
Research Article

Ilyas Fakhir*, Asad Raza Kazmi, Awais Qasim, and Atif Ishaq

SMACS: A framework for formal verification
of complex adaptive systems

https://doi.org/10.1515/comp-2022-0275
received May 6, 2021; accepted April 14, 2023

Abstract: Self-adaptive systems (SASs) have the cap-
ability to evaluate and change their behavior according
to changes occurring in the environment. Research in this
field is being held since mid-60, and over the last decade,
the importance of self-adaptivity is being increased. In
the proposed research, colored petri nets (CPN) formal
language is being used to model self-adaptive multiagent
system. CPN is increasingly used to model self-adaptive
complex concurrent systems due to its flexible formal
specification and formal verification behavior. CPN being
visually more expressive than simple, Petri Nets enable
diverse modeling approaches and provides a richer fra-
mework for such a complex formalism. The main goal of
this research is to apply self-adaptive multi-agent con-
current system (SMACS) for complex architectures. In our
previous research, the SMACS framework is proposed and
verified through traffic monitoring system. All agents of
SMACS are also known as intelligent agents due to their
self-adaptation behavior. Due to decentralized approach
in this framework, each agent will intelligently adapt its
behavior in the environment and send updates to other
agents. In this research, we are choosing smart computer
lab (SCL) as a case study. For internal structure of each
agent modal, μ-calculus will be used, and then a model
checker TAPAs: a tool for the analysis of process algebras
will be applied to verify these properties. CPN-based state
space analysis will also be done to verify the behavioral
properties of the model. The general objective of the pro-
posed system is to maximize the utility generated over
some predetermined time horizon.

Keywords: formal specifications, formal verification, intel-
ligent agents, complex system

1 Introduction

The system adaptivity has been studied extensively since
mid-60s, and new approaches to explicate the elemen-
tary principles of self-adaptivity are being found with
significant efforts of scientific community. Over the last
decade, the literature about self-adaptivity has been exten-
sively used, and different types of concepts and interpreta-
tions are being proposed by different researchers. In any
evolving scientific research field, there is a chance of
instability, the conceptual evolution of the system under
investigation. That is, the instability may get induced when
the model under study evolves conceptually. The investiga-
tion links with the development of the model at different
stages rather than the treatment of the subject as whole.
However, every scientific research may play an important
role to support uniform global understanding theory.

The importance of self-adaptivity in various related
areas is being progressively more acknowledged over the
past decades. Software engineering and other related
fields like requirements engineering [1,2], middleware
[3,4], software architecture [5–7], and component-based
architecture development [8,9] are very common features
to introduce self-adaptivity successfully. For the develop-
ment of self-adaptive systems (SASs), software engi-
neering approaches would perfectly be applicable across
multiple domains [10]. The consistency of the system
must be assured during the adaptation process [11].
Assurance is required for both functional and nonfunc-
tional properties, i.e., [12]. Guaranteeing these properties
at runtime in SASs is particularly challenging due to
the varying assurance needs posed by a changing system
or execution environment, both fraught with uncertainty
[13,14]. Nevertheless, the properties specified in the system
requirements need to hold before, during, and after adap-
tation [11,15]. Cheng et al. proposed a model to address
assurance of SAS with nameM@RT [16]. Recent approaches

* Corresponding author: Ilyas Fakhir, Department of Computer
Science, GC University, Lahore, Pakistan,
e-mail: fakhir@gcu.edu.pk
Asad Raza Kazmi: Department of Computer Science, GC University,
Lahore, Pakistan, e-mail: arkazmi@gcu.edu.pk
Awais Qasim: Department of Computer Science, GC University,
Lahore, Pakistan, e-mail: awais@gcu.edu.pk
Atif Ishaq: Department of Computer Science, GC University, Lahore,
Pakistan, e-mail: atif.ishaq@gcu.edu.pk

Open Computer Science 2023; 13: 20220275

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/comp-2022-0275
mailto:fakhir@gcu.edu.pk
mailto:arkazmi@gcu.edu.pk
mailto:awais@gcu.edu.pk
mailto:atif.ishaq@gcu.edu.pk

recognize the need to produce, manage, and maintain soft-
ware models all along the software’s life time to assist the
realization and validation of system adaptations while the
system executes [17–19].

A SAS is an improved version of software-intensive
system having the ability to quickly respond to changes
occurring in their environment or autonomously system
can adapt its structure and behavior at run-time [20]. This
idea presents shifting the human role from operational to
strategic because high level policies of human state how
a system should react if changes occur and then system
adapt these changes at run-time autonomously [21].
Similarly, in 2011, Weiss et al. proposed a self-adaptive
embedded system having ability to make decisions at
runtime on adaptivity in [22].

From the area of control theory, Müller et al. pro-
posed feedback control loops in [23], which are very
important features in engineering self-adaptive software
systems. Such control loops are being organized by four
components that are responsible for the fundamental func-
tions of self-adaptation: Monitor, Analyze, Plan, and Exe-
cute (MAPE), often stated as the MAPE loop as in the IBM
architecture blueprint. These functions are referred to as
collect, analyze, decide, and act by Dobson et al. in [24].

Colored Petri Nets (CPNs) [25] are powerful mathe-
matical modeling language to model complex systems. A
brief introduction to the complex system is presented in
ref. [26]. Due to graphical notation and very powerful
analysis methodology, CPN play, an intensive role to
model SASs as well as concurrent systems and biological
systems [27,28]. Through CPN tool, small modules can
be constructed for the specification of large one. By the
help of well-defined set of interfaces, all these modules
interact with each other. Context adaptation is a new
perspective in the field of self-adaptation. Context-aware-
ness is a significant part of today’s research of ubiquitous
computing applications. The behavior of such applications
is generally described by implanting the clarification of
contextual information inside applications and having
facility to reuse this information by other applications.
Such type of applications also behaves like multi-agent
system (MAS), where each context can be represented as
an agent having its own behavior as discussed in ref. [29].
To model context-aware systems by using ordinary Petri
Net (PN) and showing more expressiveness by other
extended PN classes is proposed in ref. [30]. These agents
update their behavior by their internal contextual informa-
tion and update their neighboring agents, too. PN is rela-
tively more suitable to model such type of complex systems.
Due to the uncertainty of computational environments and
complex software systems, newmotivations occur to explore

new modeling and managing techniques of systems and
services in the fields such as control theory, artificial intel-
ligence, and biology. In this regards, the self-adaptivity
is the most intensive research direction. Macías-Escrivá
et al. provides some well-known definitions in their recent
survey in [31].

Two types of approaches are used for modeling SASs;
top-down approach; and bottom-up approach. In the top-
down SASs the control is centralized and behave with
guidance of central controller, which evaluates its sur-
roundings behavior and adapts itself accordingly. While,
bottom-up SASs having decentralized phenomena, such
type of systems having self-adaptive cooperation or self-
organization. Bottom-up approach behaves like MAS,
because in MAS, each agent updates its own behavior
and also updates the environment that guides other
agents. The key features of MAS in the engineering of
SASs are, specifically, loose coupling, context sensi-
tivity, robustness in response to failure, and unexpected
concurrent events. Weyns and Georgeff proposed goal-
oriented loose coupling of agents in [32], which provides
the flexibility for modeling self-adaptivity and reuse.

In this research work, we are trying to check our self-
adaptive multi-agent concurrent system (SMACS) frame-
work proposed in [33] for more complex system than
previous one. For implementing SMACS framework, we
chose smart computer lab (SCL) as a case study. In pro-
posed work, we are trying to improve an idea of MAPE-K-
based self-adaptive framework in a more expressive way
by the help of formal specification and verification [34].
PNs are being used for modeling concurrent systems for
the last few decades, but according to our knowledge,
PNs are not commonly used for self-adaptive-based con-
current systems. So we have been using CPN for model-
ing self-adaptive MAS, because CPN is more expressive
than simple PNs to model such complex systems having
concurrent behavior. For example, the processes are
represented as tokens in PNs, and in complex systems,
processes are distinguishable with respect to their prop-
erties and behaviors. So, it only possible to model such
systems with CPN, because we can differentiate the pro-
cesses to assign different colors to them, and it is not
possible in simple PN. All agents of SMACS are also
known as intelligent agents due to their self-adaptive
behavior. So, to verify self-adaptive behavior of each
agent, we applied modal μ-calculus (�μ).

In the complex system, components are physically
and functionally interconnected in heterogeneous way.
This heterogeneity of components is based on structural
or dynamic complexity as proposed in ref. [35], by which
highly interconnected dependent and interdependent

2 Ilyas Fakhir et al.

components integrate with each other. Moreover, the
dynamic complexity leads to abrupt change in the sys-
tem’s behavior due to the change in the operational and
environmental conditions of the interconnected systems.
The main idea behind this work is to achieve true concur-
rency of multiple interconnected self-adaptive agents with
their dynamic behavior. Here, true concurrency means mul-
tiple atomic computing tasks can take place at one step, on
contrary an interleaving-based concurrent behavior enforce
that only a single task in a parallel composition can execute
an atomic action. A more appropriate mathematical rule
for measuring true concurrency is represented in equation
(1). By the help of true concurrency fairness, property can be
measured easily. PNs is one of the best formal approaches
to express true concurrent systems. Formal modeling
approach is more expressive because the traditional
approaches like activity diagrams and transition sys-
tems may be the candidates to express our system,
but these methods fail to generate counter example
due to their nonexhaustiveness. While, on the other hand,
the formal modeling approaches are more suitable to model
the dynamical systems like SMACS. Using full expressive
power of a logic often leads to more direct and concise
statements of properties but requires more human interac-
tion to guide the proofs. So, formal modeling approach is
more expressive for proving liveness and safety properties
of true concurrent systems, as well as to verify correctness
and consistency of concurrent systems. A CPN-based model
having concurrent behavior is proposed in [36], in which
safety and bounded properties are verified through intuitio-
nistic linear time μ calculus (μI TL) [37].

∣ ∣ ∣ ∣ ∣ ∣

→ ′ → ′ … → ′

… → ′ ′ … ′

P P P P P P
P P P P P P

, , , .n n

n n

1 1 2 2

1 2 1 2
(1)

This equation shows that a process interface executes
multiple processes from P1 to Pn in parallel, where the
fractional part is represented as Input port

Output port
and the parallel

composition of all processes to execute an atomic action
is represented as ∣ ∣ ∣…P P Pn1 2 .

The remaining article is organized as follows: in
Section 2, preliminaries for proposed modeling techni-
ques are discussed; in Section 3, a case study for imple-
menting proposed model is discussed; in Section 4, ana-
lysis and results are discussed; and finally, conclusion
and future work are discussed in Section 5.

2 Preliminaries

SASs having dynamic concurrent behavior presented in
ref. [38], by which systems adapt behavior dynamically.

So, PNs are relatively better formal approach for mod-
eling systems, which simulate dynamically as in ref.
[39]. PNs combine a well-defined mathematical theory
with a graphical representation of the dynamic behavior
of systems. The theoretic aspect of PNs allows precise
modeling and analysis of system behavior, while the gra-
phical representation of PNs enable visualization of the
modeled system state changes. This combination is the
main reason for the use of PNs. While the static logic
based approaches including prepositional and predicate
logics do not express dynamical systems. The dynamical
and temporal logics-based methods like linear temporal
logic, computation tree logic (CTL) or μ-calculus could
model dynamical systems by using their mathematical
techniques. These methods lack in expressing the system
behavior figuratively, while PNs have both capabilities
of expression. CPN having flexibility to model complex
dynamic system and to attaining true concurrency during
execution of such complex model is also possible by CPN,
which having all basic properties of simple PN including
its color sets and guard functions. In this section, we will
discuss terminologies use to help for formal modeling,
specification, and analysis of self-adaptive MAS.

2.1 Multi-agent system

MAS is an important field of software engineering that
comprises two main concepts of agents’ interaction. All
agents interact with each other either through top-down
approach or bottom-up approach. In top-down approach,
all agents interact with each other by a centralized
mechanism indirectly, on contrary through bottom-up
approach, the interaction between agents is decentralized,
and each agent is directly interacted to each other agent
during any change in their environment. An agent can
be composed of reactive, deliberative, or a hybrid archi-
tecture of both. In the indirect approach, an agent can
modify the environment of other agents through initializa-
tion of an action. In this approach, some agents can share
a subpart of the environment. In MAS, every agent occu-
pies their own environment, and somehow, it is related to
the Meta-level environment as shown in Figure 1. This
phenomenon is also known as open environment, and a
complex situation is created in this environment due to
dynamic behavior of unknown components in future. This
structure presented in [40] changes over time and becomes
heterogeneous in nature. Qasim et al. provide an idea of
formal specification and verification of real-time MAS using
Timed-Arc PN in [41].

SMACS: A framework for formal verification of CAS 3

An intelligent agent byWooldridge in [42] is another impor-
tant basic element of MAS, having classical characteristics
such as reactivity, pro-activeness, and social ability. In
reactivity, agents have ability to response timely according
to design objectives if any change occurs in their environ-
ment. In pro-activeness, agents demonstrate their goal-
oriented behavior to satisfy design objectives. Negotiation
between agents is their social ability according to design
objectives. So, these characteristics represent the signifi-
cance of MAS to develop a system for complex architec-
ture. In the engineering of SASs, MASs have some key
features such as context-sensitivity, loose coupling, unex-
pectedness, and robustness in response to failure.

2.2 Self-adaptive system

SASs have ability to adapt its behavior according to change
in its environment as discussed in [43]. It is the behavior of
SAS to organize itself autonomously by accommodating
changes in its environment and context. Some SASs may
have ability to adapt changes in environment without
human interaction through some higher-level policies as
presented in [10]. Just like agents in MAS, adaptation is a
process for switching between models in the multi-model
system. So it is the capability of a system to adapt the
behavior of the environment by selectively switching and

executing between models. Formal verification of MAPE-
K-based real-time MAS is proposed in ref. [44]. In order
to improve the performance of a complex system, self-
adaptivity plays a key role as the system learns to change
behavior on its own. High-level dependability, adaptivity,
robustness, and availability for developing self-adaptive
software are proposed in ref. [45].

The adaptation mechanism is decomposed by Selehie
and Tahvildari in 2011 into several processes: monitoring
the environment and software objects (i.e., context-aware-
ness and self-awareness), analyzing substantial variations,
planning of reaction, and executing the decisions.

For the specification of SASs, monitoring, and switching
between adaptive behaviors, goal-oriented models have
proven their effectiveness. The ability to reason about partial
goal satisfaction is a strength of goal-oriented modeling.
Most of the existing self-adaptive models are taking benefits
of the Sensor-Plan-Act model, extensively used in modeling
traditional robotic systems presented in ref. [46]. In such
systems, events are collected, analyzed, and attached to
update the global model, and then in updated situation,
each entity plans its strategy.

2.3 Colored PNs

In CPNs [25], tokens are in the form of colors denoting
specific data types. Any transition is called enabled for

Figure 1: Interaction between agents in MAPE-K based meta-level environment.

4 Ilyas Fakhir et al.

firing when all of its input places having valid colored
tokens, and valid arc bindings are used to produce the
necessary colored tokens to its output places. The firing
of transitions in CPN can modify the data values of these
coloured tokens and change the behavior of model.

The formal definition of CPN is as follows: =CPN
()P T A V C G E IΣ, , , , , , , , , where:
(1) Σ is a finite set of nonempty color sets.
(2) P is a finite set of places.
(3) T is a finite set of transitions.
(4) A is a set of directed arcs such that: ⊆ × ∪ ×A P T T P.
(5) V is a typed finite variables set such that: [] ∈νType

∀ ∈ν VΣ, .
(6) C is a color function (nonempty color set). It is

defined as follows: →C P: Σ.
(7) G is a guard function defined as: →G T: EXPRν. It

assigns a guard to each transition t such that: ∀ ∈t T:
[(())]=G tType Bool .

(8) E is an arc expression function, defined as →E A:
EXPRν suchthat [(()) ()]∀ ∈ =a A E a C p: Type MS ,where
p is the place connected to arc a.

(9) I is an initialization function, defined as →I P: EXPRϕ

such that: [(()) ()]∀ ∈ =p P Type I p C p: MS .

CPN Meta language (ML) is a Standard ML (SML)-based
functional programming language. CPN ML having all
characteristics SML language with extension of defining
color set and declaring variables. SML having more expres-
siveness to model interconnected systems in complex
environment. It is also a best approach for state space ana-
lysis and performance analysis. In the present research,
we will first applied SMACS framework to more complex
real-time self-adaptive concurrent model and then verify
behavioral properties through the state-space analysis.

2.4 Modal μ-calculus (μ�)

Modal μ-calculus is the extension of Hennessy-Milner
Logic [47]with least fixed-point operator “μ” and greatest
fixed-point operator “ν,” and it is more suitable to achieve
true concurrency. Modal μ-calculus is also a fundamental
temporal logic applied to model the context of temporal
properties of systems and to model infinite behavior of
concurrent systems. Many expressive temporal logics
such as propositional dynamic logic, CTL, and CTL*
are also the fragments of Modal μ-calculus [48]. Intui-
tively, μ-calculus has the capability to express the mod-
alities into recursive patterns. The syntax of modal
μ-calculus is given in equation (2):

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣[] ∣ ∣

≔ ⊤ ⊥ ¬ ∧ ∨

→ ⟨ ⟩

� � � � � � � �

� � � � � � �β β μ ν

:

. . .
μ μ μ μ μ μ μ μ μ μ

μ μ μ μ μ μ μ

1 2 1 2 1

2
(2)

The aforementioned syntax of�μ represents that �μ is a
formula that satisfies different modalities, where�μ is a set
of states also called propositional variables and ⊆β Act,
also known as β-transition. ⊤μ is the formula that holds
universally, ⊥μ holds nowhere, and negation, conjunction,
disjunction, and implication have their usual meaning.
Modalities are expressed by transitions, as formula ⟨ ⟩�β μ
holds if there is an outgoing β-transition to some states
satisfy �μ, similarly formula [β]�μ holds if there are all
outgoing β-transition states satisfy �μ. � �μ .μ μ and
� �ν .μ μ represents the least fixed point and greatest

fixed-point for �μ set of states by applying �μ formulas.

2.4.1 Semantics of μ�

Let� be a label transition system, which represents a PN
model, and →� �δ : 2μ is a firing sequence in the envir-
onment (⊆� �μ).

[[]]

[[]]

[[]] ()

[[]] [[]]

[[]] [[]] [[]]

[[]] [[]] [[]]

[[]] ([[]]) [[]]

[[]] { ∣ [[]] }

[[[]]] { ∣ [[]] }

[[]] { ∣ [[()]]}

[[]] { ∣ [[()]]}

[[]]

[[]]

⊤ =

⊥ =

=

¬ =

∧ = ∩

∨ = ∪

→ = ∪

⟨ ⟩ = ∈ ∃ → ∧ ∈

= ∈ ∀ → ⇒ ∈

= ⋂ ⊆ ⊇

= ⋃ ⊆ ⊆

∈ ∈

∈ ∈

�

� �

� � �

� � � �

� � � �

� � � � �

� � �

� � �

� � � � � �

� � � � � �

�

�

�

� �

� � �

� � �

� � �

� � �

� � �

�

�

ϕ

δ

β s s t t

β s s t t

μ φ

ν φ

\

\

.

. ,

μ
δ

μ
δ

μ
δ

μ

μ
δ

μ
δ

μ μ
δ

μ
δ

μ
δ

μ μ
δ

μ
δ

μ
δ

μ μ
δ

μ
δ

μ
δ

μ
δ

t σ β
σ

μ
δ

μ
δ

t σ β
σ

μ
δ

μ μ
δ

μ μ δ μ

μ μ
δ

μ μ δ μ

1 2 1 2

1 2 1 2

1 2 1 2

,

,

where →
� �φ : 2 2δ is a function defined as () =�φδ μ

[[]]
[]≔

�
�

� �

μ
δ μ μ .
If () ()⊆φ M φ Nδ δ , where ⊆ ⊆ �M N , then φδ is mono-

tone operator on � . If () =φ M Mδ , then M is a fixed point
of φδ. By a well-known Knaster–Tarski theorem, we know
that any monotone operator φδ on a set � has a least fixed

point and a greatest fixed point within the ordering ()⊆
�2 , .

The minimal fixed point is the intersection of prefixed
points, { ∣ () }⋂ ⊂ ⊆�M φ M Mδ , and themaximal fixed point
is the union of postfixed points, { ∣ ()}⋃ ⊂ ⊆�M M φ Mδ . So
we could extend our basic logic with a minimal fixed-point
operator μ, so that � �μ .μ μ is a formula whose semantics
is the least fixed point ofφδ, and similarly, a maximal fixed

SMACS: A framework for formal verification of CAS 5

point operator ν, so that � �ν .μ μ is a formula whose
semantics is the greatest fixed point of φδ.

2.5 Self-adaptive multi-agent concurrent
framework

SMACS as shown in Figure 2 is suitable for systems
having complex behavior. To model such concurrent sys-
tems, formal techniques are being used for many decades,
and fruitful results are being achieved by the researchers.
In the proposed framework, an agent can performmultiple
high-level tasks concurrently to complete the goal derives
for the system or agent in a certain time span. These high-
level concurrent tasks can be generated either by internal
sensing of agents or by receiving updates by the support of
external agents. An agent is self-directed, intelligent, and
cooperative enough to collaborate with other agents to
perform tasks in highly complicated environment. In this

formal specification framework, we will use bottom-up
approach for achieving true concurrency, as it is the best
approach for modeling multi-agent-based systems to cover
important concurrent aspects of agents. When a change in
the environment will be observed, the Sensor channel
intelligently sensed the request and notify to MAPE-K
agents also known as internal-agents (Int-Agents) to com-
plete the task. Each agent is composed of MAPE-K-based
internal architecture. MAPE agents complete the request
based on their knowledge and send back their decision to
environment. These internal agents are directly connected
to the CPN ML-based managed system and knowledge-
based system updates for sending and receiving updates.
Based on the results forwarded from the upper layer, these
agents will act to complete the task and send updates to
the environment through reactor channel for other agents.

All agents are also directly connected with each other
for sharing updates, and each agent individually receive and
share updates through Emitter and Consenter channels,

Figure 2: SMACS framework.

6 Ilyas Fakhir et al.

respectively. In some situations, there may be interaction
between same type Int-Agents, i.e., monitor to monitor,
analyzer to analyzer, planner to planner, and execute
to execute. These internal-agents are directly connected
to the knowledge based system updates for sending and
receiving updated queries. Due this framework, n num-
bers of agents can communicate concurrently to com-
plete a task.

In the multi-agent environment, each internal agent of
Agent-1 is directly connected with other agents’ internal
agents. Figure 3 represents the hierarchical structure of the
SMACS framework, where all internal agents are grouped
together from Sensor Int-Agent to Effector Int-Agent. As
we know that in a MAS environment each agent’s internal
architecture is almost same, so we want to compact model,
and the repeated portion of net will be compact to the
hierarchical structure. All internal agents are grouped as
a MAPE-K Agent.

3 Case study

To implement the SMACS framework, a SCL of any edu-
cational institution is chosen as a case study. The lab
consists of limited number of computers. When a candi-
date wants to do some job, he generates a lab request (LR)

through finger print device or by swapping a smart card for
opening the lab. If there will be capacity inside the lab the
door will open, otherwise a message will be printed on a
screen attached outside the door that the lab is full. This
working will be done through a sensor for checking seats
availability, and updating status to the sensor attached with
door opening lock. On the other hand, when a candidate
will be able to enter in the lab, he will occupy a seat. As
soon as hewill sit on the seat, amessage is forwarded by the
sensor attached with seat to the sensor checking status of
the system. If the system is off, it will become on. The status
of a system will be checked after a specific time, and
updates will be forwarded to all other sensors attached
with it.

Concurrently, each agent will generate updates to the
environment for other agents. Each agent is composed of
MAPE-K-based architecture, and each agent can adapt
the behavior either through changes in the environment
or can forward updates to other agents. Similarly, other
sensors (agents) will work concurrently for checking
light status, fan status, temperature status, and humidity
status. If there will be no candidate in the lab, all agents
will send signal after a specific time to turning off the
device attached with them. Printer is also a part of this
Smart-Lab and will also be controlled through a sensor
agent. This agent will receive updates from systems’
agents for updating on or off status.

Figure 3: Hierarchical architecture of the SMACS framework.

SMACS: A framework for formal verification of CAS 7

CPN is a powerful modeling and analysis mathema-
tical language with its graphical representations. By using
CPN, we construct small modules, and finally, these small
modules will combine to develop complete model through
the bottom-up approach. Figure 4 represents the entrance
and exit behavior of first agent. This agent adapts behavior
on changing the capacity of SCL. ON/OFF is shown in
Figure 5. Initially, the room temperature is set at 18°C,
temperature will be increased 2° after every 60 min due
to heat produced by the computer system. If temperature
will rise up to 30°C or more, a signal is sent to AC controller
agents and the AC switch will become ON. When the AC

Figure 4: CPN module for entrance and exit.

Figure 5: CPN module for light ON-OFF.

Figure 6: CPN module for AC controller.

8 Ilyas Fakhir et al.

Figure 7: A meta-model of smart-lab using SMACS framework.

SMACS: A framework for formal verification of CAS 9

will start working, then after every 20min, the temperature
will become down to 1°. And if the temperature will
become down to 18°C or less, the AC switch will become
OFF by its agent. Similarly, the humidity measuring agent
will control exhaust fan ON/OFF functions on the basis
of humidity level of lab, when AC will be in the OFF
mode. Finally, we will compose all modules to develop
meta-model of Smart-Lab. When a candidate forwards
his request through Entrance transition, a token is gener-
ated for LR place. Then environment transitionmay or may
not be enabled according to the condition ≤y n, wheren is
the maximum number of candidates and y is associated
with Job Completed place for counter. If the condition is
true, the lab will open and candidate will occupy his seat,
and at the same time, the system behavior will be updated.
On the contrary, a signal of waiting is generated by the
agent, which is monitoring lab capacity with its self-adap-
tive behavior. Initially, light is off, and a token is presented
in L-OFF place, and at the same time, L_ON agent con-
tinuously check its status associated with Job Sensed
place. If a seat is occupied by a candidate, the status of
light will be changed to on and a token will be presented
in the place Lab ON until all seats will become empty. This
status will be updated by using inhibitor arc associated
with Job Sensed place, i.e., the transition attached with
the inhibitor arc will become fireable if the associated place
will become empty. Similarly, all other agents associated
with fan, systems, printer, temperature controller, and
humidity controller will begin work as their status being

updated by the environment. A timer of 15 min is set to all
entities of the model with their idle status, and if during
this interval there become no candidate in the lab, all run-
ning entities will be coming off their status through their
agents. Temperature controller for air conditioner ON/OFF
is shown in Figure 6. Initially, the room temperature is set
at 18°C, temperature will be increased 2° after every 60 min
due to heat produced by the computer system. If the tem-
perature will rise up to 30°C or more, a signal is sent to AC
controller agents and the AC switch will become ON. When
the AC will start working, then after every 20 min, the
temperature will become down to 1°C. And if the tem-
perature decreases to 18°C or less, the AC switch will
become OFF by its agent. Similarly, the humidity mea-
suring agent will control exhaust fan ON/OFF functions
on the basis of the humidity level of lab, when AC will
be in the OFF mode. Finally, we will compose all modules
to develop meta-model of Smart-Lab. Figure 7 represents
the meta-model of SCL, where the transitions naming
Warming, L_ON, S_ON, and F_Temp & H_Check are com-
posed of MAPE-K internal agents.

4 Results and discussion

The results of the applying SMACS framework are briefly
discussed in Sections 4.1 and 4.2. Liveness, safeness, and
deadlock freedom properties are verified through the

Table 1: Modified μ� formulae for TAPA model checker to monitor lab atmosphere including liveness, safeness, and deadlock-freedom
properties of SCL

Property name Modified formula for TAPA Description

SCL1 [Xi?][Capacity?](! S_ON?⟨ ⟩ true & L_ON?⟨ ⟩ true & (FH_C?⟨ ⟩ true & (F_ON?⟨ ⟩

true ∣ Ex_ON?⟨ ⟩ true)) & AC_Control?⟨ ⟩ true)
Lab is open and empty, candidates can
enter

SCL2 [LAB_OFF!]((! Xi?⟨ ⟩ true & Empty?⟨ ⟩ true & LAB_OFF?⟨ ⟩ true) ∣ (P_OFF⟨ !⟩ true

& S_OFF⟨ !⟩ true & FH_OFF⟨ !⟩ true & L_OFF⟨ !⟩ true & AC_OFF⟨ !⟩ true))
Lab will close after leaving all candidates

SCL3 [Xi?](Ent?⟨ ⟩ true & Capacity?⟨ ⟩ true & R_F?⟨ ⟩ true & Wait?⟨ ⟩ false) Lab has capacity to accommodate more
candidates

SCL4 [Xi?](Wait?⟨ ⟩ true & Ent?⟨ ⟩ false & Capacity?⟨ ⟩ false & R_F?⟨ ⟩ false) Lab is full and candidate can wait until a
slot being empty

SCL5 [Xi?][Capacity?][AC_Control?]((! AC_ON?⟨ ⟩ true (Temp?⟨ ⟩ true & ! AC_OFF?⟨ ⟩

true) & E_OFF?⟨ ⟩ ∣ (Warm?⟨ ⟩ true & Warm⟨ !⟩ true)) ∣ (AC_OFF?⟨ ⟩ (Temp?⟨ ⟩

true & ! AC_ON?⟨ ⟩ true) ∣ (Cool?⟨ ⟩ true & Cool⟨ !⟩ true)))

AC control mechanism for Lab

Liveness, safeness, and deadlock-freedom properties for SCL’s internal agents
SCL_L !min Z. ((Xi⟨ ⟩ Z & Ent⟨ ⟩ Z) & R_F⟨ ⟩ Z ∣ S_ON⟨ ⟩ Z ∣ L_ON⟨ ⟩ Z ∣ FH_C⟨ ⟩ Z ∣

AC_Control⟨ ⟩ Z) ∣ max Y.([-tau]false) & (tau⟨ ⟩ true) & ([tau]Y)
Liveness property is checked for SCL

SCL_S min Z. ([Ent]false ∣ [R_F]false ∣ [S_ON]false) ∣ [L_ON]false ∣ [FH_C]false ∣
[AC_Control]false ∣ ⟨ ∗ ⟩ Z

Safety property is checked for SCL

SCL_D max Z. ([Xi][Ent](R_F⟨ ⟩ true & S_ON⟨ ⟩ true L_ON⟨ ⟩ true & FH_C⟨ ⟩ true &

AC_Control⟨ ⟩ true)& [∗] Z)
Deadlock freedom property is checked
for SCL

10 Ilyas Fakhir et al.

TAPA model checker. Moreover, some properties are also
discussed by applying the state-space analysis of the SCL
model.

4.1 Verification of SCL

For the verification of all internal agents’ working of the
SCL, we apply �μ and TAPA model checker. All equip-
ment of SCL including entrance/exit monitoring, com-
puter/printer monitoring, lights/fans monitoring, atmo-
sphere monitoring, and AC control monitoring cameras
are working as internal agents. These agents are modeled
through CPN and then verified through �μ with its cor-
responding TAPA model checker. The properties given in
equations (3)–(8) show the lab capacity, lab on/off, lab’s
AC controller, liveness, safeness, and deadlock freedom.
These properties show the formally correctness of the
system. In formal methods, the system correctness lies in
the verification of Assumption Guarantee paradigm for
system’s input/output functionality, liveness, and safety
properties. The properties enlisted in Table 1 fall under
these categories and therefore their correctness leads to
the correctness of the system at large. Therefore, the for-
mulation of these properties is being done in the modal
μ-calculus one of the formal methods. The purpose of this
research work is to verify the soundness and completeness
of the SMACS framework with the help of SCL case study.

[[[](

)]]

⟨ ⟩ ∧ ⟨ ⟩ ∧ ⟨ ⟩

∧ ⟨ ⟩ �

Xi R F? Ent? true Capacity? true _ ? true
Wait? false δ

(3)

[[[](

)]]

⟨ ⟩ ∧ ⟨ ⟩ ∧ ⟨ ⟩

∧ ⟨ ⟩ �

Xi
R F

Wait? true Ent? false Capacity?
false _ ? false δ

(4)

[[[](

) [](

)]]

! ¬⟨ ⟩ ∧ ⟨ ⟩

∧ ⟨ ⟩ ∨ ! ⟨ !⟩

∧ ⟨ !⟩ ∧ ⟨ !⟩ ∧ ⟨ !⟩

∧ ⟨ !⟩ �

LAB_OFF Xi? true Empty? true
LAB_OFF? true LAB_OFF P_OFF true
S_OFF true FH_OFF true L_OFF true
AC_OFF true δ

(5)

[[(()

) ([])

() ([])]]

¬ ⟨ ⟩ ∧ ⟨ ⟩ ∧ ⟨ ⟩

∨ ⟨ ⟩ ∨ ⟨ ⟩ ∨ ⟨ ⟩

∨ ⟨ ⟩ ∨ −

∧ ⟨ ⟩ ∧

� � � �

� �

� �

�
�

μ Xi R F

S L

. Ent _

_ON _ON FH_C

AC_Control tau false

tau true tau

μ μ μ μ

μ μ

μ μ

μ
δ

(6)

[[([] []

[] [] []

[])]]

∨

∨ ∨ ∨

∨ ∨ ⟨ ∗ ⟩

�

�
�

μ R F

S L

. Ent false _ false

_ON false _ON flase FH_C false
AC_Control flase

μ

μ
δ

(7)

[[([][](

)

[]]]

⟨ ⟩ ∧ ⟨ ⟩

∧ ⟨ ⟩ ∧ ⟨ ⟩ ∧ ⟨ ⟩

∧ ∗

�

�
�

ν R F S

true

. Xi Ent _ true _ON true

L_ON FH_C true AC_Control true

.μ

μ
δ

(8)

These properties explained in Table 1 are written accord-
ing to the TAPA model checker.

Table 2: State space analysis for CPN model of SCL

State space

Node 97,020
Arcs 596,904
Secs 2,808
Status Full

SCC graph

Node 4
Arcs 43,890
Secs 11

Boundedness properties

Best integer bounds

Place name Upper Lower

SAS_PN’ACOFF 1 1 0
SAS_PN’ACON 1 1 0
SAS_PN’C1 1 1 0
SAS_PN’DEC 1 1 1
SAS_PN’EOFF 1 1 0
SAS_PN’EON 1 1 0
SAS_PN’Environment 1 1 1
SAS_PN’FOFF 1 1 0
SAS_PN’FON 1 1 0
SAS_PN’Humidity 1 1 0
SAS_PN’INC 1 1 1
SAS_PN’Job Completed 1 1 1
SAS_PN’Job Sensed 1 10 0
SAS_PN’LOFF 1 1 0
SAS_PN’LON 1 1 0
SAS_PN’LR 1 10 0
SAS_PN’POFF 1 2 0
SAS_PN’PON 1 1 0
SAS_PN’S1 1 1 0
SAS_PN’S ON 1 1 0
SAS_PN’TEMP 1 1 0
SAS_PN’Temp 1 1 0

Home properties

Home markings 27,720 [30,621, 36,282, 41,
942, 36,287, 25,154, ...]

Liveness properties

Dead markings None
Dead transition instances None

Fairness properties

Impartial transition instances None
Fair transition instances None
Just transition instances None

SMACS: A framework for formal verification of CAS 11

4.2 State space analysis for SCL

The graph size of the state space analysis of SCL is very
huge, and it is impossible to show the whole graph. Table 2
represents that there are 97,020 nodes and 596,904
arcs, and it took about 47 min to generate the full state
space report. Similarly, the strongly connected compo-
nent (SCC) graph has four nodes and 43,890 arcs and
took 11 s to generate this report. Four nodes of SCC graph
mean that there are four strongly connected components
to cover the all 97,020 nodes of the state space graph.
Here, it is proved that the system will run in the infinite
number of occurrences, and for termination of the system,
we have to limiting the cycles. The best integer bound
report represents the maximum and minimum integral
value of any place, and the results show that no any place
exists with the unbounded status. The best upper multiset
bound shows that the maximum number of tokens exists
in place during execution, and the best lower multiset
bounds means all places have empty status other than
initialized places. There are 27,720 markings represented
as home marking, and the description of two home mark-
ings 30,621 and 30,662 is shown in Figure 8. The liveness
property shows that there is no dead marking in the state

space graph of the system and also no dead transition
instances. A marking is dead if it does not have an out-
going arc. A dead transition instance means a transition is
disabled to fire in all of its reachable markings. There are a
number of live transitions exist in the graph. A partial state
space graph shown in Figure 9 represents the description
some arcs and some markings, e.g., M1, M5, and M888, the
arcs also describes through equations (9)–(11).

[{ }]→ = = =x y e6 : 3 1SAS_PN’Exit 1 : 2, 1, 2 , (9)

[{ }]→ =x12 : 5 11SAS_PN’Entrance 1 : 2 , (10)

[

{ }]

→

= =c y
2286 : 314 792SAS_PN’Request_Forwarded 1

: 1, 2 .
(11)

The details of three arcs represented in equations (9)–(11),
e.g., in equation (11) the arc-2286 shows that a transition
Request_Forward is fired from marking M314 to marking
M792 when the values of variables are =c 1 & =y 2. As
the system contains infinite occurrence sequence, so the
fairness property shows that the system runs correctly and
all transitions fire independently. A fairness property is
imposed on the system that it fairly selects the process to
be executed next. Technically, a fairness constraint is a
condition on executions of the system model.

Figure 8: The details of node 3,0621 and 30,662 in the state space graph for SCL.

12 Ilyas Fakhir et al.

Figure 9: Partial state space graph for SCL.

SMACS: A framework for formal verification of CAS 13

5 Conclusions and future work

In this research, we tried to introduce a multi-agent-
based framework for complex concurrent systems, where
each agent is composed of MAPE-K-based internal struc-
ture. To ensure high level of reliability and accuracy of
SMACS framework, we used a complex architecture of
multi-agent-based SCL, as a case study. CPN is used as
a modeling and verifying approach for SCL by using the
SMACS framework, because CPN is more expressive than
simple PNs to model such complex systems having con-
current behavior. Multi-agent-based and self-adaptive-
based architectures are key features of our proposed
work. Presently, these two fields having a key role for
modeling such real-time complex architectures. It is verified
that no deadlock occurs during the interaction between
agents and internal agents. All agents interacted with
each other through CPN ML-based managed system and
knowledge-based updates. So due to any changes in the
environment or any internal change of an individual agent,
different agents adapted their behavior. It is formally ver-
ified that the proposed work is suitable to prove correctness
of the system having complex concurrent behavior. It is also
verified that there is no any dead marking, all transitions
are live, and the net also hold safety property. The internal
self-adaptive structure of SCL agents is verified through
Modal μ-calculus and then checked through the TAPA
model checker. In our future work, we will try to add time
stamp to verify the correctness of timed-based complex sys-
tems. We will also improve performance of the proposed
architecture by using CPN-based statistical performance
analysis tool and will try to use CPN monitors to analyze
model based on statistical data. We also want to use tem-
poral logic-based formal languages to handle the con-
straints of the proposed work with time variants in our
future work.

Funding information: The authors state no funding
involved.

Author contributions: All authors have accepted respon-
sibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: Data sharing is not applic-
able to this article as no datasets were generated or ana-
lysed during the current study.

References
[1] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,

“Requirements-aware systems: A research agenda for re for
self-adaptive systems,” In: 2010 18th IEEE International
Requirements Engineering Conference (RE), IEEE, 2010,
pp. 95–103.

[2] M. Hinchey, Requirements Engineering for Adaptive and Self-
adaptive Systems. 2018.

[3] J. Schmitt, M. Roth, R. Kiefhaber, F. Kluge, and T. Ungerer,
“Realizing self-x properties by an automated planner,” In:
Proceedings of the 8th ACM International Conference on
Autonomic Computing, ACM, 2011, pp. 185–186.

[4] G. Lilis and M. Kayal, “A secure and distributed message
oriented middleware for smart building applications,” Autom.
Constr., vol. 86, pp. 163–175, 2018.

[5] P. denHamer and T. Skramstad, “Autonomic service-oriented
architecture for resilient complex systems,” In: 2011 30th IEEE
Symposium on Reliable Distributed Systems Workshops
(SRDSW), IEEE, 2011, pp. 62–66.

[6] H. Schmeck, C. Müller-Schloer, E. Čakar, M. Mnif, and U.
Richter, “Adaptivity and self-organization in organic com-
puting systems,” ACM Trans. Autonom. Adaptive Syst. (TAAS),
vol. 5, no. 3, p. 10, 2010.

[7] N. Villegas, G. Tamura, and H. Müller, “Architecting software
systems for runtime self-adaptation: Concepts, models, and
challenges,” In: Managing Trade-Offs in Adaptable Software
Architectures, Elsevier, 2017, pp. 17–43.

[8] C. Peper and D. Schneider, “Component engineering for
adaptive ad-hoc systems,” In: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive
and Self-managing Systems, ACM, 2008, pp. 49–56.

[9] M. Gula and K. Žáková, “Proposal of component based archi-
tecture for internet of things: online laboratory case study,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 337–342, 2017.

[10] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, et al., “Engineering self-adaptive systems through
feedback loops,” In: Software Engineering for Self-adaptive
Systems, Springer, 2009, pp. 48–70.

[11] F. M. Favarò and J. H. Saleh, “Application of temporal logic for
safety supervisory control and model-based hazard moni-
toring,” Reliabil. Eng. Syst. Safety, vol. 169,
pp. 166–178, 2018.

[12] A. O. de Sousa, C. I. Bezerra, R. M. Andrade, and J. M. Filho,
“Quality evaluation of self-adaptive systems: Challenges
and opportunities,” In: Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, ACM, 2019, pp. 213–218.

[13] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, “A taxonomy
of uncertainty for dynamically adaptive systems,” In:
Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, IEEE
Press, 2012, pp. 99–108.

[14] N. Esfahani and S. Malek, “Uncertainty in self-adaptive soft-
ware systems,” In: Software Engineering for Self-Adaptive
Systems II, Springer, Berlin, Heidelberg, 2013, pp. 214–238.

[15] M. Krichen, “Improving formal verification and testing techni-
ques for internet of things and smart cities,” Mobile Netw.
Appl., pp. 1–12, 2019.

14 Ilyas Fakhir et al.

[16] B. H. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu,
H. A. Müller, et al., “Using models at runtime to address
assurance for self-adaptive systems,” In: Models@run.time,
Springer, 2014, pp. 101–136.

[17] L. Castannneda, N. M. Villegas, and H. A. Müller, “Self-adap-
tive applications: On the development of personalized web-
tasking systems,” In: Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ACM, 2014, pp. 49–54.

[18] H. Müller and N. Villegas, “Runtime evolution of highly
dynamic software,” In: Evolving Software Systems, Springer,
2014. pp. 229–264.

[19] N. Villegas, G. Tamura, H. Müller, L. Duchien, and R. Casallas,
“Dynamico: A reference model for governing control objectives
and context relevance in self-adaptive software systems,”
Software Engineering for Self-Adaptive Systems II, 2012.

[20] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura, and M.
Vieira, “Testing the robustness of controllers for self-adaptive
systems,” J. Brazilian Comput. Soc., vol. 20, no. 1, p. 1, 2014.

[21] R. De Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson, L. Baresi,
et al., “Software engineering for self-adaptive systems: A second
research roadmap,” In: Dagstuhl Seminar Proceedings, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[22] G. Weiss, K. Becker, B. Kamphausen, A. Radermacher, and
S. Gerard, “Model-driven development of self-describing com-
ponents for self-adaptive distributed embedded systems,” In:
2011 37th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), IEEE, 2011, pp. 477–484.

[23] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control in
adaptive systems,” In: Proceedings of the 2nd International
Workshop on Ultra-large-scale Software-intensive Systems,
ACM, 2008, pp. 23–26.

[24] S. Dobson, S. Denazis, A. Fernández, D. Gaíti, E. Gelenbe,
F. Massacci, et al., “A survey of autonomic communications,”
ACM Trans. Autonom. Adaptive Syst. (TAAS), vol. 1, no. 2,
pp. 223–259, 2006.

[25] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practicaluse, 2013, https://doi.org/10.1186/
s40294-016-0015-x.

[26] M. A. Niazi. Introduction to the modeling and analysis of
complex systems: a review, 2016, https://doi.org/10.1186/
s40294-016-0015-x.

[27] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets
and cpn tools for modelling and validation of concurrent sys-
tems,” Int. J. Softw. Tools Technol. Transf., vol. 9, no. 3–4,
pp. 213–254, 2007.

[28] F. Liu, M. Heiner, and D. Gilbert, “Coloured petri nets for multi-
level, multiscale and multidimensional modelling of biological
systems,” Briefings Bioinform., vol. 20, no. 3, pp. 877–886, 2017.

[29] A. Qasim and S. A. R. Kazmi, “Mape-k interfaces for formal
modeling of real-time self-adaptive multi-agent systems,” IEEE
Access, vol. 4, pp. 4946–4958, 2016.

[30] W. Wusheng, L. Weiping, W. Zhonghai, and Z. Zhichao, “Petri
net-based context-aware service system modelling: an over-
view,” In: 2014 International Conference on Service Sciences
(ICSS), IEEE, 2014, pp. 60–65.

[31] F. D. Macías-Escrivá, R. Haber, R. delToro, and V. Hernandez,
“Self-adaptive systems: A survey of current approaches,

research challenges and applications,” Expert Systems with
Applications, vol. 40, no. 18, pp. 7267–7279, 2013.

[32] D. Weyns and M. Georgeff, “Self-adaptation using multiagent
systems,” IEEE Software, vol. 27, no. 1, 2010.

[33] M. I. Fakhir and S. A. R. Kazmi, “Formal specification and
verification of self-adaptive concurrent systems,” IEEE Access,
vol. 6, pp. 34790–34803, 2018.

[34] Y. Abuseta and K. Swesi, Design Patterns for Self Adaptive
Systems Engineering, 2015, arXiv: http://arXiv.org/abs/
arXiv:1508.01330.

[35] W. Kröger and E. Zio, “Vulnerable Systems,” Springer,
London, 2011.

[36] I. Fakhir, S. A. R. Kazmi, A. Qasim, and I. Rafique, “Concurrency
in intuitionistic linear-time μ-calculus: A case study of manu-
facturing system,” Indian J. Sci. Technol., vol. 9, no. 6,
pp. 1–7, 2016.

[37] S. A. R. Kazmi and W. H. Zhang, “Compositional reasoning in
intuitionistic linear time mu-calculus,”, J. Softw., vol. 20, no. 8,
pp. 2026–2036, 2009.

[38] M. Garcia-Constantino, A. Konios, and C. Nugent “Modelling
activities of daily living with petri nets,” In: 2018 IEEE
International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), IEEE, 2018,
pp. 866–871.

[39] A. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede, and
E. Chang, “Dynamic transitions of states for context-sensitive
access control decision,” In: International Conference on
Web Information Systems Engineering, Springer, 2018,
pp. 127–142.

[40] F.-S. Hsieh, “A hybrid and scalable multi-agent approach for
patient scheduling based on petri net models,” Appl. Intell.,
vol. 47, no. 4, pp. 1068–1086, 2017.

[41] A. Qasim, A. Kazmi, and I. Fakhir, “Formal specification and
verification of real-time multi-agent system using timed arc
petri nets,” Adv. Electr. Comput. Eng., vol. 15, no. 3,
pp. 73–8, 2015.

[42] M. Wooldridge and N. R. Jennings, “Intelligent agents:
Theory and practice,” Knowl. Eng. Rev., vol. 10, no. 2,
pp. 115–152, 1995.

[43] D. Weyns, “Software engineering of self-adaptive systems,”
In: Handbook of Software Engineering, Springer, 2019,
pp. 399–443.

[44] A. Qasim and S. A. R. Kazmi, “Mape-k interfaces for formal
modeling of real-time self-adaptive multi-agent systems,” IEEE
Access, vol. 4, pp. 4946–4958, 2016.

[45] D. Weyns, M. U. Iftikhar, S. Malek, and J. Andersson, “Claims
and supporting evidence for self-adaptive systems: A litera-
ture study,” In: Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, IEEE Press, 2012, pp. 89–98.

[46] M. Salehie and L. Tahvildari, “Towards a goal-driven approach
to action selection in self-adaptive software,” Software:
Practice and Experience, vol. 42, no. 2, pp. 211–233, 2012.

[47] M. Hennessy and R. Milner, “Algebraic laws for nondeter-
minism and concurrency,” J. ACM (JACM), vol. 32, no. 1,
pp. 137–161, 1985.

[48] P. Blackburn, J. F. van Benthem, and F. Wolter, Handbook of
Modal Logic, vol. 3, Elsevier, UK, 2006.

SMACS: A framework for formal verification of CAS 15

https://doi.org/10.1186/s40294-016-0015-x
https://doi.org/10.1186/s40294-016-0015-x
https://doi.org/10.1186/s40294-016-0015-x
https://doi.org/10.1186/s40294-016-0015-x
http://arXiv.org/abs/arXiv:1508.01330
http://arXiv.org/abs/arXiv:1508.01330

	1 Introduction
	2 Preliminaries
	2.1 Multi-agent system
	2.2 Self-adaptive system
	2.3 Colored PNs
	2.4 Modal μ-calculus (ℳμ)
	2.4.1 Semantics of ℳμ

	2.5 Self-adaptive multi-agent concurrent framework

	3 Case study
	4 Results and discussion
	4.1 Verification of SCL
	4.2 State space analysis for SCL

	5 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

