$(Sm,Zr)(Fe,Co)_{11.0-11.5}Ti_{1.0-0.5}$ compounds as new permanent magnet materials

Cite as: AIP Advances **6**, 025221 (2016); https://doi.org/10.1063/1.4943051 Submitted: 25 December 2015 • Accepted: 18 February 2016 • Published Online: 25 February 2016

Tomoko Kuno, Shunji Suzuki, Kimiko Urushibata, et al.

ARTICLES YOU MAY BE INTERESTED IN

Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn₁₂ structure Journal of Applied Physics **64**, 5714 (1988); https://doi.org/10.1063/1.342235

Influence of Zr substitution on the stabilization of ThMn₁₂-type (Nd_{1-a}Zr_a) (Fe_{0.75}Co_{0.25})_{11.25}Ti_{0.75}N_{1.2-1.4} (a = 0-0.3) compounds AIP Advances **6**, 056023 (2016); https://doi.org/10.1063/1.4944521

A (Nd, Zr)(Fe, Co)_{11.5}Ti_{0.5}N_x compound as a permanent magnet material AIP Advances 4, 117131 (2014); https://doi.org/10.1063/1.4902176

AIP Advances

Mathematical Physics Collection

READ NOW

AIP Advances **6**, 025221 (2016); https://doi.org/10.1063/1.4943051 © 2016 Author(s).

(Sm,Zr)(Fe,Co)_{11.0-11.5}Ti_{1.0-0.5} compounds as new permanent magnet materials

Tomoko Kuno,¹ Shunji Suzuki,¹ Kimiko Urushibata,¹ Kurima Kobayashi,^{1,a} Noritsugu Sakuma,^{2,3} Masao Yano,^{2,3} Akira Kato,^{2,3} and Akira Manabe³ ¹Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan ²Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan ³Technology Research Association of Magnetic Materials for High-efficiency Motors (Mag-HEM) Higashifuji-Branch, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan

(Received 25 December 2015; accepted 18 February 2016; published online 25 February 2016)

We investigated (Sm,Zr)(Fe,Co)_{11.0-11.5}Ti_{1.0-0.5} compounds as permanent magnet materials. Good magnetic properties were observed in (Sm_{0.8}Zr_{0.2})(Fe_{0.75}Co_{0.25})_{11.5} Ti_{0.5} powder containing a limited amount of the α -(Fe, Co) phase, including saturation polarization (J_s) of 1.63 T, an anisotropic field (H_a) of 5.90 MA/m at room temperature, and a Curie temperature (T_c) of about 880 K. Notably, J_s and H_a remained above 1.5 T and 3.70 MA/m, respectively, even at 473 K. The hightemperature magnetic properties of (Sm_{0.8}Zr_{0.2})(Fe_{0.75}Co_{0.25})_{11.5}Ti_{0.5} were superior to those of Nd₂Fe₁₄B. © 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4943051]

Rare earth (R)-Fe-X (X = B, C, N) compounds are the most promising candidates for replacing widely used Nd₂Fe₁₄B magnets.¹ Sakurada et al.² reported a high-saturation polarization (J_s) phase, SmFe₁₀N_x (x not determined), with $J_s = 1.70$ T and an anisotropy field (H_a) of 6.2 MA/m at room temperature (RT). The properties of this phase, particularly the mechanism that produces the high J_s value, have not been clarified. Compounds with R_nFe_m compositions and their nitrides (SmFe₁₁Ti,³ SmFe₉N_x,⁴ NdFe₁₁TiN_x⁵) are interesting possibilities for future permanent magnet materials.

We performed preliminary experiments on NdFe₁₁Ti-based ThMn₁₂ (1-12) compounds and found that $(Nd_{0.7}, Zr_{0.3})(Fe_{0.75}, Co_{0.25})_{11.5}Ti_{0.5}N_x$ (x = 0.6–1.3) was promising. It had J_s of about 1.67 T, H_a of 4.0–5.25 MA/m at RT, and a Curie temperature (T_c) of more than 840 K.^{6,7} We aimed to increase the Fe and Co content and decrease the Ti content in the starting alloy to maintain a high J_s and the 1-12 structure. For the ferromagnetic transition metals, a Co content of 25% and Fe content of 75% were selected based on the Slater-Pauling curve. As in our previous studies,^{6,7} the substitution of Zr at Sm sites stabilized the Fe- and Co-rich ThMn₁₂-type phase. These ideas were applied to $(Sm,Zr)(Fe,Co)_{11.0-11.5}Ti_{1.0-0.5}$ compounds in this study. Nitrogen (-N_x) in the Nd-containing 1-12 compounds was not necessary for high anisotropy^{8,9} or high coercivity, in the compound in this study, suggesting that they would be suitable as sintered magnet materials.

The strip-cast (SC) method was used to prepare the alloys based on our previous studies.^{6,7} As in SmFe₁₁Ti, the 1-12 structure was well stabilized and the appearance of the α -(Fe, Co) phase was suppressed by the optimum annealing conditions of 1373 K for 4 h when the Ti content was about 8 atom %. Based on this procedure, the alloys SmFe₁₁Ti (alloy A), Sm(Fe_{0.75}Co_{0.25})_{11.5}Ti_{0.5} (alloy C), and (Sm_{0.8}Zr_{0.2})(Fe_{0.75}Co_{0.25})_{11.5}Ti_{0.5} (alloy D) were prepared. After optimum annealing at 1373 K for 4 h, the Sm, Zr, Fe, Co, and Ti distribution in alloy D, which was the most difficult alloy to prepare, were homogeneous except for limited precipitation of an Fe-rich phase (Fig. 1).

The XRD patterns of the four alloys are shown in Fig. 2. Alloys A and B with $-Ti_{1.0}$ compositions exhibited the 1-12 structure with almost no α -Fe or α -(Fe, Co) phases. In contrast, alloy C with

^aCorresponding author: koba@ms.sist.ac.jp

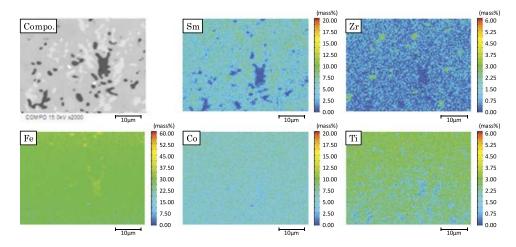


FIG. 1. Microstructure and Sm, Zr, Fe, Co, and Ti elemental distributions in alloy D, $(Sm_{0.8}Zr_{0.2})(Fe_{0.75}Co_{0.25})_{11.5}Ti_{0.5}$, observed by electron probe micro-analyzer.

-Ti_{0.5} showed a clear XRD peak for the α -(Fe, Co) phase at around $2\theta = 44.6^{\circ}$ (Cu-k α). Alloy D, which contained -Zr_{0.2}, showed a smaller α -(Fe, Co) peak compared with the 1-12 phase, indicating that the 1-12 phase was stabilized by Zr substitution at the Sm sites.^{7,11}

The a- and c-lattice constants obtained from the XRD patterns of the alloys are shown in Table I. Both constants monotonically decreased in the order of alloy A > alloy B > alloy C > alloy D, and thus a = 0.856 (alloy A) \rightarrow 0.851 (alloy D) nm and c = 0.480 (alloy A) \rightarrow 0.477 (alloy D) nm. We interpret the lattice shrinkage as follows: alloy A > alloy B was due to Co substitution at Fe sites; alloy B > alloy C was caused by a decrease in Ti content at the Fe sites⁷ (metallic radius

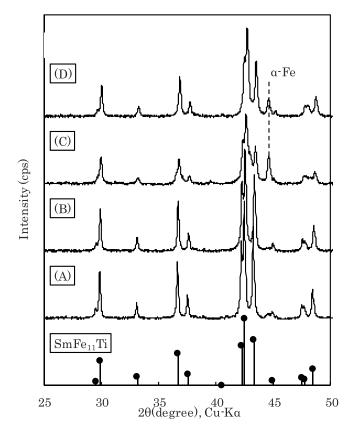


FIG. 2. XRD patterns of alloys A–D, and the standard peaks for SmFe₁₁Ti.

025221-3 Kuno et al.

Alloy	a / nm	c / nm	V / nm^3	(c/a) / %
(A) SmFe ₁₁ Ti	0.856	0.480	0.352	56.0
(B) Sm(Fe _{0.75} Co _{0.25}) ₁₁ Ti	0.855	0.478	0.350	55.9
(C) Sm(Fe _{0.75} Co _{0.25}) _{11.5} Ti _{0.5}	0.854	0.477	0.348	55.9
(D) (Sm _{0.8} Zr _{0.2})(Fe _{0.75} Co _{0.25}) _{11.5} Ti _{0.5}	0.851	0.477	0.346	56.0

TABLE I. Lattice constants, unit cell volumes, and c/a ratios for alloys A-D.

of Ti $(0.147 \text{nm})^{10}$ > Fe $(0.126 \text{ nm})^{10}$); and alloy C > alloy D arose from Zr substitution at Sm (2a) sites^{7,11} (metallic radius of Zr $(0.160 \text{ nm})^{10}$ < Sm $(0.180 \text{ nm})^{10}$).

For magnetic measurements up to 9 T, we used a physical property measurement systemvibrating sample magnetometer (PPMS-VSM; EverCool II, QuantumDesign Inc.). Fig. 3 shows the

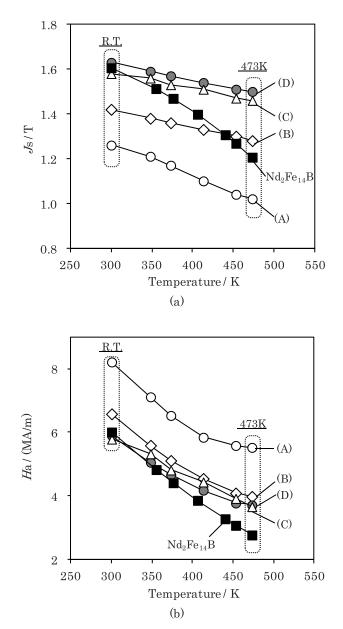


FIG. 3. (a) J_s values and (b) H_a values at 300–473 K for alloys A–D, with those of Nd₂Fe₁₄B. Dashed lines in the values at RT and 473 K.

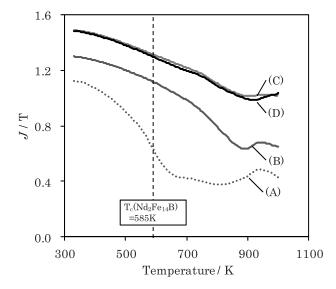


FIG. 4. Temperature dependence of polarization in alloys A-D.

temperature dependence of J_s and H_a . The incremental increase in J_s (alloy A < alloy D at RT (Fig. 3(a)) can be explained as follows. The variation from 1.26 T for alloy A to 1.42 T for alloy B at RT should arise the Co substitution at Fe sites, as explained by the Slater-Pauling curve.⁷ The J_s value of alloy B (1.42 T) increased because of the higher Fe and Co transition metal content in alloy C (1.58 T), Sm(Fe_{0.75}Co_{0.25})_{11.5}Ti_{0.5}, arising from the decrease in Ti content (1.0 \rightarrow 0.5). Finally, Zr substitution at Sm sites stabilized the ThMn₁₂ structure and achieved a higher J_s in alloy D (1.63 T). Although the contribution of the α -(Fe, Co) phase to J_s was eliminated, the values were still 1.50 T for alloy C (-0.08 T) and 1.58 T for alloy D (-0.05 T) at RT.

To determine the anisotropy field, H_a , the law of approaching saturation was used^{12–14}; the measured polarization under an applied field, $J(H_{appl})$ versus $1/H^2$ was plotted, where H is the applied magnetic field. To calculate H_a , we used the magnetization curves of alloy powders A–D isotropically distributed in ceramic cement (5.3 vol.% (14wt.%)), where

$$J(H_{appl}) = J_s(1 - \alpha/H^2), \ \alpha = \text{constant} \times K_1^2/J_s^2$$
(1)

 H_a was calculated by using the measured K_1/J_s values based on equation (1). When a constant value of $4/15^{14}$ was used in equation (1), the anisotropy fields at RT were 8.21 MA/m for alloy A, 6.58 MA/m for alloy B, 5.78 MA/m for alloy C, and 5.90 MA/m for alloy D (Fig. 3(b)). We also calculated the H_a values by using the dJ/dH vs $1/H^3$ relationship.¹⁵ The results showed unexpected fluctuation in susceptibility (χ_0) values (see, e.g., Ref. 15), which are thought to be caused by the maximum applied field of <9 T = 7.2 MA/m. Therefore, we used equation (1).

The Curie temperature (T_c) of the alloys was measured by using the PPMS-VSM with an applied field of about 9 T.¹⁶ The results are shown in Fig. 4 with a temperature increase rate of 5 K/min. *T*c of alloy A was about 620 K, which is slightly higher than the reported value.¹⁷ Those of alloys B, C, and D were estimated to be 830, 880, and 880 K, respectively. *T*c of alloy D was notably higher than the value of 586 K for Nd-Fe-B,¹⁸ as shown in Fig. 4.

The temperature dependences of J_s (Fig. 3(a)) and H_a (Fig. 3(b)) showed that the J_s and H_a values at 473 K of alloys B–D were higher than those of Nd-Fe-B.^{19,20} Alloy D, (Sm_{0.8}Zr_{0.2})(Fe_{0.75}Co_{0.25})_{11.5} Ti_{0.5}, was found to be a promising permanent magnet material for high-temperature applications.

ACKNOWLEDGEMENT

This paper is based on results obtained from the pioneering program "Development of magnetic material technology for high-efficiency motors" (2012–) commissioned by the New Energy and Industrial Technology Development Organization (NEDO). 025221-5 Kuno et al.

- ¹ M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).
- ² S. Sakurada, A. Tsutai, T. Hirai, Y. Yanagida, M. Sahashi, S. Abe, and T. Kaneko, J. Appl. Phys. 79, 4611 (1996).
- ³ K. Ohashi, Y. Tawara, R. Osugi, and M. Shimao, J. Appl. Phys. 64, 5714 (1988).
- ⁴ M. Katter, J. Wecker, and L. Schultz, J. Appl. Phys. **70**, 3188 (1991).
- ⁵ Y. C. Yang, X, D Zhang, L. S. Kong, Q. Pang, and S. L. Ge, Solid State Commun. 78, 317 (1991).
- ⁶ S. Suzuki *et al.*, AIP advances **4**, 117131 (2014).
- ⁷ S. Suzuki *et al.*, J. Magn. Magn. Mater. **401**, 259 (2016).
- ⁸ S. A. Nikitin et al., J. Alloys and Compounds **316**, 46 (2001).
- ⁹ M. Bacmann et al., J. Alloys and Compounds 383, 166 (2004).
- ¹⁰ L. Pauling, *The Nature of the chemical bond*, 3rd ed. (Cornell University Press, 1960).
- ¹¹ N. Sakuma *et al.*, AIP Advances (to be published).
- ¹² E. Czerlinsky, Ann. Phys. **405**, 80 (1932).
- ¹³ S. Chikazumi, *Physics of Ferromagnetism* (Oxford Science Publications, 1997), p. 503.
- ¹⁴ H. Kronmüller and M. Fähnle, *Micromagnetism and the microstructure of ferromagnetic solids* (Cambridge Univ. Press, 2013), p. 176.
- ¹⁵ G. C. Hadjipanayis *et al.*, Phys. Rev. B **23**, 3349 (1981).
- ¹⁶ K. Kobayashi, M. Ohmura, Y. Yoshida, and M. Sagawa, J. of Magn. Magn. Mater. 247, 42 (2002).
- ¹⁷ Handbook of Magnetic Materials Vol. 9, edited by K.H.J. Buschow, H. Fujii, and H. Sun (Elsevier Science, 1995), Chap.3, p. 357.
- ¹⁸ S. Hirosawa *et al.*, J. Appl. Phys. **59**(3), 873 (1986).
- ¹⁹ R. Grossinger, X. K. Sun, R. Eibler, K. H. J. Buschow, and H. R. Kirchmayer, J. de Physique 46, C6-221 (1985).
- ²⁰ S. Hock, Ph.D thesis, Universität Stuttgart (1988).