1 +

µ2 − µ1

1 + I0A(φ)−2

)

A(φ)−2, A(φ)=φm/φ− 1. (8)

Here p̃f = p̃f(x, z) and pp = pp(x, z) due to the steady-state property of the flow.

Assumptions. To account for realistic values of the parameters and to simplify the problem, several
assumptions are made, in particular:

1. For a continuum constitutive model to apply, it is implicitly assumed that 2a≪ w.

2. The particle pressure gradient is neglected. To justify this assumption, note that the characteristic
length of the problem, L (i.e. the length of the fracture), can be safely assumed to be much bigger than
the width of the fracture, w. For instance, in typical hydraulic fracturing geometries, w/L = O(10−3)
or less. In this case, one can use (7b) and (8a) to obtain estimates for pf and pp as

∇p̃f = O
(

µfvfw−2
)

, ∇pp = O
(

µfvp(Lw)−1
)

,
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which leads to |∇pp/∇pf| = O(w/L) ≪ 1, provided that vf = O(vp). This estimate shows, that the
pressure gradient associated with the particles has a negligible contribution to the momentum change of
the mixture. Note that this is true only for φ 6= φm. As soon as particles become packed, i.e. φ = φm,
they may sustain notable pressures and the particle pressure may not be neglected. In addition, it
should be noted that ignoring the particle pressure gradient leads to the fact that the values of λ1 and
λ3 are no longer important, because the variation of particle pressure becomes relevant only across the
channel (see (8)), i.e. in the direction that corresponds to λ2.

3. There is no gravity force in the y direction, i.e. across the channel. The geometry of the hydraulic
fracture is determined predominantly by confining stresses. For deep fractures, the vertical stress is
typically higher than the horizontal stress, in which case the fracture propagates in a vertical plane,
and thus the projection of gravity force on y axis is zero.

3.2 Steady solution

To obtain a steady solution, it is noted that the problem under consideration (7) features a length scale
a≪ w, which causes a presence of a boundary layer with width O(a). Let’s first focus on the outer solution,
i.e. the one that is valid away from the channel walls. In this situation, the term with the second derivative
of ∆v in (7) can be neglected. Indeed, when the y coordinate scales with w, one can estimate

∂

∂y

(

µf ∂∆v

∂y

)

= O
(µf∆v

w2

)

, η(φ)∆v = O
(φµf∆v

a2

)

,

so that the term with the second derivative of ∆v can be neglected as soon as a2/(φw2) ≪ 1. In situations
when φ=O(a2/w2) ≪ 1, the viscosity associated with proppant is µp(φ)=O(φ) ≪ 1, which makes proppant
contribution to the slurry flow negligible and leads to a well-known parabolic velocity profile. The fact
that the term with the derivative of ∆v can be neglected should not be confused with the assumption of
smallness of |∆v/vp|. For relatively small particle concentrations indeed |∆v/vp| = O(a2/w2) ≪ 1, while
higher concentrations (φ≈ φm) may lead to |∆v/vp| = O(µ1φ

2a2/(w2(φm−φ)2)) = O(1), or even vp = 0
for φ=φm. As was mentioned before, the term with the derivative of ∆v can be neglected away from the
boundary, but at the distances O(a) from the boundary (i.e. in the boundary layer where the y coordinate
scales with a), this term may have a significant contribution. As a result of the presence of the boundary
layer, neither of vp nor ∆v (calculated for the outer solution) should satisfy a no slip boundary condition
at channel walls. Instead, ∆v should approach some constant, while vp should approach another constant,
whose magnitude is O(∆v). Naturally, these constants should arise from the solution of the boundary layer
problem.

By neglecting the particle pressure gradient and the second derivative of ∆v in (7), integrating the sum
of the resultant equations, and using (8), one can write

∇p̃f(y−y0) + (ρp−ρf)gez
∫ y

y0

(φ−〈φ〉) dȳ = (µf+µp(φ))
∂vp

∂y
− τ(y0), y0 < y 6

1
2w,

[

∇p̃f + (φm−〈φ〉)(ρp−ρf)gez
]

y = τ, |τ | 6 µ1p
p, 0 6 y 6 y0, (9)

where τ denotes shear stress. Here only the solution for y > 0 is considered due to the symmetry consid-
erations. As indicated in the solution (9), there is a region with “no failure” (0 6 y 6 y0), i.e. where the
particles form a rigid cluster, and a region with shear motion or failure (y0 < y 6

1
2w). To find the particle

pressure, one needs to evaluate (9b) at y= y0, add the result to (9a) evaluated at y=w/2 and use (8a) to
obtain

pp =
wµf|∇p̃f|

2(µf+µp(φw))A(φw)2
, (10)

where φw = φ|y=w/2 is the particle concentration at the wall. Since |τ | = µ1p
p at the plug boundary,

equations (10) and (9b) can be used to calculate the plug size as

y0 =
w

2

µ1

[

1 + (φm/〈φ〉−1)2G2
ρ + 2(φm/〈φ〉−1)Gρ cosψ

]−1/2

(1+µp(φw)/µf)A(φw)2
, (11)
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where

Gρ =
(ρp−ρf)g〈φ〉

|∇p̃f|
, cosψ = |∇p̃f|−1 ∂p̃

f

∂z
, (12)

are two dimensionless parameters that represent the ratio between the gravitational force and the pressure
gradient, and the angle between the pressure gradient and the vertical z axis. respectively. To find a solution
for the particle concentration φ, it is useful to rewrite (7a) using (8a) and (10) as:

[

(2y

w

)2

+ 4G2
ρ

[
∫ y/w

0

(φ/〈φ〉−1) ds

]2

+
8y

w
Gρ cosψ

∫ y/w

0

(φ/〈φ〉−1) ds

]1/2

=
(µf+µp(φ))A(φ)2

(µf+µp(φw))A(φw)2
, y0 < y 6

1
2w.

(13)
Given the values of Gρ, cosψ, and φw, φ can be determined by solving (13) numerically via Newton’s method.
In this case the solution can be written in the form φ(s, φw, Gρ, cosψ) or φ(s, 〈φ〉, Gρ, cosψ), where s = y/w.

It is interesting to comment on the existence of a solution of (13). Unfortunately, (13) does not always
have a solution. A thorough analysis of the existence of the solution is beyond the scope of this study, for
this reason, let’s focus on the simple case when cosψ = −1. In this situation, the left hand side of (13) is

proportional to the absolute value of the function h(y) = 1−wGρ/y
∫ y/w

0
(φ/〈φ〉−1) ds. This function h(y) is

equal to h(y0) = 1−Gρ(φm/〈φ〉−1) at the plug boundary, while h(w/2) = 1 at the wall. If h(y0) < 0, then
at some point y0 < y∗ < w/2 this function vanishes (provided that it is continuous). However, the right
hand side of (13) cannot vanish, since its minimum value is µ1µ

f/
[

(µf+µp(φw)A(φw)
2
]

> 0. In this case,

the necessary condition for the existence of a solution is 1−Gρ

(

φm/〈φ〉−1
)

> 0. This condition bounds the
pressure gradient as

−∂p̃
f

∂z
> (ρp−ρf )g(φm−〈φ〉). (14)

Note that ∂p̃f/∂x = 0 and −∂p̃f/∂z > 0 since cosψ = −1, in which case the range over which the steady
solution does not exist (according to (14)) is relatively narrow. It is also possible to explain why there is no

steady solution. First, if −∂p̃f/∂z > 0, the slurry should flow in the positive z direction since the average
of the corresponding gravity term in the sum of (7) is zero. Since the shear stress is zero at the centre of
the channel, the particles tend to form a plug. If the plug is formed, then, if (14) is not satisfied, the plug
starts to sink as the pressure gradient is not sufficient to sustain it. If the plug sinks (i.e. flows in the
negative z direction), and the average velocity is positive, then, since the shear stress should be continuous,
there is a point at which the shear stress is zero (as its sign is different at the wall and the boundary of
the plug). If the shear stress is zero, then the particle pressure is zero as well (or there is another plug,
which, if exists, would sink too and cause a similar problem). Since there is some particle pressure at the
central plug (otherwise, it would not form) and this pressure vanishes somewhere outside of it, then there
is a particle pressure gradient, which moves particles away from the plug. As soon as particles move away
and the concentration in the plug reduces, the particle pressure at the centre becomes zero (since the shear
stress is zero due to symmetry), and this generates an opposite particle pressure gradient, which tends to
form a plug again. This cyclic process repeats, so no steady solution exists in this case.

To find the outer solution (i.e. outside of the boundary layer) for the particle velocity, (9a) can be
integrated as

vp = vp|y=w/2 + v
p
0 (15)

= vp|y=w/2 −
w2∇p̃f
µf

∫ 1/2

ŝ

s̄ ds̄

1+µp(φ(s̄))/µf
− w2(ρp−ρf)gez

µf

∫ 1/2

ŝ

1

1+µp(φ(s̄))/µf

∫ s̄

0

(φ(s)−〈φ〉) ds ds̄,

where ŝ = max{y0/w, y/w}, vp
0 is the solution that satisfies the no slip condition at the boundary, while

vp|y=w/2 is the integration constant that comes from the solution of the boundary layer problem. The slip
velocity for the outer solution can be found from (7a) and using (9a) as

∆v = − ∇p̃f
η(φ)

∂

∂s

( µp(φ)s

µf + µp(φ)

)

+
(ρp−ρf)gez

η(φ)

∂

∂s

( µf
∫ s

0
φ ds̄

µf + µp(φ)
+
µp(φ)〈φ〉s
µf + µp(φ)

)

, (16)
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where s = y/w is the scaled y coordinate.
To find the inner or boundary layer solution, it is useful to represent the “full” solution as the sum of

the outer and the inner, so that φF = φ+ δφ, ∆vF = ∆v+ δ∆v, and vp,F = v
p
0 + δvp. By substituting the

above expressions into (7) and (8), and using a Taylor’s series expansion, one finds that

∂µp

∂φ

∣

∣

∣

∣

w

∂vp

∂y

∣

∣

∣

∣

w

∂δφ

∂y
+ µp(φw)

∂2δvp

∂y2
+ η(φw)δ∆v = 0,

µf ∂
2δvp

∂y2
+ µf ∂

2δ∆v

∂y2
− η(φw)δ∆v = 0, (17)

∣

∣

∣

∣

∂vp

∂y

∣

∣

∣

w

∣

∣

∣

∣

−2(
∂δvp

∂y
· ∂v

p

∂y

∣

∣

∣

w

)

=
2

A(φw)

∂A
∂φ

∣

∣

∣

∣

w

δφ,

where “|w” means evaluation of the outer solution at the wall. Note that since y = O(a) and |∆v/vp| =
O(a2/w2) for the inner solution (y = O(w) for the outer solution), it can be concluded that δφ = O(a/w) ≪ 1,
δvp = O(∆v) ≪ vp, which validates the use of a Taylor series expansion. At the same time, δ∆v = O(∆v),
but no expansion has been used with ∆v. The solution of the above system of equations (17), that accounts
for both, the no slip boundary conditions and the far-field behaviour is

δ∆v = −V1e−γ1y − V2e
−γ2y,

δvp = C1V1(1− e−γ1y) + C2V2(1− e−γ2y), (18)

δφ = C3e
−γ1y,

where

V1 =

∣

∣

∣

∣

∂vp

∂y

∣

∣

∣

w

∣

∣

∣

∣

−2(

∆v|w · ∂v
p

∂y

∣

∣

∣

w

)

∂vp

∂y

∣

∣

∣

w
, V2 = ∆v|w − V1,

γ1 =
( η(φw)

µf(1−B(φw))
)1/2

, γ2 =
(η(φw)

µf

(

1+
µf

µp(φw)

))1/2

,

C1 = −B(φw), C2 = − µf

µf + µp(φw)
, (19)

C3 = B(φw)
( η(φw)

µf(1−B(φw))
)1/2

∣

∣

∣

∣

∂vp

∂y

∣

∣

∣

w

∣

∣

∣

∣

−2(

∆v|w · ∂v
p

∂y

∣

∣

∣

w

)A(φw)φ
2
w

2φm
,

and the auxiliary function B(φ) is

B(φ) = 2A(φ)

[

2A(φ) + 5
2φm +

2(µ2−µ1)I0A(φ)
(

I0 +A(φ)2
)2

]−1

. (20)

Note that ∆vF = ∆v + δ∆v satisfies the no slip boundary condition since V1 + V2 = ∆v|w. The “full”
solution for the particle velocity vp,F = v

p
0 + δvp satisfies the no slip boundary condition as well. To find

vpx|y=w/2 featured in (15), one needs to take a limit in (18b) to find

vp|y=w/2 = C1V1 + C2V2. (21)

Since C1(φw = 0) = C2(φw = 0) = −1 and C1(φw = φm) = C2(φw = φm) = 0, equation (34) implies that
vf|y=w/2 = 0 for zero proppant concentration and vp|y=w/2 = 0 for the maximum proppant concentration.
Indeed, if there are no particles, the fluid velocity (outer solution) should satisfy a no slip boundary condition,
at the same time, the maximum particle concentration corresponds to a rigid plug, which does not move,
so that the particle velocity (outer solution) should satisfy a no slip condition at the boundary. It is
also important to note that the values of γ1 and γ2 are always O(1/a), and in the limit of small particle
concentrations they reach finite values γ1≈

√

18/5 a−1, and γ2≈
√

9/5 a−1.
To visualize the solution, Fig. 2 shows the velocity profile v

p
0 (calculated numerically), normalized by

v∗=(12µf)−1w2|∇p̃f| and proppant concentration variation (calculated numerically), normalized by φm, for
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different values of the parameter Gρ = {0, 1, 4, 10, 100}, and for different values of cosψ = {0, 12 , 1}, while
the average proppant concentration is kept fixed φ̄ = 〈φ〉/φm = 0.2. As can be seen from the figure, the
presence of the gravitational force leads to redistribution of the particles across the channel. Moreover, the
value of cosψ has a small impact on the particle distribution. In the limiting case when Gρ≫1, the particles
are distributed uniformly everywhere except for the narrow region at the centre (which corresponds to the
plug). For cosψ = 1 and Gρ = 100, the velocity profile resembles a wedge. This strange velocity profile can
be explained by the fact that the forcing term for the sum of equations (7) behaves like a delta function

for Gρ ≫ 1, i.e. ∂p̃f/∂z
(

1+Gρ(φ/〈φ〉−1)
)

→ ∂p̃f/∂z w δ(y), where δ(y) denotes Dirac delta function. This
detla-function-like pressure gradient distribution leads to the wedge-like velocity profile.

3.3 Approximate steady solution

Numerical solution of (13) together with equations (11), (15), (16) and (34) give a complete solution for the
problem. Unfortunately, this solution relies on the numerical evaluation of the function φ(s, 〈φ〉, Gρ, cosψ),
which depends on many parameters and thus is hard to tabulate for the purpose of implementing into a
hydraulic fracturing simulator. Moreover, as noted in the previous section, a steady solution does not exist for
all ranges of parameters. For these reasons, it is more practical to introduce an approximate solution, which
would simplify (13) and lead to a solution that can be implemented into a hydraulic fracturing simulator.
The “full” solution can then be used to estimate the error in the approximation.

Clearly, if there is no gravity (i.e. g=0 and consequently Gρ =0), equation (13) becomes an algebraic
equation that is easy to solve. Unfortunately, the absence of gravity leads not only to a simplified slurry
flow, but the model also loses the ability to capture gravitational settling of particles. However, the latter
phenomenon is very important and needs to be accounted for at least approximately. To motivate the
approximation we are about to make, we observe from the plots of φ/φm in Fig. 2 that the proppant
distribution does not change appreciably as Gρ is varied (except for Gρ=100) or as cosψ varies from 0 to
1. Thus to simplify the solution and to keep the gravitational settling at the same time, it is assumed that
the gravity does not affect the particle distribution, i.e. terms with Gρ can be neglected in (9a). In other
words, the solution for φ is approximated by

φ(s, 〈φ〉, Gρ, cosψ) ≈ φ(s, 〈φ〉, 0, 0), (22)

where s = y/w. Note that this assumption is equivalent to replacing 〈φ〉 by φ in the gravity term in (7b),
instead of neglecting the whole gravity term when the gravity is assumed to be negligible. As a result,
the gravity term that causes the gravitational settling is still accounted for, but in an approximate fashion.
In terms of the error, there are two main quantities that are important for hydraulic fracturing, namely
the slurry flux and the proppant flux. For the cases considered on the Fig. 2, i.e. Gρ = {1, 4, 10, 100},
the corresponding error (relative to the Gρ = 0 solution) in terms of the absolute value of the slurry flux
and the particle flux is es = {0.02, 0.01, 0.03, 0.14} and ep = {0.04, 0.07, 0.06, 0.01} for cosψ = 0, es =
{0.03, 0.11, 0.18, 0.24} and ep = {0.005, 0.04, 0.08, 0.09} for cosψ = 1

2 , and e
s = {0.07, 0.20, 0.29, 0.29} and

ep = {0.06, 0.15, 0.20, 0.15} for cosψ = 1. Here the slurry flux is calculated as an integral of vp
0 , while the

particle flux is calculated as an integral of φvp
0 . This shows that even in the worst case of Gρ=100, the flux

error is less than 30%. Also, there is an error in the direction of the flux, but the direction can be corrected
by the presence of extra hydrostatic pressure gradient inside the fracture. So the error in the direction of the
flow affects the hydrostatic pressure inside the fracture. Note that for other average particle concentrations,
the order of magnitude of the error does not change appreciably. For instance, for φ̄ = 〈φ〉/φm = 0.5,
the corresponding errors are es = {0.03, 0.11, 0.14, 0.16} and ep = {0.04, 0.13, 0.19, 0.23} for cosψ = 0,
es = {0.01, 0.02, 0.03, 0.09} and ep = {0.02, 0.05, 0.07, 0.17} for cosψ = 1

2 , and es = {0.02, 0.06, 0.08, 0.01}
and ep = {0.02, 0.06, 0.06, 0.04} for cosψ = 1.

To estimate the error distribution over the fracture, it is useful to provide an estimate for the parameter

Gρ. One may calculate the pressure gradient as |∇p̃f| = 12µf|V |/w2, where µf is the intrinsic fluid viscosity,
w is the width of the channel, and V is the average fluid velocity. By taking µf = 0.1 Pa·s, w = 1 cm,
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〈φ〉 = 0.1, ρp−ρf = 1300 kg/m3, |V | = 0.1 m/s, one may estimate Gρ as

Gρ =
〈φ〉(ρp−ρf)gw2

12µf|V | ≈ 1, (23)

which shows that the effect of gravity is relatively small for the considered parameters. However, Gρ might
increase noticeably for wider and slower fractures. Typically, hydraulic fractures are narrow and propagate
rapidly at early stages, while they become wider and slow down later in their evolution. In this case, it is
important to monitor the criterion (23) for mature fractures. Note that for a better estimate, one needs
to insert the effective viscosity in (23), which further decreases the value of Gρ. Also note that both the
fracture width w and the average fluid velocity V reach their respective maxima at the wellbore (the velocity
is singular if a point source is used). In this case, the parameter Gρ reaches its maximum some distance
away from the wellbore, and is negligible near the wellbore and near the crack tip. Given the fact, that the
parameter Gρ may vary significantly over the fracture and may cause relatively small error only in a localized
region, the solution (22) can be used throughout the fracture as an adequately accurate approximation.

Using the approximation (22) and (10), equation (13) can be inverted to find

A(φ) = F
(

|∇p̃f|y − y0
pp

)

, (24)

where F is a function that can be calculated numerically (or evaluated using the formula for the roots of a
4th degree polynomial). For future reference it is noted that the asymptotic behaviour of the function F is

F (s)
s→0
= F0(s) =

2s

5φm
, F (s)

s→∞
= F∞(s) =

√
s. (25)

Using the definition of A(φ) from (8b), one may express the particle concentration from (24) as

φ(y) =
φm

1 + F
(

|∇p̃f|y − y0
pp

) , y0 < y 6
1
2w,

φ(y) = φm, 0 6 y 6 y0. (26)

It is also useful to introduce the averaged particle concentration normalized by φm as

φ̄ =
〈φ〉
φm

=
2

w

∫ w/2

0

φ(y)

φm
dy, (27)

so that 0 6 φ̄ 6 1. By inverting the latter relation, the particle pressure and the half-width of the rigid
cluster zone can be computed as

pp = w|∇p̃f|Π(φ̄), y0 = µ1wΠ(φ̄), (28)

where Gρ=0 (or φ = 〈φ〉) is used in (11) to calculate y0, and Π(φ̄) is a function that is evaluated numerically.
Note that the asymptotic behaviour of the function Π(φ̄) for small and high average volume concentrations
of particles is

Π(φ̄)
φ̄→0
= Π0(φ̄) = 1

8 φ̄
2, Π(φ̄)

φ̄→1
= Π1(φ̄) =

1

2µ1
−

√

5φm(1−φ̄)
4µ3

1

. (29)

Equation (28) allows us to replace the particle pressure pp by the normalized average volume fraction φ̄, in
which case (26) can be rewritten as

φ =
φm

1 + F
(

max
{ y/w

Π(φ̄)
−µ1, 0

})

. (30)
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Figure 3: Normalized velocity of the slurry (left panel) and normalized particle volume fraction (right panel)
versus y/w for different values of φ̄ = {0.2; 0.4; 0.8; 0.95}. The dashed line on the left panel indicates the
parabolic profile associated with φ̄ = 0.

The function Π(φ̄) is directly related to the particle concentration at the wall through the relation

φw =
φm

1 + F
( 1

2Π(φ̄)
− µ1

)

. (31)

so that the above relation φw=φw(φ̄) can be alternatively used instead of Π(φ̄).

To find the velocity distribution, we integrate (8a), use (28) and the fact that vp
0 ∝ ∇p̃f to obtain

vp = vp|y=w/2 + v
p
0 = vp|y=w/2 −

w2Π(φ̄)

µf
∇p̃f

∫ 1/2

max{y/w,µ1Π(φ̄)}

[

F
( s

Π(φ̄)
−µ1

)]2

ds. (32)

As an illustration, Fig. 3 shows the velocity profiles given by (32) and the corresponding particle concentration
profiles, computed using (30) versus y/w. Fig. 3 clearly indicates the presence of the rigid zone, however,
the size of this zone becomes more pronounced only for high values of φ̄, i.e. high concentrations. Also note
that the velocity profile deviates from a parabolic shape for higher φ̄ and has a blunted profile, which was
also shown in [6, 17].

To capture the difference between the fluid and particle velocities, the slip velocity can be deduced
from (7a), (8a), (10), (13) and (16) as

∆v = vf − vp = − 1− B(φ)
η(φ)

∇p̃f + (ρp−ρf)gez
φ

η(φ)
, (33)

where the φ = φ(y) is taken from (30) and B is given in (20). Equation (33) signifies that there are two
mechanisms for the slip velocity. The first is due to the fact that the particles collide and introduce shear
resistance, which slows them down relative to the fluid. At the same time, the second term in (33) represents

gravitational settling. Fig. 4 shows the normalized slip velocity for the case when g=0, i.e. |∆v∇p̃f |/v∇p̃f

∗ ,

and for the case when ∇p̃f = 0, i.e. |∆vg|/vg∗ , versus y/w for different values of φ̄. The slip velocities are
normalized respectively by

v∇p̃f

∗ =
2a2

9µf
|∇p̃f|, vg∗ =

2a2

9µf
(ρp−ρf)g.

As can be seen from the figure, both slip velocities have qualitatively similar profiles, although their magni-
tudes are different.
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Figure 4: Normalized slip velocity due to the pressure gradient |∆v∇p̃f |/v∇p̃f

∗ (left) and normalized settling
velocity |∆vg|/vg∗ (right) versus scaled y/w coordinate for different values of φ̄ = {0.2; 0.4; 0.8; 0.95}.

To find vp|y=w/2, one may simplify (34) using (33) to

vp|y=w/2 = −C1
1− B(φw)
η(φw)

∇p̃f + C2(ρ
p−ρf)gez

φw
η(φw)

+ (C1−C2)
(ρp−ρf)g
|∇p̃f|2

∂p̃f

∂z

φw
η(φw)

∇p̃f, (34)

where the values of C1 and C2 are given in (19).
To summarize, the particle, fluid and slurry velocities are given respectively by

vp = vp|y=w/2 + v
p
0 ,

vf = vp|y=w/2 + v
p
0 +∆v, (35)

vs = φvp + (1−φ)vf = vp|y=w/2 + v
p
0 + (1−φ)∆v,

where vp|y=w/2 is given in (34), vp
0 stems from (32), while ∆v is calculated according to (33).

3.4 Estimation of the characteristic length to establish a steady flow

The governing equations adopted for this study open the possibility to estimate the characteristic length
required to establish a steady flow, which is an alternative to (2). By using the current problem geometry,
assuming that initially φ(y)=const., and that the velocity profile is parabolic, i.e. vp = 6w−2(w2/4−y2)〈vp〉,
the y component of the particle pressure gradient can be estimated from (8) as

∂pp

∂y
= − µfA(φ)−2 12|〈vp〉|

w2
,

where |〈vp〉| is an average velocity of the flow. Using the previous equation together with (3a), the y
component of the velocity of the particles can be found as

vpy = − 8

3

φ(1−φ)ᾱ
(φm−φ)2

a2

w2
|〈vp〉|.

The characteristic time required to establish steady flow is t∗=w/(2|vpy |), while the corresponding length is
L= |〈vp〉|t∗, so that

L

w
=

3

16

(φm−φ)2
φ(1−φ)ᾱ

w2

a2
. (36)

12



Relation (36) is in agreement with (2), compatible with the adopted model, and provides a more accurate
estimate for different values of φ. As an example, for φ = 0.1, a = 0.4 mm and w = 1 cm, the length required
to establish a steady flow is approximately equal to 4 m. For this set of problem parameters, if the fracture
is longer than 4 m (while the width is 1 cm), then the assumption of steady flow is appropriate.

4 Mass transport equations

The goal of this section is to connect the developments of Section 3 and the hydraulic fracturing problem.
To achieve this, the fracture is represented by a channel with a variable width w(x, z, t), and it is assumed
that the flow at any point is always in equilibrium or in a steady-state condition. To formulate the governing
equations for the mass transport in a one-dimensional setting, it is necessary to integrate (3b) and (4b) over
y from −w/2 to w/2 and to derive equations for averaged quantities (note that the coordinate system is the
same as that assumed in Section 3). By using symmetry, relation (27), and noting that for any function
h(t, s)

2
∂

∂t

∫ w/2

0

h(t, s) ds = 2

∫ w/2

0

∂h(t, s)

∂t
ds+ h(t, w/2)

∂w

∂t
,

equations (3b) and (4b) can be integrated to obtain

∂w

∂t
+∇·qs + g = 0,

∂wφ̄

∂t
+∇·qp = 0, (37)

where the following boundary conditions have been used

vpy |y=w/2 =
1

2

∂w

∂t
, vpy |y=0 = 0, vfy|y=w/2 =

1

2

∂w

∂t
+

g

1−φ|y=w/2
, vfy|y=0 = 0.

Here the leak-off, g, appearing in (37a), is introduced through the above velocity boundary condition and
enables us to account for the fluid losses due to the filtration into surrounding rock.

The slurry and particle fluxes are computed on the basis of (32)–(35) as

qs = − w3

12µf
Qs(φ̄)∇p̃f − a2w

12µf
D(φ̄)∇p̃f − a2w

12µf
(ρp−ρf)gezGs(φ̄)− a2w

12µf

(ρp−ρf)g
|∇p̃f|2

∂p̃f

∂z
S(φ̄)∇p̃f,

qp = −w(w
2−w2

cr)

12µf
Qp(φ̄)∇p̃f − a2w

12µf
(ρp−ρf)gezGp(φ̄)− a2w

12µf

(ρp−ρf)g
|∇p̃f|2

∂p̃f

∂z
φ̄S(φ̄)∇p̃f, (38)
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where

Qs(φ̄) = 24Π(φ̄)

∫ 1/2

0

∫ 1/2

max{s,µ1Π(φ̄)}

[

F
( s′

Π(φ̄)
−µ1

)]2

ds′ ds,

Qp(φ̄) = 24Π(φ̄)

∫ 1/2

0

φ(s)

φm

∫ 1/2

max{s,µ1Π(φ̄)}

[

F
( s′

Π(φ̄)
−µ1

)]2

ds′ ds,

D(φ̄) =
16

3

∫ 1/2

0

1−B(φ(s))
φ(s)

(1−φ(s))ᾱ+1 ds− 8

3

1−B(φw)
φw

(1−φw)ᾱB(φw),

Gs(φ̄) =
8

3

µf(1−φw)ᾱ
µf+µp(φw)

− 16

3

∫ 1/2

0

(1−φ(s))ᾱ+1 ds, (39)

S(φ̄) =
8

3

(

B(φw)−
µf

µf + µp(φw)

)

(1−φw)ᾱ,

wcr(φ̄) = a

√

8

3

1−B(φw)
φwQp(φ̄)

φ̄(1−φw)ᾱB(φw),

Gp(φ̄) =
8

3

µfφ̄(1−φw)ᾱ
µf+µp(φw)

,

φw(φ̄) is given in (31), while B is defined in (20). To understand the nature of the (1−φ|y=w/2)
−1 multiplier

in the leak-off velocity, one can add a thin virtual layer of pure fluid right next to the boundary. Then the
y component of the velocity associated with the leak-off in this virtual layer is g. However, since the fluid
is incompressible, the jump in the volume fraction φ between the thin layer of fluid and bulk slurry causes
a jump in the velocity. To preserve the volume, one should have (1−φ|y=w/2)v̂

f
y|y=w/2 = g, which implies

v̂fy|y=w/2 = (1−φ|y=w/2)
−1g, where v̂fy|y=w/2 is the component of vfy|y=w/2 that accounts for the leak-off.

Noting that φw ≈ 1
2 φ̄φm for small values of φ̄, the asymptotic behaviour of the functions defined in (39)

can be computed with the help of (25) and (29) as

Qs
0(φ̄) = 1, Qs

1(φ̄) =
4

5φmµ1
(1−φ̄)3/2,

Qp
0(φ̄) =

6

5
φ̄, Qp

1(φ̄) =
4

5φmµ1
(1−φ̄)3/2,

D0(φ̄) = −5

3

(

(ᾱ+2)φm−1
)

φ̄, D1(φ̄) =
8(1−φm)ᾱ

3φm
,

Gs
0(φ̄) =

2

3
φ̄φm(2ᾱ−1), Gs

1(φ̄) = − 8

3
(1−φm)ᾱ+1, (40)

S0(φ̄) =
5

3
φmφ̄, S1(φ̄) =

16

3

( 2

5φm

)2√

5φmµ1(1−φm)ᾱ(1−φ̄)1/2,

wcr,0(φ̄) =
5

3
a, wcr,1(φ̄) =

4µ
3/4
1 a

31/251/4φ
1/2
m

(1−φm)ᾱ/2(1−φ̄)−1/2,

Gp
0(φ̄) =

8

3
φ̄, Gp

1(φ̄) =
32

15
(1−φm)ᾱ

1−φ̄
φm

.

For the purpose of fast numerical evaluations of the functions (39), their values are first calculated accurately
for a small set of φ̄, then divided by the corresponding asymptotic behaviour (40) and finally stored. In
this case, the stored quantities are all O(1), which allows us to use spline interpolation and the asymptotic
formulas (40) to restore the values of all functions in a fast and accurate manner. As an illustration Fig. 5 plots
the functions Qs, Qp, D, wcr/a, G

s, Gp, S and φw/φm versus the normalized average particle concentration
φ̄.

The critical width, appearing in (39), effectively precludes the proppant in areas where the fracture is
narrow. But, as can be seen in the Fig. 5, for most particle concentrations, this width is on the order of 1.5×a,
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while it goes unbounded for a very narrow region near φ̄≈1. The particles, however, can not physically be
in a channel whose width is smaller than the particle diameter. Moreover, the bridging of the proppant may
occur earlier when the fracture width is equal to several particle diameters. For this reason, there is a need
to introduce a “blocking” function, which would prevent the proppant in the narrow regions. To this end,
let us introduce

B
(w

a

)

=
1

2
H
( w

2a
−N

)

H
(wB − w

2a

)[

1 + cos
(

π
wB − w

2a

)]

+H
(w − wB

2a

)

, (41)

where N represents “several” particle diameters (i.e. three), H denotes Heaviside step function, while wB=
2a(N+1), which provides a continuous vanishing of the function and helps the numerical implementation.
To effectively prevent the proppant from moving into the narrow regions, the proppant flux in (38) needs to
be multiplied by (41), in which case the proppant flux that is calculated according to

q
p
B = B

(w

a

)

qp (42)

accounts for the proppant stalling in the narrow fracture regions.

4.1 Comments on the model

It is instructive to understand the physical meaning of all terms in the expressions for the fluxes in (38).
The first term in the slurry flux is a Poiseuille flow type term, where Qs(φ̄) can be understood as the
inverse of the effective viscosity of the mixture. As φ̄ approaches 1, the effective viscosity goes to infinity
as (1−φ̄)−3/2, as can be seen from (40). The second term in the slurry flow can be related to Darcy’s law.
Indeed, according to Darcy’s law, the total flux through the channel is proportional to the pressure gradient,
the permeability, and the width of the channel. The permeability is proportional to the average squared pore
size, which is, in turn, proportional to a2 and some dimensionless function of φ̄. Since a/w ≪ 1, for most
particle concentrations, the flux is dominated by Poiseuille’s law. However, in the plugged regions (φ̄ ≈ 1)
Qs(φ̄) ≈ 0, while D(φ̄) > 0. So that the flux is governed mainly by Darcy’s law. The remaining two terms
represent the effect of the gravity. In particular, they signify that when the slurry is in a static position, i.e.
qs=0, the pressure is not equal to hydrostatic pressure. Instead, there is a pressure gradient in addition to
the hydrostatic pressure, which balances the shear stresses at the wall caused by the gravitational settling
of particles. With regard to the flux of particles, the first term corresponds to the flux of particles “carried”
by the fluid, i.e. the advective term. The last two terms of the particle flux capture the effects associated
with gravitational settling of the particles. One may also observe strange non-monotonic variation of wcr in
Fig. (5). This is, unfortunately, one drawback of the constitutive model. This constitutive model is based
on the fitting. So while µp(φ̄) may be accurate, the accuracy of its derivative may deteriorate significantly.
Function B (20), for instance, depends on the derivative of µp(φ̄), and wcr depends on B, see (39).

4.2 Simplified model

Despite the fact that (38) gives a complete answer for a broad range of parameters, the fact that the smallest
fracture width where the proppant can be present is bounded by several particle diameters can be further
used to simplify the result. The function wcr, shown in Fig. 5, is very steep, but monotone in the region
φ̄ ≈ 1, so can be inverted and be written in the form φ̄wcr

(wcr/a). Let’s consider the case when N=3 in (41)
and try to estimate the quantity w2−w2

cr that appears in (38). In the worst case of w=6a, this quantity
vanishes for 1−φ̄wcr

(6) = O(10−4). Moreover, 1−φ̄wcr
(2) = O(10−3), in which case w2

cr/w
2 < 1/9 for all

possible values of w (for which proppant can be inside the fracture). This shows that if the term with wcr is
neglected, a noticeable error may be introduced only for near-maximum concentrations 1−φ̄ < O(10−3). To
show whether the variations of φ̄ in the region 1−φ̄ < O(10−3) affect the slurry flow, one needs to compare
the terms with Qs(φ̄) and D(φ̄) in the slurry flux. To find the particle concentration, which characterizes
the transition from Poiseuille’s to Darcy’s flow regime, one needs to express the relation w2Qs(φ̄)=a2D(φ̄)
in the form φ̄P−D(w/a). For the worst case w = 6a, it can be shown that 1− φ̄P−D(6) = O(10−2). As a
result, wcr can be neglected as D(φ) already dominates the flow for 1−φ̄ < O(10−3) and its variations in this
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range are negligible (so that the error of 0.1% in φ̄ does not lead to noticeable changes in the slurry flow).
Moreover, the variations of D are approximately equal to 5% when 1−φ̄ = O(10−2), in which case D(φ̄) can
be approximated by φ̄D(1) (note that D(φ̄) should vanish for φ̄=0). The estimation of smallness of w2

cr/w
2

is valid for the extreme case when w = 6a. In situations when w/a > 6, the asymptotic behaviour of Qs

and wcr (40) can be used to find that 1−φ̄P−D(w/a) ∝ (a/w)4/3 for the Poiseuille-to-Darcy transition, while
1−φ̄wcr

(w/a) ∝ (a/w)2. This shows that the separation between two characteristic values of 1−φ̄ increases
for bigger fracture widths (while they both decrease), which allows us to safely neglect wcr in (38) and use
an approximation for D(φ̄).

Since a/w ≪ 1, the gravity terms featured in (38) become important only for small values of the vertical

pressure gradient, i.e. ∂p̃f/∂z = O(a2/w2(ρp−ρf )g). This situation may occur when the hydraulic fracture
is surrounded by stress barriers, since some hydraulic fracturing models even assume constant pressure in
each vertical cross-section, see [18]. Due to the presence of stress barriers, the pressure gradient in these
fractures is predominantly horizontal, which could make the vertical component of the pressure gradient

sufficiently small to cause ∂p̃f/∂z = O(a2/w2(ρp−ρf )g). Note, however, that the absolute value of the

pressure gradient may be big and so Gρ, defined in (12), could be small. The fact that ∂p̃f/∂z/|∇p̃f| ≪ 1

allows us to neglect terms in (38) that are proportional to ∂p̃f/∂z/|∇p̃f| ≪ 1, which reduces the complexity
of the fluxes. Moreover, it is useful to introduce

p̂f = pf − pfh = pf + ρfgz + (ρp−ρf )gφmφ̄z + (ρp−ρf )g
∫ z

0

a2Gs(φ̄)

w2Qs(φ̄) + a2φ̄D(1)
dz′, (43)

which allows us to simplify (38) (also using the simplifications discussed in the previous paragraph) to

qs = − w3

12µf
Q̂s

(

φ̄,
w

a

)

∇p̂f,

q
p
B = B

(w

a

)

Q̂p
(

φ̄,
w

a

)

qs −B
(w

a

) a2w

12µf
(ρp−ρf)gezĜp

(

φ̄,
w
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)

, (44)

where

Q̂s
(

φ̄,
w

a

)

= Qs(φ̄) +
a2

w2
φ̄D(1),

Q̂p
(

φ̄,
w

a

)

=
w2Qp(φ̄)

w2Qs(φ̄) + a2φ̄D(1)
, (45)

Ĝp
(

φ̄,
w

a

)

= Gp(φ̄)− w2Gs(φ̄)Qp(φ̄)

w2Qs(φ̄) + a2φ̄D(1)
.

Here pfh is the “true” hydrostatic pressure in the sense that there is no motion of the slurry if pf = pfh. In
terms of fluid driven fracture problems, hydrostatic pressure is important for buoyancy-driven fractures, see
e.g. [19], while is commonly neglected for other industrial hydraulic fracturing problems. In the simplified
model (44), functions (45) determine the motion of the slurry and proppant. The function Q̂s describes
the slurry flow, and, in particular, accounts for the Poiseuille-to-Darcy transition of the flow. Clearly, Q̂p

describes convective proppant transport, while Ĝp captures gravitational settling. The fact that the model
captures Poiseuille-to-Darcy transition of the flow implies that both proppant transport and plugging (i.e.
the formation of a zone with nearly maximum proppant concentration) are accounted for autonomously. As
an illustration, Fig. 6 plots the variations of Q̂p and Ĝp versus φ̄ for different values of w/a = {6, 10, 100}.
One can see that the parameter w/a is important only in the regions with high particle concentration and
leads to a smooth transition of functions Q̂p and Ĝp to zero. It should be noted that there is almost no
visual difference between Qs and Q̂s. At the same time, qualitatively, there is a significant difference, since
Qs goes to zeros as φ̄→ 1, while Q̂s approaches a small constant. For the purpose of numerical calculations,
the variation of functions Q̂p and Ĝp versus w/a can be approximated by either taking a limit w/a→ ∞ or
w/a=6, depending on the numerical scheme. As Fig. 6 shows, the error induced by such an approximation
may slightly alter the dynamics of the plug (i.e. the region with a nearly maximum concentration), while
the proppant transport at smaller concentrations will not be affected.
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Ĝ
p

0 0.5 1
0

0.5

1

φ̄

Q̂
p w

a

= 6

w

a

= 10

w

a

= 100

w

a

= 6

w

a

= 10

w

a

= 100

Figure 6: Variation of functions Q̂p and Ĝp versus normalized average particle concentration φ̄ for different
values of w/a = {6, 10, 100}.

In the current simplified formulation, the functions Q̂s, Q̂p and Ĝp that enter (44) are based on this
specific model for the slurry flow. In practical applications, however, all assumptions of the model may
not always be met and the model may deviate from the observations. For instance, the particles may be
aspherical, or the mixture of particles with different sizes is used. If a similar model cannot be derived due to
e.g. lack of a constitutive relation for the mixture, one possible solution is to keep all the terms in (44), but
to modify the functions Q̂s, Q̂p and Ĝp to fit the data. For instance, one could measure the effective viscosity
and permeability of the mixture and modify the functions accordingly. This formulation represents a broad
class of models, which could satisfy experimental observations, capture the Poiseuille-to-Darcy transition of
the slurry flow, as well as particle transport and settling.

5 Summary

This paper studies the steady flow of a Newtonian fluid mixed with spherical particles based on a continuum
approach. The constitutive behaviour of the mixture is taken from an empirical model, where both the
shear stress and particle pressure are expressed in terms of functions of the particle concentration. Since the
pressure gradient and the gravity are not always collinear, and the problem under consideration is nonlinear,
two-dimensional flow of the slurry needs to be considered. The solution is obtained in terms of the particle
concentration profile, particle velocity, and fluid velocity. According to the solution, the particles form a
rigid cluster in the centre, and its size depends on the average concentration of the particles over the width.
The velocity profile is shown to deviate from the classical parabolic shape for higher concentrations due to
a nonuniform distribution of particles. Also, the solution features a boundary layer, whose size is on the
order of the particle radius. While the effect of the boundary layer is minimal for relatively small particle
concentrations, it becomes crucial when the particle concentration is close to the maximum value. Due to
the nonlinearity of the problem, the solution depends on the ratio between the pressure gradient and gravity
force, as well as on the direction of the pressure gradient relative to the gravity. This, however, makes the
result less valuable for hydraulic fracturing applications, as the implementation of such a complex model into
a hydraulic fracturing simulator becomes extremely cumbersome. For this reason an approximate solution
is introduced, in which the effect of gravity is accounted for approximately. This approximate solution
coincides with the “full” solution for the case of buoyant particles, while it deviates when the gravity effects
are considerable. To provide an estimate for the error that is introduced by the approximation, the “full”
solution is compared to the approximate solution for different regimes of the flow. It is shown that even in
the worst case when the pressure gradient is much weaker than the gravity force, the errors in the slurry
flux and proppant flux do not exceed 30%. For more realistic parameters, the error becomes even lower, on
the order of 10%.

The simplified approximate solution of the channel flow allows us to calculate the average fluxes for
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the slurry and the particles, which is the basis for the analysis of hydraulic fracturing by a slurry and the
corresponding proppant transport problem. The slurry flux has two terms, one Poiseuille-law-type term with
an effective viscosity (which goes to infinity as the concentration reaches a critical value), and a Darcy-law-
type term, where the average velocity is proportional to the particle size squared and the pressure gradient.
The flux of the particles also has two terms, one proportional to the pressure gradient (which can also be
expressed in terms of the slurry flux), a nonlinear function of concentration and width, and another related
to the gravitational forces. The first term describes the transport of the particles by the fluid, i.e. advective
term, while the second term describes gravitational settling. The simplified model (44) is now in a form that
can be implemented in a hydraulic fracturing model that couples elasticity with slurry flow, and captures
proppant transport, gravitational settling, and plug formation.
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