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A class of promising permanent-magnet materials with an appreciable high-temperature coercivity
of 8.6 kOe at 500 °C is reported. The Sm—Co—Cu—Ti magnets are prepared by arc melting and
require a suitable heat treatment. Magnetization measurements as a function of temperature and
x-ray diffraction patterns indicate that the samples are two-phase mixtures of 2:17 and 1:5
structures. Depending on heat treatment and composition, some of the magnets exhibit a positive
temperature coefficient of coercivity. The promising high-temperature behavior of the coercivity is
ascribed to the temperature dependence of the domain-wall energy, which affects the curvature of
the walls and the pinning behavior. @000 American Institute of Physics.

[S0003-695(00)02836-9

Permanent magnets for high-temperature applicationémethod I). Figure 1 shows the X-ray diffraction pattertas
are a research area of great scientific and industrial interedtefore and(b) after annealing. From the x-ray data we see
While the best room-temperature permanent magnets ar@at the 1:7 phase segregates into two phases: a nearly sto-
now made from NgFe;,B,"* Sm—Co magnets have retained ichiometric 1:5 grain-boundary phase, crystallizing in the
their dominance at elevated temperatfféS.The reason is CaCu; structure, and a main 2:17 phase, very likely having
the strong interatomic exchange between the Co atoMgpe rhombohedral T&ny; structure. In particular, the204)
which gives rise to a high Curie temperature and ensures g is characteristic of the 2:17 phase but absent in the 1:5
h|gh anisotropy 'ﬂ the temperature region of interest, WhlCr‘%and 1:7 phases. The two-phase character of the material is
is above 450 °G:!! Most high-temperature permanent mag- . rirmed by thermomagnetic analy$kig. 2).
nets are Spto,-SmCQ two-phase magnets characterized ™ o i osircture of the material was investigated by

by a cellular microstructure and inning-controlled L . . .
y P 9 transmission electron microscoyEM), energy-dispersive

coercivity#81213and at 500 °C coercivities of up to 10 kOe . . S
have been obtained in optimized magneBther approaches X-ray spectroscopyEDX), and high-resolution transmission

involve additives such as Mfto improve the overall per-
formance of the material.

Here we report a Ti-substituted material exhibiting inter-
esting hysteretic properties at high temperatures and discus
the observed behavior in terms of domain-wall energies.

The starting material, namely as-cast samples with the
nominal composition SM(GCWeTiy) (x=6.1-6.7, y
=0.25 and 0.3 were prepared by arc melting. The as-cast 3
alloys crystallize in the disordered 1:5 phase, which is com-$
monly referred to as the Tb@or 1:7) phase. The 1:7 struc- 2
ture does not correspond to a periodic crystal—the simplesE
conceivable dumbbell-substituted compound with a 1:7 com-
position is SmCoy corresponding to a stacking of two
SmyCo;; and three SmGpunit cells—but for simplicity we
will keep the popular notation Si@o, Cu, T)-.

Some samples were annealed at 1150 1@fb and then
cooled down (method ). Others were annealed first at
1185°C for 3 h, then annealed at 850 °C for 8 h, and finally 30 40 50 60 70 80
subjected to slow cooling at 1 K/min from 850 to 600 °C 26 (deg)

After heat treatment
1:5 + 2:17 phases

ty

Before heat treatment
1.7 phase

FIG. 1. X-ray diffraction patterna) before and(b) after annealing. The
3E|ectronic mail: cmra@unlinfo.unl.edu arrow shows a characteristic 2:17 peak.
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FIG. 2. Thermomagnetic analysis of SmGBu, ¢Tiy 3 magnet. The dashed
lines show the Curie temperatures of the pure,Sop; and SmCg phases.
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electron microscopyHRTEM). Figure 3 shows a bright-
field image of the SMGECuyeTig; Sample annealed at
1150 °C for 2 h. The microstructure is cellular and reminis-fiG. 4. Hysteresis loops of B0, ;CuyTios) at two elevated tempera-
cent of that of industrial 2:17 magnets. EDX and HRTEM tures.

were used to characterize the cellular 2:17 and 1:5 grain-

boundary phases. EDX reveals that the grain-boundary phasé%own in Fig. 5. To exclude the possibility of structural ag-

contains more Cu than the 2:17 cells, and HRTEM shows h heated th terial i wre t
that the grain-boundary and cellular phases are coherent. INg, we have healed the matenial irom room temperature 1o

Figure 4 shows typical hysteresis loops. The field range?>0 “C and then cooled back to room temperature; no change
was limited by our maximum field of 10 kOe, but measure-" coercivity was observed. The three samples shown in Fig.
ments up to 18 kOe did not yield any further increaseljn 2 exhibit positive temperature coefficientdd./dT up to
The Virgin curves—compare the 250°C |00p in F|g about 400-500 °C. The best Coercivity, 8.6 kOe at 500 °C,
4—exhibit features of domain-wall pinning, and the single-was obtained for a S(@0s 4Cuy ¢Tio5) Sample produced by
phase character of the loops speaks against a noninteractititge heat-treatment method II. By comparison, the other two
mixture of weakly textured or isotropic 2:17 and 1:5 crystal-samples were heat-treated by method I. Other compositions
lites. No attempts have been made to produce aligned magead to different temperature dependen@est shown in Fig.
nets, so that the remanence ratit,/Ms is significantly  5). For example, SHC0s 1=Cly ¢Tig 25 exhibits a temperature
smaller than one, and the energy product, about 4 M G Oe &pefficientdH,./d T close to zero over a wide range of tem-
500 °C, is only moderate. eratures.

The temperature dependence of the coercivity of typical 114 temperature dependence of extrinsic properties,
Sm-Co-Cu-Ti high-temperature permanent magnets is
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FIG. 3. TEM micrograph showing the microstructure of @ug :Cuy ¢Tig ) FIG. 5. Temperature dependence of the coercivity for three Sm—Co—Cu-Ti
magnet. samples.
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0.4 T T T T This amounts to a comparatively small coercivity at low tem-
perature. On heating{,; and y become smaller, the wall
curvature increases, and the enhanced pinning overcompen-

= 03 ] sates theK,; reduction in some intermediate temperature re-
< gion (dH./dT>0).

g Note that another approatiascribes the observed be-
5 0.2 ] havior to micromagnetic fluctuatiorfenagnetic viscosity In

;6 Ref. 6, the earlier-mentioned intrinsic temperature depen-

dence has been taken into account, but that magnetic-
viscosity approach leads to the physically unreasonable re-
sult thatH .= for T=0.
A key feature of the present materials is the absence of
°~°0 260 4(')0 660 860 Zr, which helps to develo;_) t_he cgllular micrqstructure neces-
sary to create coercivity in conventional Sm-Co
Temperature (K) magnets$:>13In fact, Fig. 3 shows that Zr is not necessary to
FIG. 6. Model calculation of the temperature dependence of the pinnind'€ate a cellular microstructure. Note also that, compared to
coercivity. industrial Sm—Co magnets, the magnets are comparatively
Sm rich, corresponding to a fairly large volume fraction of
the 1:5 phase and the amount of the(@bout 0.04 Ti atoms
rBer Co atomis roughly two times larger than that of zirco-
nium in conventional high temperature magnets.
In conclusion, we have reported a 2:17-1:5 Sm—-Co-—
—Ti permanent magnet material with promising high-

e
—

such as coercivity, is largely given by the temperature depe
dence of the underlying intrinsic properties: By contrast,
micromagnetic thermal excitatior(snagnetic-viscosity cor-
rectiong are unable to realize magnetization reversal withoutCu

the help of.energy—barr_ler reducing fieltfs. temperature properties. For the nominal composition
Of key'lmportance is the temperature dgpendence of m"Sm(Coa ClocTios, a posiive temperature coefficient

crom_agnetlc pe}rameters su_ch as domam-wal! eneygy dHC/dT and a éoercivity of 8.6 kOe at 500 °C have been

=4VAK; and thicknes$= m yA/K, of the phases involved, obtained. The temperature dependence of the coercivity re-

yvhereA andK, are the eX.Change stifiness and the f|rs_t aMects the microstructure of the two-phase magnet and is dis-
isotropy constant, respectively® For the present material,

the t wre d d fthe 1:5 and 2-17 anisot cussed in terms of the dependence of anisotropy and domain-
€ en:le(era ure %pen e"?‘:etflo N 'f _ar:j t" I:;r.nls70 TOPIGRII curvature on temperature. However, since neither the
are not known, and even in the case ot industrial == 7 Mada, , oy microchemistry nor the effect of the Ti on the intrinsic

tr]oetcjs}s,tcr:]jsr,i ;inr;aelrlgr?fé}viléTcaSt:ggcs:ﬁgnliss’r:sowever’ InStrUCtIVﬁroperties of the material are known, a detailed description
) of the coercivity remains a challenge.

When the wall energy of the two phases is different, then
the 2:17 domain walls may be trapped in 1:5 regiogs.4 The authors are grateful to J. P. Liu, S. Liu, Y. Liu, and
<y,.17, attractive pinningor unable to enter the 1:5 regions H. Tang for the discussion of various experimental aspects.
(y1.5> v2:17, repulsive pinning Here we make the crude This research is supported by AFOSR, DARPA/ARO, and
assumption that the coercivity is proportional to the differ-DOE.
ence between the first anisotropy constants of the two
phases. From th? genereltl behavior of the temp‘?ramre deperl]li/l. Sagawa, S. Fujimura, H. Yamamoto, and Y. Matsuura, IEEE Trans.
dence of the anisotropy* then follows the qualitative be-  pagn 20, 1584 (1984,
havior shown in Fig. 6. However, a quantitative determina- 2R. Skomski and J. M. D. Coefermanent Magnetisifinstitute of Phys-
tion of the peak height and its position requires a detailed3::SkB:Ti15t?' J1929- | Physs3, R13(1989
knowledge of the main and grain-bOUﬂdary phases. . 4C.. Hl.JCP?e’n, MpSp .\/Val%ser,'M. H. Walm.er, S. Liu, E. Kuhl, and G. Simon,

On the other hand, as discussed in Ref. 13, the domain-; appl. Phys83, 6706(1998.
wall energy of the 2:17 phase determines the curvature of théJ. F. Liu, T. Chui, D. Dimitrov, and G. C. Hadjipanayis, Appl. Phys. Lett.
domain walls and affects the coercivity by more or Iessegaljgoj(lé’:r?- 6. Doyle. G. Potts. and G. E. Kuhl. 3. Anol. PIS:
exploiting the pinning potential of the 1:5 regions. The ra- ¢,q (5509, g. &. Loyle, &. Fotls, - E. Kuhl, J. Appl. PI3s.
dius of curvature is given bR=y/uoM¢H., and taking 73 F. Liu, Y. Zhang, D. Dimitrov, and G. C. Hadjipanayis, J. Appl. Phys.
woM=1.1T, K;=2MJIn?, A=20pJ/m, and uoH, 85, 2800(1999.

—0.7T (7 kOe) we obtain the typical valie=41nm. This 2 F- Liu, Y'ADi?gF;hY' Zhang, Dl' Dimitar, F. Zhang, and G. C. Hadji-
radius is well in the range of the structural features of theggégi{:rse’fﬂ' i ',):?d'ler' Zf: ’V\?éggéo?z ?EEE Trans. Ma@a be publishel
cellular composites in question. G, C. Hadjipanayis, W. Tang, Y. Zhang, S. T. Chui, J. F. Liu, C. Chen,

A new aspect of the effect of the domain-wall curvature and H. Kronniller, IEEE Trans. Magn(to be publishey

PRI i alR. Skomski, J. Appl. Phys33, 6724(1998.
on the coercivity is its temperature dependence. For cell sizes Hadjipanayis, iiRare.Earth Iron Permanent Magnetsdited by J.

much larger than the radius of curvature, the wall may be y p_coey(oxford University Press, Oxford, 1996

accommodated at almost any temperature, and the intrinsiér. skomski, J. Appl. Phys1, 5627 (1997).

dependencalK,/dT<0 is the key consideration, yielding 14, saito, M. Takahashi, T.(Wal;iyama, G. Kido, and H. Nakagawa, J.
; _ ; Magn. Magn. Mater82, 322(1989.

dH./dT<0. For small cell sizes, the wall-curvature “rad|us 15R. Skomski, R. D. Kitby, and D. J. Sellmyer, J. Appl. Phgs. 5069

may be larger than the cell size, and only a small “weak- (1999

pinning” fraction of the 1:5 phase contributes to the pinning. M. Kersten, Z. Phys44, 63 (1943.
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