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Figure 1: Example of SMAA 4x integrated in the Crysis 2 game. The insets show the differences between MLAA [JME∗11], our

novel SMAA T2x and 4x algorithms and MSAA 8x as reference. For 1080p frames, the average cost of SMAA T2x is 1.3 ms and

2.6 ms for SMAA 4x, measured on a NVIDIA GeForce GTX 470.

Abstract

We present a new image-based, post-processing antialiasing technique, which offers practical solutions to the

common, open problems of existing filter-based real-time antialiasing algorithms. Some of the new features in-

clude local contrast analysis for more reliable edge detection, and a simple and effective way to handle sharp

geometric features and diagonal lines. This, along with our accelerated and accurate pattern classification allows

for a better reconstruction of silhouettes. Our method shows for the first time how to combine morphological an-

tialiasing (MLAA) with additional multi/supersampling strategies (MSAA, SSAA) for accurate subpixel features,

and how to couple it with temporal reprojection; always preserving the sharpness of the image. All these solutions

combine synergies making for a very robust technique, yielding results of better overall quality than previous ap-

proaches while more closely converging to MSAA/SSAA references but maintaining extremely fast execution times.

Additionally, we propose different presets to better fit the available resources or particular needs of each scenario.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Antialiasing

1. Introduction

Aliasing is one of the longest-standing problems in com-

puter graphics, producing clear artifacts in still images (spa-

tial domain) and introducing flickering animations (temporal

domain). While using higher sampling rates can ameliorate

its effects, this approach is too expensive and thus not suit-

able for real-time applications. During the last few years we

have seen great improvements in real-time rendering algo-

rithms, from complex shaders to enhanced geometric detail

by means of tessellation. However, aliasing remains one of

the major stumbling blocks for trying to close the gap be-

tween off-line and real-time rendering [And10].

For more than a decade, supersample antialiasing

(SSAA) and multisample antialiasing (MSAA) have been

the gold standard antialiasing solutions in real-time applica-

tions and video games. However, MSAA does not scale well

when increasing the number of samples and is not trivial to

include in modern real-time rendering paradigms such as de-
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ferred lighting/shading [JME∗11, And11a, JGY∗11]. To ex-

emplify this problem with numbers, MSAA 8x takes an av-

erage of 5.4 ms in modern video games with state of the art

rendering engines (increasing to 7.7 ms on memory band-

width intensive games) on a NVIDIA GeForce GTX 470.

Memory consumption in this mode can be as high as 126 MB

and 316 MB, for forward and deferred rendering engines re-

spectively, taking 12% and 30% of the rendering time of a

mainstream GPU equipped with 1GB of memory. This prob-

lem is aggravated when HDR rendering is used, as the mem-

ory consumption and bandwidth increases even further.

Recently, both industry and academia have begun to

explore alternative approaches, where antialiasing is per-

formed as a post-processing step [JGY∗11]. The original

morphological antialiasing (MLAA) method [Res09] gave

birth to an explosion of real-time antialiasing techniques,

rivaling in quality the results of MSAA and with a perfor-

mance within the [0.1 − 5] ms range. However, analyzing

the current generation of filter-based antialiasing techniques,

they all share at least some of the following problems:

• Most edge detection methods only take into account nu-

merical differences between pixels, ignoring the fact that

the surroundings of an edge also affect how humans per-

ceive them.

• The original shape of the objects is not always preserved;

an overall rounding of the corners is most of the times

clearly visible in text, sharp corners and subpixel features.

• Most approaches are designed to handle horizontal or ver-

tical patterns only, ignoring diagonals.

• Real subpixel features and subpixel motion are not prop-

erly handled.

• Specular and shading aliasing is not completely removed,

especially when it happens at subpixel level.

Addressing all these issues while maintaining practical

real-time performance poses a real challenge. We propose

a novel post-process antialiasing technique, Enhanced Sub-

pixel Morphological Antialiasing (SMAA). Our approach

follows the divide-and-conquer paradigm, and tackles these

complex problems separately, offering simple, modular solu-

tions. First, we extend the number and type of edge patterns

in order to keep sharp geometric features while processing

also diagonal lines. Second, by adding multi/supersampling

and temporal reprojection to morphological antialiasing, we

are able to reconstruct real subpixel features and handle sub-

pixel motion. Last, we introduce a robust edge detection that

exploits local contrast along with accelerated yet precise dis-

tance searches for a more accurate pattern classification.

Given the modular nature of our approach, specific fea-

tures can be enabled or disabled, adjusting to the needs

of each particular scenario and hardware configuration. We

propose four different modes, from the simplest to the more

sophisticated version, which includes a novel combination

of antialiasing as a post-process filter, and both spatial and

temporal supersampling. This flexibility allows for direct,

practical use of our technique even in current mainstream

hardware. Furthermore, we have made public all the source

code at http://iryoku.com/smaa/, including very

exhaustive comments for both implementation and integra-

tion, to ensure both reproducibility and an easy and fast

adoption of the technique.

2. Related Work

The simplest form of real-time antialiasing is supersampling

antialiasing (SSAA), which involves rendering the scene

at a higher resolution, then downsampling to the final res-

olution. It is also the basis of multisampling antialiasing

(MSAA) [Ake93], where the color of a pixel is only calcu-

lated once instead of running at subsample frequencies. To

display the scene, all samples are aggregated using some fil-

ter (a resolve operation). Although recent related techniques

like CSAA [You06] and EQAA [AMD11] reduce bandwidth

and storage costs by decoupling coverage from color, depth

and stencil, these methods still inherit MSAA drawbacks.

The addition of new real-time rendering paradigms such

as deferred shading [DWS∗88,Har04,GPB04] and the light-

ing pre-pass [Eng08], along with current limitations in

graphics hardware, have recently motivated a great amount

of exciting new research in this field [JGY∗11]. Most of the

recent antialiasing solutions handle the aliasing problem as

a post-process, devising filters that are applied over the fi-

nal, aliased image, usually rendered at final display reso-

lution. The basic idea is to find discontinuities on the im-

age and to blur them in clever ways, in order to smooth

the jagged edges. While the approach is not entirely new

[Blo83, VO92, IK99], some advanced versions of it have

been only recently applied in games [Shi05,Koo07,Sou07].

All these techniques alleviate the aliasing problem, although

the sharp definition of the edges is obviously lost to a degree.

More refined solutions like directionally localized antialias-

ing (DLAA) [And11b], use smarter blurs that produce very

natural results and good temporal coherence. Nevertheless,

these approaches still yield blurrier results than MSAA.

Other solutions, such as morphological antialiasing

(MLAA) [Res09], try to estimate the pixel coverage of the

original geometry based on the color discontinuities found

in the final image. Reshetov’s original work provides great

results, but the proposed CPU implementation is not fast

enough to be used in real-time. This triggered a number

of real-time implementations that run on different hardware

platforms, such as the GPU [BHD10, AMD10, JME∗11],

Playstation 3 SPUs and hybrid approaches that use both CPU

and GPU [JGY∗11, DP11]. Topological reconstruction an-

tialiasing (TMLAA) [Bir11] uses topological information

to recover subpixel features from the final image. However,

this reconstruction can only fill one-pixel-sized holes, and

it is not clear how well its assumptions work for animated

sequences. Fast approximate antialiasing (FXAA) [Lot11]

approaches the subpixel problem by simply attenuating such

features, which enhances the perceived temporal stability.
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However, its resulting images are still not at the quality level

of standard methods like MSAA.

Deviating from pure image-based solutions, in the

distance-to-edge antialiasing technique (DEAA) the for-

ward rendering pass calculates and stores the distances

of each pixel to near triangle edges with subpixel preci-

sion [JGY∗11]. The post-process pass uses this information

to derive blending coefficients. Similar in spirit, Persson’s

GPAA [Per11] and GBAA [JGY∗11] use additional geomet-

ric information for coverage calculation. This produces al-

most perfect gradients with great temporal stability. How-

ever, working at final display resolution means they can-

not handle subpixel features. Furthermore, they require ei-

ther additional output buffers in the main pass or additional

geometry passes. Providing better handling of subpixel fea-

tures in deferred engines, subpixel reconstruction antialias-

ing (SRAA) [CML11] combines regular shading at final dis-

play resolution with supersampled geometry maps (normals

and depth). Then, a super-resolution color image is built

propagating the shaded samples over those maps; the result-

ing image is finally down-sampled again to final screen res-

olution. Despite bringing subpixel features to the table, they

are based on heuristic estimations and the resulting gradients

are in general of lower quality when compared with other ap-

proaches. Directionally adaptive edge antialiasing [IYP09]

leverages MSAA subsample values for better gradient and

color estimation. However, execution times are on the high

side limiting the viability of the method to specific projects.

Finally, in very demanding realtime scenarios with

complex shading and geometry, temporal antialiasing

approaches have regained interest recently [NSL∗07,

YNS∗09] [JGY∗11] (see section Anti-Aliasing Methods in

CryENGINE 3). The main idea is to distribute the cost of

supersampling over contiguous frames. Our work also takes

this aspect into account, handling subsamples via temporal

reprojection. In a different context, the work of Yang and

colleagues [YSLH11] aims at restoring jagged edges that oc-

cur after nonlinear image processing filters, for which they

require that the original, alias-free image be available.

Table 1 in the supplementary material provides a detailed

summary of the features supported for a representative se-

lection of filter-based antialiasing techniques, including our

work. This selection covers most of the recent major publi-

cations in the field, and includes all those for which imple-

mentations are available and are currently in use, in order

to perform fair comparisons. It can be seen how each exist-

ing technique aims at solving a subset of all the problems

involved, at the cost of leaving others out. In contrast, we

provide a more holistic approach and systematically tackle

all of them, while maintaining modularity by design.

3. Morphological Antialiasing

Morphological antialiasing (MLAA) [Res09], tries to esti-

mate the pixel coverage of the original geometry. To accu-

Figure 2: MLAA first finds edges by looking for color dis-

continuities (green lines), and classifies them according to a

series of pre-defined pattern shapes, which are then virtually

re-vectorized (blue line), allowing to calculate the coverage

areas a for the involved pixels. These areas are then used to

blend with a neighbor. For example, the pixel Copp fills the

area a of the pixel Cold: cnew = (1−a) · cold +a · copp.

rately rasterize an antialiased triangle, the coverage area for

each pixel inside the triangle must be calculated to blend

it properly with the background (assuming a back-to-front

rendering order). MLAA begins with an image without an-

tialiasing (no coverage taken into account during rasteriza-

tion), so it reverses the process by re-vectorizing the silhou-

ettes, in order to estimate such coverage areas. Then, since

the background cannot be known after rasterization, MLAA

blends with a neighbor, assuming that its value is similar to

the original background. Figure 2 describes this process; we

refer the reader to the original publication for a more detailed

explanation [Res09].

Several morphological antialiasing implementations ap-

peared after Reshetov’s original paper [JGY∗11]. Jimenez’s

MLAA [JME∗11] is one of the fastest and most documented.

Its key feature is the use of novel texture structures for great

performance improvements. These textures are used to en-

code the location of the edges and coverage areas, as well

as the precomputed areas for blending. The algorithm works

in three passes: edge detection (which is performed using

depth or luma information), pattern detection plus calcula-

tion of coverage areas, and final blending. Pattern detection

is performed by searching both ends of an edge (distance

searching), halving the necessary iterations by using hard-

ware bilinear filtering. Once the ends are reached, the algo-

rithm looks at the crossing edges, which provide a mecha-

nism for straightforward pattern classification; these cross-

ing edges are the perpendicular edges with respect to the di-

rection of a search (see for example the vertical green lines

in Figure 2). With length and crossing edges information, the

coverage area is retrieved with a single access to a precom-

puted texture, and used for the final blending. Figure 3 ex-

emplifies the different steps and components of the pipeline.

We choose this MLAA implementation as a starting point for

our algorithm, and refer the reader to the original publication

for a more comprehensive description [JME∗11].

4. SMAA: Features and Algorithm

In this section we present the core components of SMAA,

their motivation and the main algorithmic ideas (see Fig-
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Figure 3: MLAA overview. (a) Input image, with the intended approximation outlined by red lines and the coverage areas shown

in green. (b) Predefined patterns in the original algorithm [Res09]. (c) Precomputed areas texture in Jimenez’s GPU imple-

mentation [JME∗11]. (d) Detected edges. (e) Calculated coverage areas. (f) Final blending. Our SMAA algorithm overhauls

the whole pipeline by extending (b) and (c) for sharp geometric features and diagonals handling. Local contrast adaptation

removes spurious edges in (d). Extended patterns detection and accurate searches improve accuracy in (e). SMAA can handle

additional samples in (f) for accurate subpixel features and temporal supersampling.

ure 4). We build on Jimenez’s MLAA pipeline, improving

or completely redefining every step. In particular, we im-

prove edge detection by using color information with local

contrast adaptation for cleaner edges. We extend the number

of patterns handled for sharp geometric features preservation

and diagonals processing. In a similar fashion, we enhance

pattern handling with accurate and fast distance searches

for a more reliable edge classification. Last, we show how

morphological antialiasing can be accurately combined with

multi/supersampling and temporal reprojection. Although

our new technique shares some of the core ideas of MLAA,

it constitutes a major overhaul in terms of quality and robust-

ness (see Figure 3).

Figure 4: Overview of the key weaknesses of post-processing

antialising filters (columns) and how the core elements of

SMAA handle them (rows).

4.1. Edge detection

Edge detection is critical in all AA filters, since each unde-

tected edge will remain aliased on the final image. On the

other hand, too many blurred edges can reduce the quality

of the antialiased image, while imposing unnecessary per-

formance penalties. Different information can be employed

for edge detection: RGB color, luma, depth, surface normal,

object ID... or combinations of them. We choose to use luma

based on four observations: first, MLAA expects edges to

come specifically from color-based (either luma or RGB)

discontinuities; otherwise artifacts may appear [JGY∗11]

(see section MLAA on the PS3). Second, as opposed to depth

and normals, color information is always available. Third,

it can handle shading aliasing. And fourth, it is faster than

RGB color while usually yielding similar results. For effi-

ciency, we only search for edges at the top and left bound-

aries of each pixel, since the bottom and right ones can be

retrieved from the neighbors.

Local contrast adaptation: The human visual system

tends to mask low contrast edges in the presence of much

higher contrasts in the surrounding area. Thus, a naive color

edge detection based exclusively on local numerical dif-

ferences will produce spurious edges (usually undetected

by humans) that will affect pattern classification, down-

grading image quality and temporal stability (see Figure 5,

top). To avoid these spurious edges, we perform an adaptive

double threshold which allows to: a) prevent line searches

from stopping at non-perceptually-visible crossing edges;

and b) choose the dominant (much higher contrast) edge

when there are two parallel edges on a pixel (top-bottom, or

left-right). This differs from previous approaches that take

into account local contrast by simply checking the range of

lumas found in the current pixel and its 4-neighborhood, and

thus do not allow the notion of perceptual masking between

edges [Lot11].

Figure 5: Top: Dominant contrast in green edges should

mask the spurious red crossing edges (left). Not taking

this local contrast into account leads to artifacts (center).

Our SMAA algorithm corrects them (right). Bottom-left: left

boundary (orange) of a given pixel (marked with a dot) and

surrounding candidate edges (blue) that may dominate it,

making it non-visible for human viewers. Bottom-middle:

top boundary scenario. Bottom-right: candidate surround-

ing edges actually calculated.
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Figure 5, bottom-left, shows the case for left edge (or-

ange) of a given pixel (grey dot), plus the surrounding candi-

date edges (blue) that may dominate (mask) it. We calculate

the maximum contrast cmax for all these edges and compare

it with the contrast for the left edge. If the latter is above

a threshold of 0.5 · cmax the edge is preserved; otherwise, it

is ignored. The threshold was chosen empirically and pro-

vides good results in all our tests. The bottom-middle image

shows the similar case for the top edge. Since computing all

these edges involves too many memory accesses, we select

a subset that yields satisfactory results (bottom-right).

For the case of the left boundary, a straightforward al-

gorithm would calculate el = |L− Ll |> T , where el is the

boolean value that codes whether the edge is active, L and Ll

represent luma values at the current and left pixels respec-

tively, and T is a given threshold (usually between 0.05 and

0.2). We refine this naive approach with an additional test

that can be expressed as:

cmax = max(ct ,cr,cb,cl ,c2l)

e
′

l = el ∧ cl > 0.5 · cmax (1)

where ct ,cr,cb,cl ,c2l are the contrast deltas for the edges

shown in Figure 5, and e′l represents the final boolean value

(active or not) for the left edge boundary. The edge at the top

boundary, e′t , is calculated in a similar fashion.

4.2. Pattern handling

Our new pattern detection allows to preserve sharp geomet-

ric features like corners, deals with diagonals and enables

accurate distance searches.

Sharp geometric features: The re-vectorization of sil-

houettes of MLAA tends to round corners on the image (see

Figure 6, left). Given that the crossing edges used for pattern

detection are just one pixel long, it is not possible to dis-

tinguish a jagged edge from the actual corner of an object,

which may be wrongly processed.

To avoid this, we make the key observation that crossing

edges in contour lines have a maximum size of one pixel,

whereas for sharp corners this length will most likely be

longer. We thus fetch two-pixel-long crossing edges instead;

this allows to detect actual corners and apply a less aggres-

sive processing, thus retaining more closely the true shape

of the object (see Figure 6, right). The degree of processing

applied is defined by a rounding factor r, which scales the

original coverage areas obtained by one-pixel-long crossing

edges (blue lines in Figure 6, right). The recommended range

for r is [0.0− 1.0]. For example, values of r = 1.0, 0.5 and

0.0 yield the blue, yellow and pink lines respectively.

For the (academic) case of an horizontal line, we modify

Jimenez’s MLAA coverage areas calculation as follows:

1. We perform the original pattern detection, using the reg-

ular crossing edges (red edges on Figure 6, right). This

Figure 6: Left: Comparison between no antialiasing (top),

a regular MLAA approach (middle), and the SMAA results

(bottom). Notice how SMAA keeps the original shape of the

object much better, while MLAA tends to round its shape.

Right: Corners have crossing edges of length at least two

(see the second pixel column), while aliased contour lines

have crossing edges of just one pixel in length (staircase to-

wards the right). Fetching extended crossing edges (orange),

in addition to regular edges (red), allows to discern between

both cases, yielding a more accurate re-vectorization (pink),

instead of rounding off corners (blue).

yields two areas ab and at per pixel belonging to the pat-

tern. ab is used to blend the bottom pixel pb with its

top neighbor pt , whilst at is used to blend pt with pb

(see [JME∗11] for details).

2. We refine the areas at and ab according to the following:

a
′

t =







r ·at if dl < dr ∧ e1

r ·at if dl ≥ dr ∧ e2

at otherwise

(2)

a
′

b =







r ·ab if dl < dr ∧ e3

r ·ab if dl ≥ dr ∧ e4

ab otherwise

(3)

where a′t and a′b are the modified area values, dl and dr are

the distances to the left and to the right of the line for the

current pixel, and ei are booleans that indicate if an edge is

active (see Figure 6).

Diagonal patterns: Most of the existing filter-based tech-

niques search for patterns made exclusively of horizontal

and vertical edges (orthogonal patterns). This translates into

badly aliased results (in space and time) for diagonal lines

(see Figure 7).

We introduce a novel diagonal pattern detection that al-

lows to detect these scenarios. In these cases, a diagonal re-

vectorization (Figure 7, center) is used to yield coverage ar-

Figure 7: MLAA (left) and SMAA (center) re-vectorizations

(blue lines) of near-45◦ diagonals. Thanks to our handling

of diagonal patterns (green lines), SMAA reconstructs the

edge accurately. Right: our approach just requires the same

information as for the orthogonal case: distances dl and dr;

and crossing edges e1 and e2 (right).

c© 2012 The Author(s)
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eas, instead of the original orthogonal re-vectorizations (Fig-

ure 7, left). The mechanism developed to handle diagonal

patterns is inspired by the orthogonal patterns handling of

Jimenez’s MLAA. We introduce a precomputed texture that

takes as input the diagonal pattern, defined by the distances

to both ends of the diagonal line and the diagonal crossing

edges information (Figure 7, right); and outputs the accurate

coverage areas. Figure 8 shows the possible diagonal pat-

terns and their corresponding pre-calculated areas.

Calculating diagonal coverage areas consists of the fol-

lowing steps, for both the top-left to bottom-right and the

bottom-left to top-right diagonal cases:

1. We search for the diagonal distances dl and dr to the left

and and to right end of the diagonal lines.

2. We fetch the crossing edges e1 and e2.

3. We use this input information (dl , dr, e1, e2), defining the

specific diagonal pattern, to access the precomputed area

texture, yielding the areas at and ab.

We perform this diagonal pattern detection before the or-

thogonal one in the coverage area calculation. If the diag-

onal pattern detection fails, we trigger the orthogonal detec-

tion. Otherwise, the areas produced by the diagonal pattern

detection are used. This model allows to seamlessly perform

the last blending step (step f in Figure 3) in a symmetric way

for both orthogonal and diagonal patterns, given the fact that

the semantics of the produced areas at and ab are the same

in both cases.

Figure 8: Diagonal patterns map (left) and their precom-

puted area texture (right).

Accurate distances search: Key to pattern detection and

classification is obtaining accurate edge distances (lengths

to both ends of the line). Jimenez’s MLAA makes extensive

use of hardware interpolation (bilinear filtering) to acceler-

ate this process. Hardware bilinear filtering can be used as a

way of fetching and encoding up to four different values with

a single memory access (otherwise it would be necessary to

perform one memory access per value to fetch). This is ex-

ploited to fetch two edges at once, allowing to partially re-

duce bandwidth usage (see Figure 9, bottom-left). However,

it does not check crossing edges during the search, which

may lead to inaccuracies in pattern detection [JME∗11].

Unfortunately, fetching the crossing edges in the search

loop following their scheme would imply two linearly fil-

tered accesses per iteration, doubling the bandwidth usage.

We generalize the approach for two dimensional accesses,

being able to fetch four different values with a single mem-

ory access (Figure 9, bottom-right).

Figure 9: Top-left: Example of a search to find the left end of

a horizontal edge (starting position marked with a dot). Top-

right: Hardware filtered accesses performed by Jimenez’s

MLAA (orange dots) just check the orange edges. SMAA bi-

linear accesses (green dots) are able to additionally check

all the crossing edges (green). In this example, this will make

the search stop when the first crossing edge is found, instead

of finishing at the left end of the horizontal edge. Bottom-

left: The different iterations of the search (represented by

different colors) and the values fetched by Jimenez’s MLAA.

Note how it misses all the crossing edges (in blue). Bottom-

right: The same iterations and the values fetched by SMAA.

It can be seen how SMAA is able to check four different pix-

els (shaded pixels) with just a single memory access.

Jimenez’s MLAA uses a linear interpolation of two binary

values producing a single floating point value:

fx(b1,b2,x) = x ·b1 +(1− x) ·b2, (4)

where b1 and b2 are two binary values (either 0 or 1, given

that the edges texture marks each edge as activated or not),

and x is the interpolation value. If x 6= 0.5, this produces a

set of four unique values: {0,1− x,x,1}. So, it is possible

to find a decoding function f−1 that recovers the original

b1 and b2 binary values. Instead SMAA performs bilinear

interpolation of four binary values as follows:

fxy(b,x,y) = fx(b1,b2,x) · y+ fx(b3,b4,x) · (1− y), (5)

where y is the interpolation value in the second dimension.

By choosing a value of y = 0.5x, it is possible to create a

binary base that allows to encode a bilinear interpolation be-

tween four binary values into a single one, and still be able

to recover the sixteen possible original values. We exploit

this fact to fetch the four b1, b2, b3 and b4 binary edge val-

ues (see Figure 9, bottom-right). We refer the reader to the

source code for the specific details of this feature.

4.3. Subpixel rendering

MLAA algorithms work with a single sample per pixel. This

translates into subsampling, which makes it impossible to

recover real subpixel features (see Figure 10, no AA and

MLAA). Having more samples per pixel allows for a better

reconstruction of the antialiased image. A naive extension

would involve using MLAA in conjunction with MSAA,

c© 2012 The Author(s)
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No AA MLAA SMAA 1x SMAA S2x SMAA 4x MSAA 4x MSAA+MLAA MSAA+FXAA

Figure 10: A difficult case for no AA, MLAA [JME∗11] and SMAA 1x: a white grid over a black background at mid-distance

(top), prevents the reconstruction of accurate coverage; at a longer distance (bottom, zoomed in), the continuity of the grid is

broken, preventing its recovery. Using extended patterns to deal with sharp geometric features and correct offsets allows for a

more accurate area estimation, making SMAA S2x and 4x converge to the MSAA 4x reference. Note how the naive application of

MLAA over samples from MSAA 4x improves the connectivity of the grid, but blurring artifacts appear. We have also performed

the same test using FXAA 3.11 (preset 39, max. quality) since it is one of the most used MLAA-like solutions. Figures 3, 4 and

5 in the supplementary material extend this with additional MSAA modes, and AA filters applied pre and post resolve.

applying it over each subsample group separately and then

averaging them together. However, using such a simple ap-

proach leads to blurry results (see Figure 10, MSAA 4x with

MLAA). This is due to MLAA and MSAA making different

assumptions about the coverage of the samples, so they can-

not converge even increasing the samples per pixel count:

• MLAA is designed to work on the silhouettes of objects

and not with thin lines and features, as found in distant ob-

jects with high-frequency details (see Figure 10, MLAA).

As it can be seen, not taking into account sharp geomet-

ric features leads to blurry results (with unnatural glows).

Thus, sharp geometric features detection (Subsection 4.2)

is critical when applying MLAA over subpixel features.

Ultimately, this allows for corners to be conservatively re-

constructed, in order to allow multi/supersampling to re-

construct their real shape (see Figure 10, SMAA 1x; no-

tice how non-silhouette features are ignored).

• Given that MLAA assumes the positions of all the

samples to be at the center of the pixel for the re-

vectorization, this simply does not work due to the under-

/overestimation of the corresponding coverage areas, pro-

ducing gradients that do not match in the resolve step,

which translate into a blurry appearance of distant objects.

In addition to sharp features detection, our solution is to

take into account the offset position of each subsample in-

side the pixel, in order to calculate properly their coverage

areas. This way, when the different subsample groups are

blended together, we obtain the average color at the center of

the pixel (see Figure 11, left and middle). Then, the only re-

quired change to the pipeline is to use different precomputed

areas textures for each subsample position. This approach is

general enough to handle additional samples coming from

standard approaches like temporal supersampling and spa-

tial multisampling, so several configurations are possible. In

particular, we have found the following modes to be the most

interesting from a performance/quality perspective:

• SMAA 1x: includes accurate distance searches, local con-

trast adaptation, sharp geometric features and diagonal

pattern detection.

• SMAA S2x: includes all SMAA 1x features plus spatial

multisampling.

• SMAA T2x: includes all SMAA 1x features plus temporal

supersampling.

• SMAA 4x: includes all SMAA 1x features plus spatial and

temporal multi/supersampling.

The SMAA 4x mode requires to temporally jitter the

SMAA S2x mode, as shown in Figure 11 (right). Figure 10

shows how SMAA 4x converges better to MSAA 4x than

simply combining MLAA with MSAA.

4.4. Temporal reprojection

While temporal supersampling allows to efficiently render

subpixel features, coupling it with a naive resolve approach

like linear blending results in very noticeable residual arti-

facts, commonly referred to as ghosting (see Figure 12, left).

A better solution is to re-project instead the previ-

ous frames’ subsamples into the current frame [NSL∗07,

YNS∗09] [JGY∗11] (Section Anti-Aliasing Methods in

CryENGINE 3). However, disoccluded regions (occluded re-

gions in the previous frame now visible in the current frame)

still suffer from residual artifacts (see Figure 12, middle).

To minimize them, we weight the previous subsample by w,

which depends on the difference in velocity with respect to

the current subsample:

w = 0.5 ·max(0,1−K ·
√

|‖vc‖−‖vp‖|), (6)

c© 2012 The Author(s)
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Figure 11: Left, top: usual MSAA 2x pattern, with offsets at

(−0.25,0.25) and (0.25,−0.25). Left, bottom: For combin-

ing multi/supersampling with MLAA (SMAA S2x and T2x),

we have to offset the area calculations so that the average

between the subsamples on top and bottom (pink and or-

ange) corresponds to the color at the center of the pixel

(blue). Middle: MLAA area calculations are devised to es-

timate the re-vectorization at the center of the pixel (blue).

For SMAA S2x and T2x, these areas must be offset by −0.25

(pink) and +0.25 (orange). Right: Example of combining

four subsamples (SMAA 4x) coming from both spatial mul-

tisampling and temporal supersampling, using two jittered

results of SMAA S2x (purple and green).

where vc and vp are the velocity of current and previous

frames, and K is a constant that determines how much we

attenuate previous frame according to velocity differences

(we use a value of 30 for all our examples). Then, the final

resolve is performed as follows:

c = (1.0−w) · cc +w · cp. (7)

where c is the final resolved color, cc the color in current

frame, and cp the color in the previous frame. Such a solu-

tion robustly handles disoccluded regions but at the expense

of no antialiasing on such regions (see Figure 12, right).

Nevertheless, the other components of our technique (either

MLAA or spatial multisampling) will usually antialias these

regions, effectively eliminating the problem.

A remaining problem of combining velocity weighting

with a morphological strategy is that morphological an-

tialiasing is actually blending pixels from both sides of the

silhouette of an object at subpixel level. However, the veloc-

ity map remains aliased and so velocity is not propagated to

Figure 12: Left: Using a naive resolve results in visible

ghosting. Middle: Reprojection mitigates these artifacts but

does not completely remove them. Right: The addition of ve-

locity weighting allows to completely remove ghosting.

the antialiased pixels, which leaves trails of blended pixels

behind objects in motion. The solution is to apply SMAA

also over the velocity buffer, in order to propagate veloci-

ties to the blended pixels. To efficiently perform this step,

we coarsely store the velocity module in the alpha channel

of the color buffer, so SMAA processes it for free.

5. Results

Figure 13 shows a comparison of the subpixel modes of our

technique against MLAA and SSAA 16x. Figures 1 and 2

from the supplementary material contain a more detailed

comparison with a large number of selected antialiasing

methods. We refer the reader to the supplementary material

for additional examples both with still images and video. We

recommend the digital version of the article for proper ex-

amination. Performance metrics are measured on a NVIDIA

GeForce GTX 470 using 1080p images. Typical execution

times for our technique are of 1.02 ms for SMAA 1x, 1.32

ms for SMAA T2x, 2.04 ms for SMAA S2x and 2.34 ms for

SMAA 4x. Subpixel modes allow higher thresholds for edge

detection (see better fallbacks below), which lowers execu-

tion times without visible loss of image quality.

Local contrast: The first column of Figure 13 shows how a

conventional edge detection approach (MLAA) usually fails

to properly detect patterns in the presence of gradients. Note

how our approach is able to detect and correctly antialias

these difficult zones for smooth gradients.

Diagonal pattern detection: Our algorithm accurately re-

constructs a perfectly straight diagonal line for the street-

lamp silhouette. Traditional post-processing approaches

generate aliasing artifacts, which can be clearly seen when

looking at the image at native pixel resolution and in motion.

Sharp geometric features: Our technique manages to pre-

serve the sharp corners in the base of the aerials (specially

the one of the satellite dish), whereas most filter-based an-

tialiasing techniques introduce some degree of roundness.

This information is vital for multi/supersampling to recon-

struct the accurate shape of an object. Also text present on

textures or the user interface is better preserved.

Accurate searches: Blindly following edges without

checking crossing edges at each step causes pattern detec-

tion to fail in some scenarios, as shown in the MLAA image.

Our accurate search allows to enhance the antialiasing qual-

ity without increasing the number of memory accesses.

Subpixel features: Post-processing techniques using 1x

(final display resolution) color inputs are unable to recon-

struct accurate subpixel features (which accounts for all

selected techniques with the exception of SSAA), produc-

ing artifacts like spurious pixels, gaps in surfaces and dis-

tracting effects due to subsampling. In contrast, our SMAA

T2x mode is able to better preserve the connectivity of the

lines, resembling more faithfully the results obtained with

SSAA 16x. SMAA S2x and 4x modes also provide real sub-

pixel features at the expenses of multisampling, an approach

c© 2012 The Author(s)
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Figure 13: SMAA can produce results close to SSAA 16x, with SMAA T2x having a performance on par with the fastest MLAA

implementation [JME∗11]. The improved edge/pattern detection allows to antialias difficult cases (first column). Diagonal

pattern detection allows accurate reconstruction of such shapes (second column). The detection of sharp geometric features

allows to better reconstruct corners and intersections (see second window in the first column, and bases of the aerials on the

third column). Accurate searches allow to detect patterns in difficult scenarios (fourth column). Subpixel features handling

allows to preserve connectivity and accurately represent distant objects (fifth and sixth columns). In zones with low-contrast

edges, we fall back to MSAA 2x (seventh column), which provides good results and improves performance.

with varying viability depending on the complexity of the

shaders.

Better fallbacks: Subpixel SMAA modes not only allow

actual handling of subpixel features, but also provide bet-

ter fallbacks for additional robustness. If the morphologi-

cal component of SMAA leaves any edge unprocessed, the

MSAA component of S2x and 4x modes will back that up. If

the temporal reprojection present in T2x and 4x modes fails

due to changes in the occlusion of objects between frames,

the morphological and MSAA components will reduce alias-

ing. And the possible shading aliasing of S2x will be made

up by temporal SSAA and MLAA in SMAA 4x, making it

the most robust mode.

Discussion: Most of the features we have described solve

limitations of not just MLAA in particular, but of all post-

processing antialiasing filters in general. Performance-wise,

in a forward rendering scenario SMAA 4x and SMAA T2x

are about 1.46x and 4.09x faster than MSAA 8x respectively

(the first taking into account the required multisampling 2x

overhead). With respect to memory consumption, the most

demanding configuration requires only 43% and 17% of the

memory used by MSAA 8x, in a forward and deferred con-

text respectively. Note that we are able to perform better than

MSAA 8x, while delivering superior overall quality, both in

gradients and shading, resembling more accurately the re-

sults of SSAA 16x. In the case of a deferred engine, using

MSAA 8x would incur an excessive drop of performance

given the massive bandwidth required [And11a], along with

the requirement of supersampling the edges at 8x.

In SMAA 1x and T2x modes, the execution times are

within the same 1 ms ballpark as other solutions (see Ta-

ble 1 in the supplementary material). The S2x and 4x modes

are obviously more expensive due to multisampling (an av-

erage of 1.57 ms overhead for rendering at 2x, minus the

resolve time), but they are still on-par with other techniques

that handle subpixel features (SRAA and MSAA 8x), still

yielding smoother results. Note that SRAA requires addi-

tional 4x multisampled depth and/or normal maps and possi-

bly two geometry passes; while our approach multisamples

color information at 2x. In the case of a deferred renderer,

our approach would require supersampling the edges; how-

ever, stencil-masked implementations allow for efficient per-

formance.

The overhead introduced by each of our solutions is ei-

ther negligible or very affordable. In particular, local contrast

adaptation is 0.08 ms, the sharp geometric features detection

and accurate distance searches take less than 0.01 ms; di-

agonals processing and temporal supersampling introduce a

small overhead of 0.12 ms and 0.3 ms respectively. Spatial

multisampling adds 1.02 ms for filtering the second sample,

and an additional average of 1.57 ms to render the scene at

2x. The delta that SMAA 4x adds on top of a 2x forward-

rendered scene is as little as 2.09 ms, making it an attractive

option for any scenario that can afford such a small multi-

sample count.

c© 2012 The Author(s)
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6. Conclusions

We have presented a technique that tackles all the weak

points remaining in filter-based antialiasing solutions. We

have shown for the first time how to combine a filter-based

antialiasing technique with standard multi/supersampling

approaches and temporal reprojection. This novel combi-

nation of improved MLAA strategies with spatial and tem-

poral multi/supersampling accounts for a very robust solu-

tion, combining the different synergies for better fallbacks.

SMAA 1x delivers very accurate gradients, temporal sta-

bility and robustness, while introducing minimal overhead,

making it an obvious choice for low-end configurations.

SMAA T2x, for little additional cost, offers a very attractive

tradeoff for any kind of rendering engine (deferred or for-

ward), avoiding 2x multisampling while still reconstructing

subpixel detail. SMAA S2x and SMAA 4x are the best op-

tions regarding image quality. We believe that SMAA will fi-

nally enable deferred engines to match the antialiasing qual-

ity of forward rendering engines.
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In the movie included, "SMAA.mp4", we show the behav-

ior of the features of SMAA in motion. We compare against

Jimenez’s MLAA [JME∗11], FXAA 3.11 [Lot11] (preset 39

for the highest image quality), and CSAA 16xQ [You06]

(in order to have as reference the MSAA hardware im-

plementation with the best image quality). We also show

clips of SMAA integrated in the commercial game engine

"CryENGINE 3" from Crytek.

File "Battlefield3.psd" contains the full resolution images

used in Figure 13 of the paper, Figure 1 and Figure 2 of this

document. Each layer corresponds to a method for an eas-

ier and flexible comparison between them. We recommend

to check them with software like Photoshop or GIMP, and

swap between layers. Since MSAA was not available for

this scene, we compare against different SSAA modes. Note

that because Reshetov’s criteria for edge detection and pat-

tern handling can be enhanced [Res09], differences between

his implementation and Jimenez’s MLAA [JME∗11] can be

appreciated (the same happens with AMD’s implementa-

tion [AMD10]). For example, while Reshetov utilizes RGB

information for finding edges, Jimenez’s MLAA uses lumi-

nance values. And while Reshetov takes into account the

largest pattern a pixel belongs to, Jimenez’s MLAA uses the

shortest. However, Jimenez’s threshold was tuned to be sim-

ilar to Reshetov’s. AMD’s implementation cannot be cus-

tomized, so it was applied with default settings. Additional

screenshot comparisons can be found at the project website:

http://iryoku.com/smaa/.

Figure 3 extends Figure 10 from the paper by comparing

SMAA and MSAA modes with the same number of samples

per pixel. It can be seen how SMAA gradually converges to

the MSAA reference, in some cases surpassing the quality

of MSAA modes with higher samples count.

Figure 4 demonstrates how offset positions must be taken

into account for the area calculations when several samples

per pixel are used. In this case, we test FXAA applied pre-

resolve over each subsample coming from MSAA 4x in the

same fashion we did with MLAA in Figure 10 from the pa-

per. As can be seen, not taking into account the exact posi-

tion of each sample leads to blurry results that do not con-

verge to the MSAA reference. Additionally, we test FXAA

and MLAA applied post-resolve (Figure 5) over a resolved

MSAA 2x input. The results show how suboptimal (even in-

correct) it is to apply these antialiasing filters over an already

antialiased input.

Table 1 presents performance numbers and features sets

of all the techniques used in our tests and comparisons.

Last, "Code.zip" includes the commented source code for

the SMAA shader, and the Python code for generating the

precalculated areas textures. The most up-to-date version

and a demo application with some test examples can be

found at http://iryoku.com/smaa.
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Figure 1: Comparison of the features (rows) of our approach with a selection of anti-aliasing techniques (columns). To help the

reader navigate through this image matrix, we have color-coded the performance of each method for each particular feature

tested, although this is ultimately a subjective criterion. Green, orange and red dots mark accurate, regular and inaccurate

handling of a feature. Gradients from SSAA 16x are hampered in this case because of the use of an ordered grid SSAA. In the

case of FXAA, we used preset 39 (maximum quality). The accompanying Photoshop file also includes FXAA’s default preset 12,

SMAA 1x High (as included in this Figure) and Ultra (with lower threshold for edge detection and larger patterns handling).

Zoom into the digital version of this paper or check the accompanying Photoshop files to see the details.
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Figure 2: Comparison of SMAA modes against ordered-grid SSAA. Zoom into the digital version of this paper or check the

accompanying Photoshop files to see the details and comparison against all methods from Figure 1.
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Table 1: Supported features for a selection of filter-based antialiasing techniques. Memory footprint in terms of: backbuffer

size/depth buffer/additional render targets. Performance is given for 1080p on a NVIDIA GeForce GTX 470, with exception of:

a) Reshetov’s [Res09] CPU-based implementation, which is measured on a Core i7 2620M @ 2.7GHz; b) AMD’s exclusive

MLAA [AMD10], which is measured on a AMD Radeon HD 6870; and c) SRAA [CML11], whose times come from a GeForce

GTX 480 (more powerful than the GeForce GTX 470). Please note that our SMAA T|S2x and 4x times include the resolves.

MSAA performance numbers, calculated as the overhead over the same scenes without antialiasing, are 1.57 ms for MSAA 2x,

2.3 ms for MSAA 4x and 4.3 ms for MSAA 8x. Brute force SSAA overhead grows linearly with the number of samples, SSAA

16x takes an additional cost of 285 ms for the example in Figure 1 from the paper.1For fairness, we measured the 4x mode of

our algorithm on the same GPU, yielding a performance of 1.82 ms. 2 We measured the times of FXAA 3.11 in default (12) and

extreme (39) presets.

[Res09] [AMD10] [JME∗11] [Lot11] [And11] [CML11]

MLAA MLAA MLAA FXAA 3.11 DLAA SRAA SMAA

1x S2x T2x 4x

Sharp geometric features yes yes yes yes yes

Diagonals yes yes yes yes

Subpixel features yes yes yes yes

Supersampled shading yes yes

Local contrast adaptation implicit implicit yes (n/a) yes yes yes yes

Accurate distance searches yes yes depends yes yes (n/a) yes yes yes yes

Accurate gradients∗ yes yes yes yes yes yes yes yes yes

Sharpness preservation∗ medium low high medium medium low high high high high

Ghosting-free yes yes yes yes yes yes yes yes

Input (color/depth) 1x n/a 1x n/a 1x 1x 1x n/a 1x n/a 1x 4x 1x n/a 2x n/a 1x n/a 2x n/a

Memory footprint 1x/1x/n/a 1x/1x/n/a 1x/1x/1.5x 1x/1x/0x 1x/1x/1x 1x/4x/0x 1x/1x/2x 2x/2x/2x 1x/1x/4x 2x/2x/4x

Performance 350 ms 6.6 ms1 0.98 ms 0.62 ms /0.83 ms2 2.12 ms 2.5 ms 1.02 ms 2.04 ms 1.32 ms 2.34 ms

No AA SMAA 1x MSAA 2x SMAA S2x MSAA 4x SMAA 4x MSAA 8x

Figure 3: Comparison between SMAA and MSAA modes with the same number of samples per pixel in a very challenging

scenario for subpixel features, with MSAA 8x included as the highest quality MSAA reference. As can be seen, using the

same amount of information, SMAA provides smoother gradients than its corresponding MSAA counterparts, in some cases

surpassing the quality of MSAA modes with a higher number of samples. Performance numbers can be found in Table 1.
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MLAA FXAA SMAA 4x MSAA 4x MSAA 8x

Figure 4: AA filters applied pre-resolve to each sample of a MSAA 4x input. Unlike SMAA, FXAA and MLAA do not take into

account the offset position of the additional samples, thus leading to blurry results when compared against the MSAA 4x and

8x references. FXAA 3.11 preset 39 (max. quality) and Jimenez’s MLAA were used in this test.

MLAA FXAA MSAA 2x SMAA S2x MSAA 8x

Figure 5: AA filters applied post-resolve over a resolved MSAA 2x input. It can be seen that when FXAA or MLAA are not fed

with clean edges, they introduce artifacts that make the final image look not to converge to the MSAA reference. SMAA S2x and

MSAA 8x included as a higher quality reference. FXAA 3.11 preset 39 (max. quality) and Jimenez’s MLAA were used in this

test.
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