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We investigated (Sm,Zr)(Fe,Co)11.0-11.5Ti1.0-0.5 compounds as permanent magnet

materials. Good magnetic properties were observed in (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5

Ti0.5 powder containing a limited amount of the α-(Fe, Co) phase, including satu-

ration polarization (Js) of 1.63 T, an anisotropic field (Ha) of 5.90 MA/m at room

temperature, and a Curie temperature (Tc) of about 880 K. Notably, Js and Ha

remained above 1.5 T and 3.70 MA/m, respectively, even at 473 K. The high-

temperature magnetic properties of (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 were superior

to those of Nd2Fe14B. C 2016 Author(s). All article content, except where other-

wise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4943051]

Rare earth (R)-Fe-X (X = B, C, N) compounds are the most promising candidates for replacing

widely used Nd2Fe14B magnets.1 Sakurada et al.2 reported a high-saturation polarization (Js) phase,

SmFe10Nx (x not determined), with Js = 1.70 T and an anisotropy field (Ha) of 6.2 MA/m at room

temperature (RT). The properties of this phase, particularly the mechanism that produces the high Js

value, have not been clarified. Compounds with RnFem compositions and their nitrides (SmFe11Ti,3

SmFe9Nx,
4 NdFe11TiNx

5) are interesting possibilities for future permanent magnet materials.

We performed preliminary experiments on NdFe11Ti-based ThMn12 (1-12) compounds and

found that (Nd0.7,Zr0.3)(Fe0.75,Co0.25)11.5Ti0.5Nx (x = 0.6–1.3) was promising. It had Js of about

1.67 T, Ha of 4.0–5.25 MA/m at RT, and a Curie temperature (Tc) of more than 840 K.6,7 We aimed

to increase the Fe and Co content and decrease the Ti content in the starting alloy to maintain a

high Js and the 1-12 structure. For the ferromagnetic transition metals, a Co content of 25% and

Fe content of 75% were selected based on the Slater-Pauling curve. As in our previous studies,6,7

the substitution of Zr at Sm sites stabilized the Fe- and Co-rich ThMn12-type phase. These ideas

were applied to (Sm,Zr)(Fe,Co)11.0-11.5Ti1.0-0.5 compounds in this study. Nitrogen (-Nx) in the

Nd-containing 1-12 compounds was not necessary for high anisotropy8,9 or high coercivity, in the

compound in this study, suggesting that they would be suitable as sintered magnet materials.

The strip-cast (SC) method was used to prepare the alloys based on our previous studies.6,7 As

in SmFe11Ti, the 1-12 structure was well stabilized and the appearance of the α-(Fe, Co) phase was

suppressed by the optimum annealing conditions of 1373 K for 4 h when the Ti content was about

8 atom %. Based on this procedure, the alloys SmFe11Ti (alloy A), Sm(Fe0.75Co0.25)11Ti (alloy B),

Sm(Fe0.75Co0.25)11.5Ti0.5 (alloy C), and (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 (alloy D) were prepared.

After optimum annealing at 1373 K for 4 h, the Sm, Zr, Fe, Co, and Ti distribution in alloy D, which

was the most difficult alloy to prepare, were homogeneous except for limited precipitation of an

Fe-rich phase (Fig. 1).

The XRD patterns of the four alloys are shown in Fig. 2. Alloys A and B with -Ti1.0 composi-

tions exhibited the 1-12 structure with almost no α-Fe or α-(Fe, Co) phases. In contrast, alloy C with

aCorresponding author: koba@ms.sist.ac.jp
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FIG. 1. Microstructure and Sm, Zr, Fe, Co, and Ti elemental distributions in alloy D, (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5,

observed by electron probe micro-analyzer.

-Ti0.5 showed a clear XRD peak for the α-(Fe, Co) phase at around 2θ = 44.6◦ (Cu-kα). Alloy D,

which contained -Zr0.2, showed a smaller α-(Fe, Co) peak compared with the 1-12 phase, indicating

that the 1-12 phase was stabilized by Zr substitution at the Sm sites.7,11

The a- and c-lattice constants obtained from the XRD patterns of the alloys are shown in

Table I. Both constants monotonically decreased in the order of alloy A > alloy B > alloy C > alloy

D, and thus a = 0.856 (alloy A)→ 0.851 (alloy D) nm and c = 0.480 (alloy A)→ 0.477 (alloy D)

nm. We interpret the lattice shrinkage as follows: alloy A > alloy B was due to Co substitution at

Fe sites; alloy B > alloy C was caused by a decrease in Ti content at the Fe sites7 (metallic radius

FIG. 2. XRD patterns of alloys A–D, and the standard peaks for SmFe11Ti.
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TABLE I. Lattice constants, unit cell volumes, and c/a ratios for alloys A–D.

Alloy a / nm c / nm V / nm3 (c/a) / %

(A) SmFe11Ti 0.856 0.480 0.352 56.0

(B) Sm(Fe0.75Co0.25)11Ti 0.855 0.478 0.350 55.9

(C) Sm(Fe0.75Co0.25)11.5Ti0.5 0.854 0.477 0.348 55.9

(D) (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 0.851 0.477 0.346 56.0

of Ti (0.147nm)10 > Fe (0.126 nm)10); and alloy C > alloy D arose from Zr substitution at Sm (2a)

sites7,11 (metallic radius of Zr (0.160 nm)10 < Sm (0.180 nm)10).

For magnetic measurements up to 9 T, we used a physical property measurement system-

vibrating sample magnetometer (PPMS-VSM; EverCool II, QuantumDesign Inc.). Fig. 3 shows the

FIG. 3. (a) Js values and (b) Ha values at 300–473 K for alloys A–D, with those of Nd2Fe14B. Dashed lines in the values at

RT and 473 K.
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FIG. 4. Temperature dependence of polarization in alloys A–D.

temperature dependence of Js and Ha. The incremental increase in Js (alloy A < alloy D at RT

(Fig. 3(a)) can be explained as follows. The variation from 1.26 T for alloy A to 1.42 T for alloy B

at RT should arise the Co substitution at Fe sites, as explained by the Slater-Pauling curve.7 The Js

value of alloy B (1.42 T) increased because of the higher Fe and Co transition metal content in alloy

C (1.58 T), Sm(Fe0.75Co0.25)11.5Ti0.5, arising from the decrease in Ti content (1.0→ 0.5). Finally, Zr

substitution at Sm sites stabilized the ThMn12 structure and achieved a higher Js in alloy D (1.63 T).

Although the contribution of the α-(Fe, Co) phase to Js was eliminated, the values were still 1.50 T

for alloy C (-0.08 T) and 1.58 T for alloy D (-0.05 T) at RT.

To determine the anisotropy field, Ha, the law of approaching saturation was used12–14; the

measured polarization under an applied field, J(Happl) versus 1/H2 was plotted, where H is the

applied magnetic field. To calculate Ha, we used the magnetization curves of alloy powders A–D

isotropically distributed in ceramic cement (5.3 vol.% (14wt.%)), where

J(Happl) = Js(1 − α/H2), α = constant × K1
2/Js

2 (1)

Ha was calculated by using the measured K1/Js values based on equation (1). When a constant

value of 4/1514 was used in equation (1), the anisotropy fields at RT were 8.21 MA/m for alloy A,

6.58 MA/m for alloy B, 5.78 MA/m for alloy C, and 5.90 MA/m for alloy D (Fig. 3(b)). We also

calculated the Ha values by using the dJ/dH vs 1/H3 relationship.15 The results showed unexpected

fluctuation in susceptibility (χ0) values (see, e.g., Ref. 15), which are thought to be caused by the

maximum applied field of <9 T = 7.2 MA/m. Therefore, we used equation (1).

The Curie temperature (Tc) of the alloys was measured by using the PPMS-VSM with an

applied field of about 9 T.16 The results are shown in Fig. 4 with a temperature increase rate of

5 K/min. Tc of alloy A was about 620 K, which is slightly higher than the reported value.17 Those

of alloys B, C, and D were estimated to be 830, 880, and 880 K, respectively. Tc of alloy D was

notably higher than the value of 586 K for Nd-Fe-B,18 as shown in Fig. 4.

The temperature dependences of Js (Fig. 3(a)) and Ha (Fig. 3(b)) showed that the Js and Ha values

at 473 K of alloys B–D were higher than those of Nd-Fe-B.19,20 Alloy D, (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5

Ti0.5, was found to be a promising permanent magnet material for high-temperature applications.
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