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Abstract

Atmospheric wind speeds and their fluctuations at different locations (on-
shore and offshore) are examined. One of the most striking features is the
marked intermittency of probability density functions (PDF) of velocity
differences – no matter what location is considered. The shape of these
PDFs is found to be robust over a wide range of scales which seems to
contradict the mathematical concept of stability where a Gaussian distri-
bution should be the limiting one.
Motivated by the instationarity of atmospheric winds it is shown that the
intermittent distributions can be understood as a superposition of differ-
ent subsets of isotropic turbulence. Thus we suggest a simple stochastic
model to reproduce the measured statistics of wind speed fluctuations.

1 Introduction

Atmospheric wind may be seen as a prime example of a turbulent velocity field
with very high Reynolds numbers of about Re ≈ 108 [1]. Reynolds numbers as
large as this prevent analytical calculations and direct numerical simulations.
Therefore the flow has to be described in a statistical way. For the estimation
of extreme loads as well as for risk estimations the statistics of velocity fluctu-
ations u(t) and velocity differences should be known. It has been shown that
these statistics obey non-Gaussian, intermittent distributions (e.g. [2], [3]) that
directly correspond to an increased number of wind gusts [4].
Nevertheless, for most technical and meteorological problems fluctuations as
well as fluctuation differences are assumed to obey Gaussian statistics. There-
fore simulations of atmospheric velocities are often based on Gaussian processes
[5].
Fluctuation differences are commonly measured using velocity increments:

uτ (t) := u(t+ τ)− u(t) . (1)

Large increment values can be identified as wind gusts as long as the time step
τ is rather small. The demand for a small τ -value (typically less than a minute)
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is due to the fact that gusts are related to large velocity rises during short times.
Rises that occur over time steps of several hours – for instance – are not called
wind gusts but large scale variations.
The difficulty to fix a suitable time scale mirrors the fact that atmospheric winds
exhibit variations on any time scale – in principle ranging from seconds (and
less) up to centuries. For most practical applications, such as engineering and
meteorology one mainly distinguishes between large scale variations such as di-
urnal, weekly and seasonal changes and variations on small scales often referred
to as atmospheric turbulence or gustiness [1]. The existence of a mesoscale gap
as proposed by [6] which divides small (micro) and large (macro) scales in a
more rigorous way has strongly been debated in recent years (e.g. [7], [8]).

In this paper we focus on the scale dependent statistics of atmospheric in-
crements and compare them to that of homogenous, isotropic and stationary
turbulence1 as realized in laboratory experiments. For isotropic turbulence the
statistical moments of increments, the so-called structure functions have been
intensively studied [10]. Their functional dependence on the scale τ is described
by a variety of multifractal models. Besides the analysis of moments, probability
density functions (PDFs) are often considered. These show a transition from
Gaussian distributions to intermittent (heavy-tailed) ones as scale decreases.
Unfortunately the analysis of moments as well as that of probability density
functions p(uτ ) is more or less restricted to the inertial range – the range of
scales larger than the Taylor scale Θ (where dissipation effects become signifi-
cant) and smaller than the integral scale2 T .
The challenge is to describe and to explain the measured fat-tailed distributions
and the corresponding non-convergence to Gaussian statistics. Large increment
values in the tails directly correspond to an increased probability3 (risk) to ob-
serve large and very large events (gusts). As pointed out in [12] the probability
to observe large events – e.g. events twice as large as a reference – can become
negligible for a Gaussian while for heavy-tailed distributions there is still a sig-
nificant probability to observe it.
The atmospheric PDFs – we examine here – differ from those of turbulent lab-
oratory flows where – with decreasing scale – a change of shape of the PDFs
is observed (e.g. [9]). For large scales the distributions are Gaussian while for
small scales they are found to be intermittent. The atmospheric PDFs how-
ever change their shape only for the smallest and then stay intermittent for
a broad range of scales. Such a constant shape for larger and larger scales is
expected only for stable distributions such as Gaussian ones or the Lévy stable
laws [11]. Although the decay of the tails indicates that distributions should
approach Gaussian ones (as for isotropic turbulence) they show a rather robust
exponential-like decay. This point will be clarified in chapter 3.2.

1For simplicity we will use the term ’isotropic turbulence’ instead of homogenous, isotropic
and stationary turbulence.

2Normally Θ and T denote length scales. For constant mean velocities and applying Tay-
lor’s hypothesis of frozen turbulence length- can be defined as time-scales as well. Here we
will proceed with corresponding time scales.

3The probability to observe an increment uτ ǫ [uτ , uτ + duτ ] is just given by p(uτ )duτ .
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In chapter 3.1 and 3.2 it will be shown that atmospheric increments behave quite
similar to those of isotropic turbulence for small scales but differ significantly
for large ones. We therefore introduce a model – chapter 3.3 – that interprets
atmospheric increment statistics as a large scale mixture of subsets of isotropic
statistics. When mixing is weak the same statistics as for isotropic turbulence is
recovered while for strong mixing robust intermittency is obtained. In chapter
4 the results are briefly discussed.

2 The Data

The analysis presented in the following is based on one laboratory and four
different atmospheric data sets. In addition to accessibility reasons the latter
were chosen in such a way that their environmental and meteorological charac-
teristics differ significantly. Therefore one offshore and three onshore data sets
are examined. Additionally a laboratory data set was chosen as an example of
an approximately isotropic turbulent wake-flow.
The first data set was recorded in October 1997 near the German coastline
of the North Sea in Emden at a height of 20 m by means of an ultrasonic
anemometer [13]. The wind speed was measured continuously over a period of
275 hours. In the following this data set will be referred to as On1.
The second data set – denoted as On2 – was obtained from a hot-wire mea-
surement 6 m above the ground (in flat terrain) [14]. Here the wind speeds of
approximately one hour were considered.
On3 – the third data set was recorded in a very complex terrain near Oberzeir-
ing (1900 m above the sea level) in Austria in 2001 [15]. The velocity was
measured by means of an unltrasonic anemometer. The data consists of 255
non-successive blocks of 4 hours length. The choice was made in order to obtain
complete and continuous data within each block.
The fourth data set – referred to as Off – was recorded during an offshore mea-
suring campaign at Roedsand in the Danish Baltic Sea at 30 m height between
1998 and 1999 [16]. From this period 58 non-successive days were chosen. Again
the choice was made in order to obtain complete and continuous data for each
day.
The laboratory data – denoted as Lab – were obtained from a wake flow mea-
surement in the wind tunnel of Erlangen in 1998 [17]. A hot-wire was located
2 m behind a cylinder of diameter D = 0.02 m in the plane of the cylin-
der. Here the turbulent flow can be considered to be locally isotropic and fully
developed. With a mean velocity of ū = 20.9 ms−1 a Reynolds number of
Re = ūDν−1 ≈ 30, 000 is obtained. Taylor and integral scale are found to be
Θ ≈ 2 · 10−4 s and T ≈ 6 · 10−3 s respectively.

For atmospheric data sets it is difficult to define an integral scale T because of
the instationarity of atmospheric velocities that causes very long-range correla-
tions R(τ) ∝ 〈u(t+ τ)u(t)〉 so that the integral time

T :=

∞
∫

0

R(τ) dτ (2)
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cannot be estimated properly. Only for On2 an estimate of the integral time
can be given because of the rather constant flow conditions during the short
measuring period of about 1 hour.
For On2 the Taylor scale Θ can be calculated while for all other atmospheric
data sets the sample frequency is too low for Θ to be resolved.
In Table 1 a short overview of the most important specifications of all five data
sets is given.

On1 On2 On3 Off Lab

N [1] 3,958,874 20,480,000 14,688,000 25,056,000 12,500,000

blocks [1] 1 1 255 58 100

f [Hz] 4 5,000 4 5 100,000

u [ms−1] 3.4 8.3 6.6 9.6 20.9

min [ms−1] 0.0 0.8 0.02 0.6 15.9

max [ms−1] 18.1 18.1 39.0 36.1 25.5

σ [ms−1] 1.7 2.3 4.2 3.2 1.1

Θ [s] < 0.25 ≈ 0.01 < 0.25 < 0.2 ≈ 2 · 10−4

T [s] – ≈ 14 – – ≈ 6 · 10−3

Table 1: The table summarizes some characteristic values of the different data sets, from top

to bottom these are number of data points N , number of blocks, sample frequency f , mean

velocity u, minimum, maximum, average standard deviation σ, Taylor scale Θ and integral

scale T .

3 Analysis

3.1 Scaling in Isotropic and Atmospheric Turbulence

The central assumption for turbulent velocity time series is that they have a self-
similar structure (a direct consequence of scale invariance of the Navier Stokes
Equation) in the inertial range. This means that within this range the disorder
of velocity fluctuations has a similar structure on every scale but with a scale-
dependent magnitude. To quantify this one usually calculates the (absolute)
moments of increments

Sn
τ = 〈|uτ |n〉 , (3)

which are also called structure functions of order n. Instead of calculating
the absolute moments one can also consider 〈unτ 〉 (see [18] for a more detailed
discussion).
In isotropic turbulence structure functions are assumed to scale as:

Sn
τ ∝ τ ζn . (4)

A linear (monofractal) scaling exponent ζn corresponds to a self-similar struc-
ture as proposed by Kolmogorov in 1941 [19] who found that the scaling expo-
nent should be

ζn =
n

3
(5)
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due to dimensional reasons. Instead of this linear behaviour various experi-
ments suggest that the scaling exponent is a non-linear function of n. In 1962
Kolmogorov [20] introduced the following non-linear (multifractal) exponent

ζn =
n

3
+

µ

18
(3n − n2) (6)

motivated by the model of a turbulent cascade with a log-normally distributed
energy transfer rate. The parameter µ is called intermittency correction and is
found to be close to 0.25 [21] which corresponds to ζ6 = n

3 − µ = 1.75. This is
in agreement with the examined data sets where ζ6 takes values between 1.67
and 1.80 as shown in Fig. 1a).

Figure 1: Scaling Exponents and Structure Functions

2 4 6 8
0

1

2
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n
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On1
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On3

a) This plot shows the scaling exponents
ζn as a function of order n for all five
data sets. Additionally the linear scaling
law given by Eq. (5) (straight line) and
the non-linear laws according to Eq. (6)
(curved line) and Eq. (7) (curved dashed
line) are shown.

0.01 0.1 1
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b) The structure functions of order 2, 4
and 6 are plotted against that of order
3 in a double- logarithmic presentation
(vertically shifted for clarity of presenta-
tion). The open symbols belong to On1,
the filled ones to Lab.

In [22] another formula was proposed which seems to fit experimental data
slightly more accurately than Eq. (6):

ζn =
n

9
+ 2− 2

(

2

3

)n/3

. (7)

There are other models besides these two multifractal ones, e.g. [23], [24]. The
differences in ζn in all these models are rather small (at least for small orders)
so for simplicity we will restrict following discussions to the models given by
Eq. (6) and Eq. (7).
To estimate the dependence of ζn on n one has to calculate ζn first. The most
common way to do this is to plot log(Sn

τ ) against log(S
3
τ ) – a method referred

to as Extended Self Similarity (ESS) [25]. The slope of the resulting line is
equal to ζn. This is shown in Fig. 1b) exemplary for data sets On1 and Lab.
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τ [a.u.]

F

101 103
2

5
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Lab

Figure 2: The open symbols show the flatness F of On1 as a function of scale with τ = 0.25 s.
The filled symbols represent the flatness of Lab with τ = 0.002 T ≈ 10−5 s. Additionally fits
according to Eq. (9) (straight lines) are drawn in with µ = 0.29 (On1) and µ = 0.26 (Lab).
The horizontal dashed line marks F = 3 (as for a Gaussian distribution).

In both cases the slopes are in quite good agreement with Eq. (6) and Eq. (7).
The slopes of On1 show small deviations from linear behaviour for large values.
These correspond to large scales τ that might not belong to the inertial range
anymore. This already indicates that care should be taken when transferring
standard analysis of isotropic to atmospheric turbulence.
The difference between isotropic and atmospheric turbulence statistics becomes
more obvious when calculating the flatness F . Assuming inertial range scaling
according to Eq. (3) and (4) the flatness should scale as well and is given by:

F :=

〈

u4τ
〉

〈u2τ 〉2
∝ τ ζ4−2ζ2 . (8)

If Eq. (6) is a suitable description4 the flatness scales according to:

F ∝ τ−4µ/9 , (9)

as is easily shown inserting Eq. (6) into Eq. (8). As shown in Fig. 2 the
measured flatness of the data shows this scaling behaviour but the absolute
values of F are very different for different data sets. While for the Lab data set
flatness approaches F ≈ 3 for large τ it saturates at F ≈ 6 for the On1 data set.
The flatness of On3 and Off saturates at F ≈ 5 while forOn2 it goes down to 3.5.

Calculating the flatness of a variable x is often done to estimate the shape of
the PDF p(x). A Gaussian distribution has flatness 3. Deviations from this
value can be taken as a hint for a non-Gaussian shape of PDFs. In the following
the increment PDFs of the given data sets will be examined.

4Eq. (7) and other multifractal models yield very similar results because such low-order
exponents as ζ4 and ζ2 are quite indistinguishable from each other.
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3.2 Probability Density Functions in Turbulence

Alternatively to the analysis of scaling exponents one can directly investigate
the PDFs of velocity increments p(uτ ). The scaling behaviour as well as all
moments (including derived quantities such as flatness or skewness) are imme-
diately given if the distributions on every scale are known.
In principle the knowledge of all moments Sn

τ and the knowledge of the PDFs
should contain the same information as can be seen by means of the charac-
teristic function ϕ(k) – which is the Fourier transform of the PDF – defined
as:

ϕ(k) :=
∞
∑

n=1

Sn
τ

(ik)n

n!
. (10)

Nevertheless the relation between moments and PDFs is not unique. In [11] it
is pointed out that two different PDFs can have exactly the same moments.
From many experiments of isotropic turbulence it is well known that the shape
of a PDF changes with scale. Going from larger to smaller scales the dis-
tributions become more and more heavy-tailed while for τ ≥ T a Gaussian
distribution is obtained. This scale-dependent shape corresponds to non-linear
scaling exponents – as introduced in Eq. (6) and Eq. (7) – while a linear be-
haviour Sn

τ = anτ
αn = anβ

n according to Eq. (5) leads to a constant shape.
This can be seen by means of the characteristic function in Eq. (10) that stays
the same for a linear exponent only k is rescaled according to k̃ = βk.
The analysis of scaling exponents thus focusses on the change in shape of distri-
butions while the shape itself is of minor interest and could even be determined
wrongly as shown at the end of the last chapter. Therefore we will henceforth
focus on the analysis of PDFs.
In accordance with Eq. (6) (that was derived from the assumption of a log-
normally distributed energy transfer rate) B. Castaing et al. [9] introduced a
model in which the increment distribution p(uτ ) is interpreted as a superposition
of Gaussian ones p(uτ |σ) with standard deviation σ. The standard deviation
itself is distributed according to a log-normal distribution f(σ). The increment
distribution thus reads

p(uτ ) =

∞
∫

0

dσ p(uτ |σ) · f(σ)

=

∞
∫

0

dσ
1

σ
√
2π

exp

[

− u2τ
2σ2

]

· 1

σλ
√
2π

exp

[

− ln2(σ/σ0)

2λ2

]

(11)

and will henceforth be referred to as the Castaing distribution.
Two parameters enter this formula, namely σ0 and λ2. The first is the median
of the log-normal distribution, the second its variance. The latter determines
the form (shape) of the resulting distribution p(uτ ) and is therefore called form
parameter. On one side the larger λ2 becomes the broader the log-normal
distribution and the broader the range of σ that contributes to the integral in
Eq. (11). On the other side the range of σ becomes smaller and smaller with
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Figure 3: Probability Density Distributions

-5 0 5

10-3

101

p(uτ) [a.u.]

uτ / στ

a) Symbols represent normalized PDFs
(with their scale-dependent standard

deviation στ =
√

〈u2
τ 〉) of the Lab data

set. From top to bottom τ takes the val-
ues: 0.01 T , 0.05 T , 0.2 T and 1.0 T

where T ≈ 0.005 s denotes the inte-
gral time. Straight lines correspond to a
fit of the distributions according to Eq.
(11).

-5 0 5
10-5

10-3

10-1

101

103

p(uτ) [a.u.]

uτ / στ

b) Symbols represent normalized PDFs
of the atmospheric data set On1 with
τ = 0.5 s, 2.5 s, 25 s, 250 s and 4000 s.
Straight lines correspond to a fit of the
distributions according to Eq. (11). All
graphs – in (a) and (b) – are plotted
in a semi-logarithmic presentation and
are shifted against each other in vertical
direction for clarity of presentation.

decreasing form parameter. In the limit of vanishing λ the log-normal becomes
a delta distribution

lim
λ→0

(

1

σλ
√
2π

exp

[

− ln2(σ/σ0)

2λ2

])

= δ(σ − σ0) , (12)

so that p(uτ ) is reduced to a Gaussian distribution with variance σ2
0 .

With a proper choice of the form parameter the PDFs p(uτ ) can well be fitted
as it is shown in Fig. 3a) and Fig. 3b). In Fig. 3a) – where the Lab data
set is presented – the expected change of shape from intermittent to Gaussian
distributions with increasing scale is clearly seen.

In contrast to this behaviour the PDFs of On1 in Fig. 3b) look totally different.
They are much more intermittent and do not approach a Gaussian distribution
even for very large scales. For scales larger than about 25 s the shape remains
rather constant. This is in accordance with the finding of the slow decrease of
flatness shown in Fig. 2 because in the log-normal model flatness is linked to
the form parameter [27] according to

λ2 ∝ ln

(

F

3

)

. (13)

In this sense constant flatness larger than 3 corresponds to constant λ2 larger
than 0 and thus to scale-independent intermittent distributions as shown in
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Figure 4: The form parameter for the data sets On3, On1, Off, On2 and Lab are shown in
double-logarithmic presentation. In that order τ = 1 corresponds to 0.25 s, 1 s, 1 s, 0.02 s

and 10−5s (0.002 T ). The straight line represents a fit according to Eq. (23).

Fig. 2 and Fig. 3b) exemplary for the On1 data set. The λ2-values for all data
sets are illustrated in Fig. 4.
For isotropic turbulence scale-independent distributions occur for large scales
as well but are always found to be Gaussian [28] for scales larger than the in-
tegral time T . From a mathematical point of view these stable Gaussian PDFs
are the result of a stable stochastic Gaussian process. The other class of stable
distributions are the so-called Lévy distributions – characterised by power-law
tails – which are the result of a fractional stochastic process. The observed
atmospheric increment PDFs show robust (stretched) exponential tails that de-
cay faster than a power-law and slower than a Gaussian distribution. So the
question arises whether the atmospheric PDFs can be explained as a fractional
process or as a superposition of different Gaussian processes in analogy to the
Castaing distribution. To decide this the concept of stability and the connection
to increment analysis should briefly be introduced.

3.2.1 Stable Distributions

Consider the sum sm =
m
∑

i
xi of m independent and identical distributed (i.i.d.)

variables. The variables should be distributed according to a PDF p(x) and the
PDF of the sum-variable is p̂(x). The distribution p (or p̂ respectively) is then
called stable if for large m (m → ∞)

p̂(x′) dx′ = p(x) dx with x′ = Ax+B (14)

is fulfilled [11]. This means that for sufficiently large m the shape of the distri-
bution does not change as m increases.
Transferred to increment analysis an increment over a scale τ can be identified
as variable x and the increment of a larger scale mτ as the sum-variable sm. It
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is immediately shown that

umτ (t) =
m−1
∑

i=0

uτ (t+ iτ) , (15)

which means that a large increment can be expressed as the sum of smaller
ones. When the PDFs of large and small increments are the same this indicates
a stable PDF.

The most famous stable distribution is the Gaussian one. Beside this P. Lévy
[29] showed that there exists a whole class of stable distributions. Restricting
to symmetric distributions their characteristic functions read:

ϕ(k) = exp [iγk − c|k|α] ; 0 < α ≤ 2. (16)

For asymmetric distributions the characteristic function becomes more compli-
cated (e.g. [30]). The analytical form of the corresponding PDFs is only known
for some special cases (e.g. for α = 1 it is the Cauchy distribution) but their
asymptotic behavior is always known and given by:

p(x) ∝ C |x|−(1+α) ; x ≫ 1 . (17)

This algebraic decay of tails means that all higher order moments larger than
order α do not exist. Generally, distributions with tails decaying faster than ∝
|x|−3 (defined variance) can only converge to a Gaussian while slower decaying
tails indicate that they can only converge to a Lévy stable law.

As already mentioned the examined atmospheric PDFs show a faster than
algebraic decay (compare Fig. 3 b) and Fig. 8 a), b), c), d)) so it is expected
that they converge to Gaussian statistics for large scales. Therefore the ob-
served robust intermittency should be explained by mixing different Gaussian
distributions rather than by a fractional stochastic process.
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3.3 Superposition Model for Atmospheric Turbulence

In [4] it was proposed to take the instationarity of long atmospheric time se-
ries into account. In this sense the observed intermittent form of PDFs for
all examined scales are found to be the result of mixing statistics belonging to
different flow situations. These are characterized by different mean velocities
as schematically illustrated in Fig. 5. When the analysis by means of incre-
ment statistics is conditioned on periods with constant mean velocities results
are found to be very similar to those of isotropic turbulence. This can be set
in analogy to the Castaing distribution that interprets intermittent PDFs as a
superposition of intervals with different standard deviations.

u [a.u.]

t [a.u.]

u

Figure 5: Illustration of different mean velocity intervals. Within these intervals statistics
should be the same as for isotropic turbulence. The magnitude of variations (standard devia-
tion) grows with mean velocity according to Eq. (24).

Thus we propose a model that describes the robust intermittent atmospheric
PDFs as a superposition of those of isotropic turbulent subsets that are denoted
with p(uτ |ū) and given by Eq. (11). Knowing the distribution of the mean
velocity h(ū) the PDFs become:

p(uτ ) =

∞
∫

0

dū h(ū) · p(uτ |ū) . (18)

To find a suitable averaging time defining the mean value ū is a non-trivial
problem due to the lack of a distinct mesoscale gap and is not the concern of
the present paper (see e.g. [31]).
As a first approximation we fix the averaging time to be 10 minutes. In [4] it
is shown that with this choice a partition into isotropic sequences is achieved.
Furthermore we assume h(ū) to be a Weibull distribution:

h(ū) =
k

A

(

ū

A

)k−1

exp

[

−
(

ū

A

)k
]

. (19)

Both assumptions are well established in meteorology [1]. In Fig. 6 it is shown
that a Weibull distribution is a good representation of h(ū).
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Figure 6: Symbols represent measured mean velocity distributions (averaged over 10 min) of
the four atmospheric data sets On1, On2, On3 and Off. Solid lines are fits according to Eq.
(19). The parameters are: k = 2.0, 7.8, 1.8, 3.3 and A = 2.9, 4.8, 7.1, 8.7 for On1, On2,
On3 and Off respectively.

Inserting Eq. (19) and Eq. (11) into Eq. (18) the following expression for
atmospheric PDFs is obtained:

p(uτ ) =
k

2πAk

∞
∫

0

dū

∞
∫

0

dσ ūk−1 exp

[

−
(

ū

A

)k
]

× 1

λσ2
exp

[

− u2τ
2σ2

]

exp

[

− ln2(σ/σ0)

2λ2

]

. (20)

Parameters A and k play a similar role as σ0 and λ2 in the Castaing distribution.

Next we briefly discuss the meaning of the two parameters A and k. The
former is closely related to the expectation value (〈ū〉 = A · Γ(1 + k−1)) of the
mean velocity. Parameter k determines the form (shape) of the distribution.
Small values of k correspond to a broad distribution where many different mean
velocities contribute significantly to the integral in Eq. (20). Large k-values
however prevent this contribution and the distribution is closely centered around
A. In the limit of very large k a delta distribution is obtained:

lim
k→∞

(

k

Ak
ūk−1 exp

[

−
(

ū

A

)k
])

= δ(ū−A) . (21)

So for very large k-values Eq. (20) converges to Eq. (11) i.e. to isotropic
turbulence. For additionally large τ and accordingly vanishing λ2 one finally
gets

lim
k→∞

lim
τ→∞

p(uτ ) =
1

σ0
√
2π

exp

[

− u2τ
2σ2

0

]

(22)
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Figure 7: Standard Deviation as a Function of ū and τ

a) Standard deviation σ0 as a function
of ū and τ – exemplary for the On1 data
set.

u [m/s]

σ0 [m/s]

2 4 6 8

1

2

b) Standard deviation σ0 only as
a function of ū (at fixed τ ) – ex-
emplary for τ = 1 s and τ = 50 s.

which is a pure Gaussian density with variance σ2
0(A). For small k-values the

distributions remain intermittent even for large scales. Here intermittency is
caused by the mixing of periods of different mean velocities.

To apply Eq. (20) to experimental data one has to know the parameters A, k,
σ0 and λ2. Parameters A and k can directly be estimated from data by fitting a
Weibull distribution given in Eq. (19) to the measured distribution of ū. This
is illustrated in Fig. 6 for all examined atmospheric data sets.
Next λ2 = λ2(τ, ū) and σ0 = s0(τ, ū) have to be known. From isotropic turbu-
lence it is well-established that the form parameter decreases monotonously in
scale. Scaling of flatness according to Eq. (8) together with Eq. (13) directly
leads to a logarithmic depenency of λ2 on τ :

λ2 = aū − bū · ln(τ) . (23)

To confirm this in Fig. 4 the form parameter of the Lab data set is fitted with
Eq. (23). For a deeper discussion on the scale dependence of λ2 see [26].
The dependence of λ2 on ū is small (e.g. [9] found a slower decay of λ2 for in-
creasing Reynolds numbers Re ∝ ū). As a first approximation we will disregard
it.
The parameter σ0 – the most probable standard deviation – generally grows
with scale and mean velocity. The scale dependence drops out automatically
when considering normalized PDFs as it is done here. For the ū-dependence
we assume a linear relation

s0 = bτ · ū , (24)

which is supported from the measured standard deviation σ0, shown in Fig. 7.
Thus, to apply Eq. (20) we need to calculate A and k from measured mean
velocity distributions. Additionally we consider a logarithmic dependence of λ2
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on τ and a linear one for σ0 on ū. Given that we are interested in a preferably
simple reconstruction of PDFs by means of Eq. (20) we will disregard the more
complex parameter relations here.

With these parameters atmospheric increment PDFs can be determined well
from Eq. (20). As shown in Fig. 6 for On1, On 3 and Off rather small k-values
of 2.0, 1.8 and 3.3 are obtained indicating that resulting PDFs are heavy-tailed
also for large scales. In Fig. 8a) and 8b) and Fig. 8d) the corresponding PDFs
as well as fits according to Eq. (20) are presented. The fits agree quite well
with measured distributions. For all three data sets the tails show a similar
decay for large scales and are close to a straight line which corresponds to an
exponential decay due to the semi-logarithmic presentation.
In contrast to this behaviour the PDFs of On2 and the fits according to Eq.
(20) – shown in Fig. 8c) – approach a Gaussian distribution for large scales
which is in accordance with the large k-value of 8.7 as it is found in Fig. 6. This
large k-value mirrors the fact that On2 was measured just over a short period
of time (approximately 1 hr) with rather constant flow conditions. This means
that as the flow becomes more and more stationary the superposition of differ-
ent mean velocities becomes weaker and weaker. In the limit of a stationary
velocity – as realized for Lab and approximately forOn2 – isotropic turbulence
is recovered and large scale intermittency disappears.

Note, the intention of using Eq. (20) is not to get the best possible fits of
the measured PDFs but to model PDFs at specific locations (with a specific
mean velocity distribution) a priori. The measured PDFs could also be fitted
by stretched exponential distributions [11] or by Eq. (11) as it is done in Fig.
3b) for instance. These fits are based on a posteriori measurements however.
Neither scaling models nor Eq. (11) are able to explain a flatness larger than
3 and correspondingly intermittent PDFs for large scales outside of the inertial
range as it is done by Eq. (20).
This has interesting consequences for atmospheric velocities. For isotropic tur-
bulence statistical properties of the flow can well be modelled. Thus knowing
the composition of isotropic subsets it should be possible to model atmospheric
velocity statistics as well.
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Figure 8: Atmospheric Probability Density Distributions: Symbols represent the normalized
PDFs of the four atmospheric data sets in semi-logarithmic presentation. Straight lines corre-
spond to a fit of distributions according to Eq. (20). All graphs are vertically shifted against
each other for clarity of presentation.
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a) Off: From top to bottom τ takes the
values: 0.2 s, 10 s, 20 s, 200 s and 2000 s.
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b) On1: From top to bottom τ takes
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c) On2: From top to bottom τ takes
the values: 2 ms, 20 ms, 200 ms and
2000 ms.
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d) On3: From top to bottom τ takes the
values: 0.25 s, 2.5 s, 25 s and 250 s.
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4 Conclusions

The presented analysis provides a good way to estimate and to explain robust
and markedly intermittent PDFs of atmospheric increments. As desired the
method recovers results of isotropic turbulence but is also able to take the large
scale variations into account properly. A rigorous separation of time scales –
which is very difficult – is not necessary for our model.
Standard analysis applied to isotropic turbulence cannot be transferred to long
atmospheric time series unambiguously as it was shown by means of scaling
behaviour of structure functions and flatness. These methods are restricted to
the inertial range where the change of shape can be more or less well reproduced
and where at the large scale boundary of this range statistics become Gaussian.
It has been shown that the observed anomalous robust intermittency can be
explained as a superposition of isotropic subsets in accordance with the concept
of stable distributions. Intermittency on large scales is found to be the result
of large scale mixing of isotropic turbulent subsets.
With our approach intermittent atmospheric PDFs can be approximated for
any location as long as the mean velocity distribution is known. This is of
importance for the construction of a wind turbine for instance. For construct-
ing wind turbines only the turbulence intensity (relation between the average
standard deviation and the mean velocity) is taken into account which is a
very inadequate description. The loads are determined by increments and their
occurrence statistics, therefore a model that reproduces the right increment
distributions for every location should be preferred.
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