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Small and Other Worlds: Global Network
Structures from Local Processes1

Garry Robins, Philippa Pattison, and Jodie Woolcock
University of Melbourne

Using simulation, we contrast global network structures—in par-
ticular, small world properties—with the local patterning that gen-
erates the network. We show how to simulate Markov graph dis-
tributions based on assumptions about simple local social processes.
We examine the resulting global structures against appropriate Ber-
noulli graph distributions and provide examples of stochastic global
“worlds,” including small worlds, long path worlds, and nonclustered
worlds with many four-cycles. In light of these results we suggest a
locally specified social process that produces small world properties.
In examining movement from structure to randomness, parameter
scaling produces a phase transition at a “temperature” where regular
structures “melt” into stochastically based counterparts. We provide
examples of “frozen” structures, including “caveman” graphs, bi-
partite structures, and cyclic structures.

INTRODUCTION

It matters that networks differ. To justify this claim, we need look no
further than the compelling description of the rise of the Medici by Padgett
and Ansell (1993). They argue that Cosimo de Medici came to power in
15th-century Florence in large part because the Medici family was at the
center of a starlike structure of marriage and business alliances, a pat-
terning of interfamilial relations that could be efficiently activated by—
and only by—the Medici. In contrast, the dense interconnections among

1 An early version of this article was presented at the Sunbelt XXII International
Social Network Conference, New Orleans, February 2002. The authors would like to
thank Tom Snijders, Andrew Seary, and Mark Handcock for helpful suggestions in
regard to this research, and for the helpful comments of two reviewers. This research
was conducted with support from the Australian Research Council and was supported
in part by grants from the NIH (R01-DA012831 and R01-HD041877). Direct corre-
spondence to Garry Robins, Department of Psychology, University of Melbourne, Vic-
toria 3010, Australia. E-mail: garrylr@unimelb.edu.au
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Cosimo’s political opponents, the traditional oligarchic families of Flor-
ence, hindered a decisive response. In the crucial showdown, the oligarchic
opposition to Cosimo splintered into confusion and mistrust. Because of
their dense pattern of ties, the oligarchs knew who should take the field,
so absences were treated as defection. The Medici clients knew too little
to feel betrayed. They stayed; the oligarchs fled.

Global Network Structure and Local Network Processes

Networks differ, but in what sense? It is the global structure of the Flor-
entine network that counts in the description above. The argument rests
on the patterning of relations among all families. By global structure we
refer to features that can only be determined by examining the entire
network (or at least large parts of it). In the Florentine families network,
the juxtaposition of large patterns—a starlike structure adjacent to a dense
cliquelike pattern—cannot necessarily be surmised by considering indi-
vidual nodes or their immediate network neighborhoods, that is, more
local subnetworks.

In this article, we contrast such broad global features with the local
patterning that could give rise to them. Our representation of local struc-
ture relies on small network configurations that we describe below as
subgraphs involving only a few network ties. We construe these config-
urations as the outcomes of local social processes. Network ties emerge,
persist, and disappear by virtue of actions made locally at the scale of
the individual actors in a network (whether they be persons or families
or companies or some other social entity). Actors do not usually cast their
gaze across the entire network, possibly because in most cases they can
only “see” what is in their local social neighborhood (Pattison and Robins
2002). On the basis of their localized view, they form strategies and make
decisions that intersect with those others who are socially proximate.
Combinations of these competing or complementary intentions and ac-
tions constitute social processes that make up local patterns of relation-
ships. These local patterns agglomerate to create the global structure. The
strength of Padgett and Ansell’s account of the Medici lies in showing
how the localized processes—involving individual marriage and business
partnerships within and across neighborhoods of medieval Florence—led
to the global features that mattered.

The Role of Computation and Simulation

Because we can construe global structure as an agglomeration of local
patterns, an understanding of the global can be greatly enhanced by
computational and simulation techniques. It is not inherently difficult to
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infer the local structural outcome of a simple postulated local social pro-
cess (e.g., as discussed below, a tendency to structural balance leads to
localized triadic structures). What is not apparent, however, are the global
outcomes when several of these localized patterns combine, perhaps with
different strengths. Indeed, except in a small number of cases (examples
are discussed below), computational techniques are necessary because
analytic solutions are simply not available.

The advent of computer technology enables us to traverse this con-
ceptual and methodological gap from individual local patterns to the
possibility of various global phenomena. This is potentially a two-way
process. We observe certain global properties of interest in a network (e.g.,
small world properties as discussed below). We can then speculate how
these properties might emerge from localized social processes, develop a
model embodying such processes, and then use simulation procedures to
investigate the global outcomes of this model. If the results mirror the
global properties of interest, we can then check whether some or all of
the postulated local processes are operative in the observed network.

In other words, we do not see observation, modeling, and simulation
as inherently different approaches toward understanding, but rather a
potentially powerful combination of tools that readily complement each
other. In this article, we concentrate on the results of simulating from
some simple but plausible models, but we are mindful of the need to
subject these models to stringent empirical testing. For instance, one step
that is needed to go beyond this discussion is to show that the processes
inherent in the models are actually observed in empirical networks.2

Which Global Properties?

Despite the possibility that local patternings shape global properties of
the network, it is not always clear which global features are best to ex-
amine, or indeed simply how best to describe global network structure.
Sometimes, as in the Medici example, important global qualities seem
apparent;3 but if we consider the range of networks that Faust and Skvo-
retz (2002) attempted to compare, it is not at all obvious what the optimal
criteria are. Even so, the recent flurry of activity on small world networks,
following the seminal work of Duncan Watts (Watts and Strogatz 1998;
Watts 1999a, 1999b), illustrates just how much can be gained by inves-

2 For at least some observed networks, we have evidence that the models described
below are indeed plausible descriptions, not just on the basis of measures of fit, but
also because important global properties can be reproduced (Robins 2003).
3 At least once Padgett and Ansell (1993) have done all the hard exploratory data
analysis to reveal the important structural features.



Global Network Structures from Local Processes

897

tigating one or two global features that seem of general relevance, in this
case the prevalence of short paths in networks in the presence of some
randomness. Average path length is clearly a global feature of a network.
What local processes could make it “short”?

Following Watts’s innovative approach, there has been an upsurge of
exciting research into global network phenomena with a focus on prop-
erties (described in more detail below) such as path length, clustering, and
degree distribution (e.g., Amaral et al. 2000; Barrat and Weigt 2000; Bar-
thélémy and Amaral 1999; Bohland and Minai 2001; Comellas, Ozon,
and Peters 2000; Kirillova 2001; Mathias and Gopal 2001; Newman 2000;
Newman and Watts 1999; Pandit and Amritkar 2001; Pastor-Satorras and
Vespignani 2001; Yang 2001). Much of this research concentrates on large-
scale networks, including growing networks such as the Internet. One
advantage of considering large networks with indeterminate numbers of
nodes is that asymptotic results may sometimes be available analytically,
at least for simpler models. Strogatz (2001), Albert and Barabási (2002),
and Newman (2003) provide excellent reviews of this burgeoning
literature.

Locally Specified Network Models

Despite its innovation and rigor, the literature on global network phe-
nomena gives at best passing attention to the local processes that might
generate most real networks. Few of the models can be locally specified.
The original model of Watts (1999a) starts with an exogenous global
structure (a large circle through all nodes, termed by Watts a cyclic sub-
strate and also known more technically as a one-dimensional lattice) and
then introduces some local processes that add to that structure (random
edge addition combined with a tendency toward clustering, or triangle
formation). In the short time since its introduction, this basic model has
been used and elaborated by many others, clearly constituting an impor-
tant new approach to understanding global features. But with an exog-
enous global structure as its starting point, it is not locally specified, and
so cannot tell us how small worlds might emerge in real networks.4

Another well-known recent model is that of preferential attachment
(Barabási and Albert 1999), where for a growing network a new node is
attached to existing nodes with a probability dependent on the degree

4 Watts has more recently developed new locally specified models to describe the results
from the original small world experiment of Milgram (1967), recognizing that his cyclic
substrate model does not allow for strategic search by actors for effective network
partners (Watts, Dodds, and Newman 2002). Indeed, without allowing for a search
capacity, there is doubt that the original model can account for actors’ use of short
paths, given that they only have local information available to them (Kleinberg 2000).
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distribution of existing nodes. This model can be shown to result in a
power-law degree distribution with resulting scale-free properties. Here
we have more of the flavor of a locally specified model, but to determine
the probabilities of attachment, the new node has to “know” the existing
degree distribution across the entire graph. This model has considerable
strengths in describing the structure of the Internet, which is indeed an
expanding network. But we disagree with the claim by Albert and Bar-
abási (2002) that most real-world networks describe open systems that
grow by the continuous addition of new nodes. Such a claim ignores the
large amount of empirical work in a range of literatures—from the an-
thropological to the organizational—that searches for an understanding
of small-scale, relatively closed network systems. For instance, the mem-
bership of the Florentine elite was relatively stable, in comparison to the
changes in their interrelationships resulting from ongoing social and eco-
nomic processes.

Of course, simple random graph models, arising originally from the
work of Erdös and Renyi (1959; see also Gilbert 1959), are much closer
to local specification. Two simple random graph models have similar
properties. In the first, L edges are added at random to a graph of n nodes,
sometimes referred to among social network analysts as the modelUFL
(the uniform distribution of random graphs with a given number of nodes,
conditional on the presence of L edges). The second model posits that an
edge between pairs of nodes occurs independently and with fixed prob-
ability P, sometimes referred to as the Bernoulli graph distribution (Frank
1981; Frank and Nowicki 1993). The local specification of a Bernoulli
graph is clear because the probability of a tie between two nodes is in-
dependent of anything else in the graph. If friendship networks could be
reasonably described as Bernoulli graphs (which they cannot), we could
claim that any pair of humans has a given propensity to friendship, ir-
respective of whatever other friendships may occur. A local specification
permits a ready translation into a process or behavior at the level of the
actors, the nodes in the network.

Local specifications generally assume a level of homogeneity, that there
are some effects observed locally that are reproduced across the entire
network (for instance, a fixed P for a Bernoulli graph). A homogeneity
constraint assumes a systemwide property, but in almost all social net-
works, the only intentionality in the system is at the level of the actor,
that is, locally (Robins and Pattison 2001). Similar arguments provide the
theoretical underpinning for Snijders’s actor-oriented models (Snijders
1997, 2001; Van De Bunt, Van Duijn, and Snijders 1999). As Robins and
Pattison (2001) argued, the systemic property inherent in a homogeneity
constraint may reflect shared norms or behaviors across actors, norms or
behaviors that could be construed as inherent in the particular social
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relation for this group of people. Modeling based on local effects presup-
poses some such level of sharedness of local behaviors across the system
(otherwise modeling is impossible). Randomness in such models arises
from nonshared local behaviors.

The extent of homogeneity is usually an unheralded issue. Much social
network modeling assumes at least homogeneity of nodes5—that is, the
identity of nodes is irrelevant to the model, so that the model does not
presuppose that one node is more likely than another to have, for instance,
a given degree. Node homogeneity is also a feature of the Watts (1999a)
cyclic substrate model, although not of the preferential attachment model,
where the nodes are ordered across time.

A purely local specification is not always appropriate. Clearly there
may be exogenous effects that operate at a global level (Robins and Pat-
tison 2001). The CEO of a company may impose an organizational re-
structuring; television does shape the transmission of information; a com-
puter company with a large market share may bundle certain Web site
addresses as preset features into its Internet vehicles. These exogenous
actions are not local processes. Even so, they may influence but not de-
termine the underlying network effects. The restructuring may not work,
and workers may revert to some of their old alliances; the television news
may be doubted and different information transmitted locally; the com-
puter user may choose not to utilize some features of the package. So even
when exogenous effects are apparent, some form of local specification may
still be required.

In this article, we use Markov random graph distributions (Frank and
Strauss 1986)—described in detail below—as a basis for locally specified
models. We have three principal aims: (a) to establish methods to assess
and compare global structures for distributions of small, possibly non-
connected, graphs, (b) to use simulated Markov graph distributions to
investigate various types of global structures that may arise, using dif-
ferent parameter values that can be related to a few very simple postulated
local processes, and (c) to illustrate how the scaling of parameters affects
the transition from randomness to more regular structure. We shall give
examples of what we call small world distributions of graphs with a given
number of nodes, but we shall also show how to simulate distributions
of long path worlds, of relatively dense graphs with no clustering, and of
“degenerate,” highly structured worlds, such as the caveman graph of
Watts (1999a).

5 Except in cases where some form of blockmodeling might be the objective of the
analysis (e.g., Nowicki and Snijders 2001), or where the modeling explicitly includes
observed or latent actor attributes (e.g., Hoff, Raftery, and Handcock 2002; Lazega
and Van Duijn 1997; Robins, Elliott, and Pattison 2001).
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Our third aim of parameter scaling can be distinguished from the scale-
up problem, which concerns the change in global outcomes as the number
of nodes in the network grows. Although the scale-up problem has a long
tradition in random graph theory (Bollobas 1985), we concentrate here
on the scaling up of parameter values in networks with a constant number
of nodes.6 The parameter scale-up issue has been ignored in the existing
graph literature but we demonstrate that it is inherently connected with
the transition from randomness to regularity in graph structures (Watts
1999a). We make some comments on the impact of the size of the node
set in our conclusions, as a matter for ongoing work.

Our focus is the nexus between local specifications and global prop-
erties. Small world aspects are just one instance but as they have featured
so prominently in recent work and have been so helpful in permitting
new ways of thinking about local-global connections, it is useful to in-
troduce our approach specifically through a small world lens. In what
follows, then, we begin with a discussion of certain aspects of small world
problems. We then introduce our simulation strategy, including a descrip-
tion of exponential random graph (p*) models, of which Markov random
graphs are a subclass. We give examples of the various global structures
that emerge with different parameter values. We go on to discuss the
effect of increasing parameter values, with examples of the resulting reg-
ularized structures. We conclude with a discussion of further work to
elaborate our general approach.

THE SMALL WORLD

Stanley Milgram (1967) famously concluded that the median number of
intermediaries required for one person in the United States to contact
another person was five. Despite some important work in the intervening
years (e.g., Kochen 1989; Pool and Kochen 1978), small world ideas rather
languished until given new currency in the 1990s (Watts and Strogatz
1998; Watts 1999a, 1999b). A social network of acquaintances can be
represented as a graph, that is, a structure comprising nodes and edges
that connect pairs of nodes.7 Watts (1999a) specified the properties of small
world networks in graph-theoretic terms (defined in detail in the imme-
diate paragraph below): a small world graph has low density and is highly
clustered but has short characteristic path lengths. Watts (1999b) noted
some additional relevant properties about the human social world: the

6 As noted earlier, the vast bulk of empirical network analysis focuses on networks
with a fixed number of nodes.
7 In this article, we focus on nondirected networks.
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number of nodes is very large, and the network is highly decentralized
in that there is no dominant node to which other nodes are directly con-
nected (or adjacent). As he noted, the juxtaposition of all of these char-
acteristics seems counterintuitive, yet they are features of many empirical
networks, including social networks (see also Albert and Barabási 2002).

Terminology

Before discussing Watts’s approach to constructing a probabilistic model
for small world graphs, we first review some graph-theoretic and social
network terminology:

1. A graph, , comprises a set N of nodes and a setG p (N, E) E O

of edges, each of which connects a pair of distinct nodes inN # N
N (we say that the edge connects nodes i and j).e p ij

2. The order of a graph is the number n of nodes in N.
3. The size of the graph is the number L of edges in E.
4. The density of the graph is the number of observed edges as a

proportion of the total possible number of edges, namely, 2L/n(n �
.1)

5. The degree of a node is the number of edges incident to it, so that
if there are L edges in a graph of n nodes, the average degree per
node k equals , and the density equals .2L/n k/(n � 1)

6. The degree distribution for a graph is the vector (d , d , . . . ,0 1

) of degree frequencies, where is the number of nodes havingd dn�1 k

degree k.
7. is a subgraph of G if and .′ ′ ′ ′ ′G p (N , E ) N O N E O E
8. A q-star is a subgraph of ( ) nodes in which one central node isq � 1

connected by an edge to exactly q other nodes.
9. A triangle is a subgraph comprising a set of three nodes (a triad),

each pair of which is connected by an edge.
10. A path of length m is a sequence ( ) of edges suche , e , . . . , e0 1 m�1

that , , and all nodes and are distinct.e p i j i p j i jh h h h�1 h h h

11. A geodesic between two nodes is the shortest path between them,
taken to have infinite length if there is no path between the two
nodes.

12. A connected graph has paths between all pairs of nodes (i.e., no
geodesics of infinite length).

13. The local clustering coefficient of a node i is the proportion ofCi

pairs of nodes to whom node i is connected that are connected to
each other.

In general, clustering in a graph refers to a propensity for pairs of nodes
to be connected to each other if they are connected to a common third
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node.8 The characteristic path length (M) of a graph is a measure of central
tendency (across the graph) of the length of geodesics. Watts (1999a) de-
fined clustering and characteristic path length in the following terms:

the clustering coefficient C is the average value across nodes of the local
clustering coefficient ;Ci

the characteristic path length M is the mean geodesic length.

Clearly the small world phenomenon relates to characteristic path
length. Some major results relating to path length and connectedness are
well known in graph theory (Bollobas 1985). For and Bernoulli graphUFL
distributions, the Erdös-Renyi theorem (Erdös and Renyi 1959) establishes
that almost all simple random graphs with more than edges aren ln (n)/2
connected. Other important results used by Watts (1999a) include that,
for large n and k, the characteristic path length, M, for a simple random
graph is of the order of , and C is of the order of . So forln (n)/ ln (k) k/n
low-density graphs, the tendency for clustering in a random graph is small.
Moreover, M for random graphs is typically short. So when a graph is
an agglomeration of independent, randomly added edges, we expect short
characteristic path length but little tendency for clustering. But certain
highly structured graphs, such as Watts’s (1999a) “connected caveman
graph” (a graph of small clustered components connected in one large
cycle), have high levels of clustering with long characteristic path length.

Simulating Random Graph Distributions

Watts’s (1999a) argument used connected graphs (i.e., with finite geodes-
ics). In particular, he focused on graphs with a cyclic substrate, a starting
structure for his simulations constituted by a cycle of edges through all
nodes. A cyclic starting point ensures that the network is connected, so
one can work with more analytically tractable mean path lengths rather
than, say, median path lengths. As discussed below, connectedness may
or may not be a problematic assumption depending on the type of network
under consideration.

Under the algorithm, edges are added to the graph allowing for a
tendency toward clustering but with a variable degree of randomness (i.e.,
the algorithm permits edges to be added at random, as well as according
to the clustering criterion). By stopping the algorithm at a specified density,

8 There is an alternative network usage of the term clustering to refer to the clustering
of ties around certain nodes through the formation of stars, with transitivity referring
to triangulation (e.g., Frank and Strauss 1986). We use the term clustering as relating
to triangulation in accord with the usage adopted by the recent small world literature.
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Watts observed some expected results. With no randomness, graphs were
highly clustered, but path lengths tended to be long, as is the case of the
connected caveman graph. With too much randomness, on the other hand,
the random component of the algorithm overwhelmed the clustering as-
pect, and low clustering resulted, as is the case for graphs with edges
added randomly. But Watts also found that a small amount of randomness
in the model resulted in a class of graphs with relatively high clustering
and short characteristic path length, that is, small world graphs. Watts
developed an explanation of this shortening of paths through the estab-
lishment of “shortcuts” across the large cycle. Although we do not use a
cyclic substrate, the notion of shortcuts across a cycle is an important
element in what we present below.

Conceptually, our approach described below draws heavily on this
work, but the implementation differs in several important respects. We
do not concentrate on connected graphs, or graphs that originate from
various substrates. Rather than using a central tendency of characteristic
path length, we investigate the distribution of geodesics. We simulate
distributions of random graphs that have certain global properties emer-
gent from local dependencies among edges. To simulate, we use the Me-
tropolis algorithm with several advantages.9 The first is that it permits
us to simulate stochastic models for social networks that are derivable
from first principles using the Hammersley-Clifford theorem (Besag 1974)
and so possess a principled statistical basis. Different models embody
different assumptions about the relevant local social processes that might
generate the network. Accordingly, we are able to interpret any conclu-
sions specifically in terms of local social processes that may or may not
generate global properties. The second advantage is that, in principle, the
algorithm ensures convergence to a given distribution irrespective of the
starting point of the simulation. As a result, we need not be concerned
about a starting substrate, nor do we need to rely on an arbitrary stopping
rule. And we are able to derive statistics from a large sample of graphs
from a given distribution, giving generality to our conclusions. A third
advantage is that model parameters can also, in principle, be estimated
from observed network data (e.g., Snijders 2002), allowing useful com-
parisons between models under consideration and empirical observations.

Before we describe the details of our approach, we discuss briefly some
aspects of clustering and of characteristic path length and connectedness.

9 Several algorithms could have been used; see Snijders (2002) for a review of some
other possibilities.
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Clustering

In network-theoretic terms, the idea of clustering is closely related to that
of structural balance (Cartwright and Harary 1956), whereby individuals
who are friends (for instance) are consistent in their friendships (and
nonfriendships) with other people. As Holland and Leinhardt (1970, 1971)
recognized, structural balance essentially involves the notion of transi-
tivity in graphs, which in nondirected graphs is represented as the pres-
ence of triangles. If there is a triangle on a triad of nodes, the triad is
transitive. It will be apparent that a triangle comprises three two-stars.
If a two-star (which also involves a triad of nodes) is not part of a triangle,
then that triad is intransitive.

Structural balance is the outcome of a local process. We do not need
to inspect the whole graph to determine whether a particular triad of
nodes is balanced or not. The proportion of transitive to intransitive triads
in the graph is an aggregate measure of the tendency toward transitivity
and structural balance, and hence of clustering. Because any triangle
contains three two-stars, in what follows we use the proportion as3T/S2

the clustering coefficient C, where T is the number of triangles and theS2

number of two-stars in the graph as a whole (Newman, Strogatz, and
Watts 2001).10 (Note that if all triangles are transitive and the graphC p 1
can be partitioned into completely connected components.) In other words,
the clustering coefficient assesses the sharedness of balance-type processes
across the entire network. As will be seen below, the statistics T and S2

are also important in our models for Markov random graphs, so this
proportion is also naturally related to our method of graph simulation.

Characteristic Path Length and Connectedness

Watts (1999a) used the mean geodesic across the graph as the measure
of characteristic path length. The problem with utilizing a mean, however,
is that it can only be computed for connected graphs. Can we expect the
social networks we study to be connected? Erdös and Renyi (1959) showed
that almost all random graphs with number of nodes n will be connected
when the average degree is greater than . On a global scale, a networkln (n)
of a billion nodes would require average degree of around 20 for the
Erdös-Renyi theorem to apply, assuming of course that the graph was
indeed Bernoulli.

But ultimately it is unhelpful to do this simple calculation without
taking into account substantive considerations, in particular, the nature

10 This definition differs slightly from that used by Watts (1999a), the average of local
clustering. The two measures are in fact highly correlated.
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of the network under consideration. The point is that individuals are
embedded in many different social networks, each of which arises from
a social relationship of a particular type. The form and properties of the
underlying social relationship patterns a particular network. For instance,
we assume that average degree in a network of sexual relations is lower
than the average degree in a network of friends. If we ask whether sexual
networks are small world (and hence, for instance, possibly vulnerable to
rapid HIV transmission), we cannot presume that the networks are con-
nected. Even within the category of “friendship,” where an average degree
of 20 may be plausible, there are those who are close and trusted (strong
ties), and those who are not (weak ties). Granovetter (1973) argued that
strong-tie clusters are bridged principally by weak ties. Accordingly, we
do not necessarily expect that strong-tie networks will be connected, even
for very large graphs.11 And if we are dealing with small networks, con-
nectedness clearly may not be observed.

So our preference is to summarize the path-length distribution of a
graph in a way that does not depend on its being connected. We therefore
characterize the distribution of geodesic lengths in terms of certain-order
statistics, some of which may be infinite if the graph is not connected.
Where we require a single measure we use the median. Moreover, as
explained below, we examine geodesic distributions across a distribution
of graphs, so, for instance, a distribution of Bernoulli graphs will have a
particular profile of geodesic percentiles. We can then compare the profiles
of distributions of graphs with different properties.12

EXPONENTIAL RANDOM GRAPH ( ) MODELS AND THEIR∗p
SIMULATION

We simulate exponential random graph, or p*, models for social networks
(Frank and Strauss 1986; Pattison and Wasserman 1999; Robins, Pattison,
and Wasserman 1999; Wasserman and Pattison 1996; Pattison and Robins

11 Consideration of a network of only strong ties may be relevant, depending on the
type of question being addressed; for instance, it may be that certain types of infor-
mation (e.g., with sensitive or risky content) are transmitted only through trusted
partners, and hence this information may not be spread through small world processes,
even though for other types of less delicate information, small world processes may
apply.
12 These steps imply that we are engaged in empirical examination of simulation results,
and not seeking closed-form analytical results, for which a median (or any percentile
measure) is not usually amenable. As a reviewer has pointed out, there are of course
alternatives to using a median geodesic, for instance, the inverse of the sum of inverse
geodesics. This would be a measure of connectivity for which infinite paths contribute
zero. See also Newman (2003).
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2002). First, we summarize the formulation of the models, and then we
comment on the application of the Metropolis algorithm.

Exponential Random Graph (p*) Models

To begin, we need some standard terminology and notation. Let N p
be the set of network nodes and let the two-way{1, 2, . . . , n} n # n

(binary) array x denote an observed network on N (that is, if therex p 1ij

is an observed edge from node i to node j, and otherwise, withx p 0ij

a structural zero). Also let X denote a random graph or network on N,xii

with each possible edge, or tie, regarded as a random variable . ForXij

the purposes of this article, we regard possible ties as nondirected (so that
).X p Xij ji

In order to construct general models for , we need to rec-prob (X p x)
ognize that there may be dependencies among the network variables in
X. An analogous substantive statement is that particular social ties may
tend to be observed in the presence of other ties. For instance, a tendency
toward clustering and balance in a social system is, as noted above, a
tendency toward transitivity in the network. That is, the presence of a
two-star tends to be associated with the presence of a triangle, or, in other
words, the presence of an edge linking i and j is likely to be affected by
the presence of edges between i and k, and k and j. If this effect is indeed
present in the network, then there is interdependency among the variables

, , and .X X Xij ik kj

Frank and Strauss (1986) recognized that some fundamental theorems
for interdependent observations developed in spatial statistics could be
applied to assumed dependencies among network ties. Application of these
results yields a general expression for from a specificationprob (X p x)
of which pairs of possible ties are conditionally dependent, given the
values of all other ties. This arises from the Hammersley-Clifford theorem
(Besag 1974) which yields an expression for in terms ofprob (X p x)
parameters and substructures corresponding to sets of variables that are
mutually dependent;13 that is

prob (X p x) p (1/k) exp l z (x) , (1)� A A{ }
A

13 More formally, dependencies among possible network ties may be represented by a
dependence graph D (Robins and Pattison, in press). In a dependence graph, each
network variable is represented as a node, with an edge between two variables if they
are dependent, conditional on all other network variables. A clique of a dependence
graph D is either a single node (network variable) or a subset of nodes that are all
connected with each other by edges (i.e., a subset of variables that are all conditionally
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where

1. the summation is over all subsets A of the set of network variables
in X;

2. is the network statistic corresponding to subset A;z (x) p P xA (ij)�A ij

3. is a normalizing quantity; andk p � exp {� l z }A AX A

4. the parameter for all x unless all the variables in A arel p 0A

mutually (conditional) dependent.

Equation (1) is a general form. For the purposes of this article the
specific version we use is presented below as equation (3), which we will
interpret in fuller detail. But before doing so, there are some features of
the general form (1) that are worth noting. Each of the subsets A of
network variables may be construed as a local social neighborhood (Pat-
tison and Robins 2002), that is, a site of mutual contingency among net-
work ties, with such contingencies expressing a social process. For in-
stance, in the example of clustering above, the subset of possible ties

constitutes a local social neighborhood and the associatedA p {ij, ik, jk}
network variables are mutually conditionally dependent. The binary sta-
tistic is computed from x and takes the value one if all the possiblez (x)A

ties in the subset A are present in x. If all the possible ties in A are observed,
there is a triangle (a subgraph configuration) observed in x. If the pa-
rameter is large and positive, the probability of observing the networklA

x is enhanced if that triangle (the configuration corresponding to A) is
observed. If we take A to be not just a particular triangle, but a generic
triangular effect (i.e., we suppose that the parameter is the same forlA

all possible triangles in the network14), then the statistic becomes az (x)A

count of triangles in the network, and the parameter represents thelA

tendency for transitivity (i.e., clustering) in the network.
More generally, the models express the importance of various types of

network configurations (e.g., triangles), with each network configuration
relating to a parameter l and with the associated z statistic being a count
of that configuration in the network. The expression in (1) then represents
a probability distribution of graphs with the properties implied by the
configurations (e.g., models with a triangle parameter express tendencies
to clustering).

The simplest models arise if we assume no dependencies among network
variables at all (i.e., social ties are independent of each other). Allowing

dependent on each other). There is one and only one parameter for each subset of
variables that are mutually conditionally dependent.
14 Technically this step imposes homogeneity across isomorphic network configurations
(Wasserman and Pattison 1996). It corresponds to an assumption of sharedness of the
behavior across the network.
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that the probability of any tie is constant across all possible ties, we then
have the class of Bernoulli graphs, and the model is:

prob (X p x) p (1/k) exp {vL(x)}, (2)

where is the number of ties in the network x and v is a parameterL(x)
relating to the number of edges (sometimes called the edge or density
parameter). Here the relevant subgraph configuration is a single edge,
and the model is expressed in terms of such configurations, that is, the
number of edges.

For social networks, the assumption of independent ties is generally
implausible. Frank and Strauss (1986) introduced Markov dependencies,
whereby two possible edges are assumed to be conditionally dependent
if they share a node. For nondirected networks, the resulting model has
parameters relating to a small number of configurations: stars of various
types and triangles. For the purposes of this article, we shall concentrate
on the four Markov configurations of figure 1: single edges, two-stars,
three-stars, and triangles. The model then becomes

prob (X p x) p (1/k) exp {vL(x) � j S (x) � j S (x) � tT(x)}, (3)2 2 3 3

where and refer to the parameter associated with k-star effectsj S (x)k k

and the number of k-stars in x, respectively, and t and refer to theT(x)
parameter for triangles and the number of triangles, respectively. The
interpretation of the triangle parameter has been discussed above in terms
of clustering and balance; a k-star parameter relates to the propensity for
k-stars to be present in the network, that is, a tendency for individuals
to have connections with multiple network partners.15 Note that the Ber-
noulli graph distribution is a special case of (3) with only the edge pa-
rameter nonzero. For a Markov dependency assumption, the use of two-
stars and triangles has become standard. The rationale for the inclusion
of the three-star parameters in the models is given below.16

The model in (3) then represents a distribution of graphs based on edge,
star, and triangle parameters. The parameters relate to local subgraph

15 It is well known that the parameters in exponential random graph models are not
independent. Such interdependence is to be expected because the models treat two-
stars as two-way interactions among single-edge variables, and triangles as three-way
interactions. Of course, two- and three-way interactions in statistical methods are not
independent of each other, nor from main effects. The complexity of the interactivity,
however, does mean that small changes in parameter values may or may not have
large effects. This is the expected behavior of complex systems, and in part this article
is intended to explore such behavior.
16 Model specification appropriate for observed networks is a vexed question. This is
not an issue that immediately concerns us here, but our current recommendation, based
on the simulation results described below, is that at least three-stars should be included
in Markov graph models fitted to empirical network data.
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Fig. 1.—Configurations represented by parameters in the model: single edges, two-stars,
three-stars, and triangles.

configurations. By setting the parameters to particular values and then
simulating this distribution, we can investigate certain global network
properties across the distribution of these graphs.

With the model in equation (3) as the basis for our simulations, the
next few sections cover a number of technical details before we turn to
our results. In these technical sections, we outline the simulation approach,
we present our framework for comparing graphs and graph distributions
in order to determine important features in global structures, we discuss
the appearance of frozen patterns when parameter values are large, we
provide further detail on model interpretation and the rationale for the
inclusion of three-stars, and we briefly discuss our choices of parameter
values.

The Simulation Strategy

We simulate graph distributions based on (3) using the Metropolis algo-
rithm (Gilks, Richardson, and Spiegelhalter 1996). This technique was
first utilized for social networks by Strauss (1986). In summary, the al-
gorithm operates as follows. We decide on the model we wish to simulate
by fixing the values of the parameters, and we start with a randomly
chosen initial graph with a fixed number of nodes. At each iteration, we
propose a new graph as a candidate for the next step in a Markov chain.
The candidate graph is determined from the current graph x by se-′x
lecting at random a possible edge from i to j and changing to .x 1 � xij ij

We accept the candidate graph as the current graph whenever the can-
didate graph has an increased probability of being observed according to
(3). When the probability is not increased, we accept the candidate graph
with probability

′ ′ ′r p exp {v(L(x) � L(x )) � j (S (x) � S (x )) � j (S (x) � S (x ))2 2 2 3 3 3

′� t(T(x) � T(x ))}. (4)

The algorithm establishes a Markov chain on the state space of all graphs
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of order n and converges to a distribution of the form of (3). There may
be a “burn-in” period as the chain moves away from the starting graph
toward the distribution.

It should be emphasized that the simulation does not converge to a
particular graph. What is produced is a distribution of graphs. Graphs
in this distribution will be more probable, and so more likely to appear
in our sample, if they express the properties implied by (3) once parameter
values have been set. For instance, if we set t as positive, then there is
a tendency for graphs in the distribution to have more triangles than
would be the case if the parameter value were zero or negative. In this
way, we can simulate graphs with greater clustering. Of course, for tri-
angles to occur at all there have to be some two-stars present, so that
below, we typically set the two-star parameter as positive to ensure this.
As discussed below, this can be interpreted as a tendency for actors to
have multiple network partners. Of course, there needs to be a ceiling on
this tendency, else there is no reason why people should not be partners
with everyone else, and in realistic social networks, having too many
network partners is costly in terms of time and effort. Accordingly it is
useful to set the three-star parameter as negative. We discuss the relevance
of the three-star parameter more fully below. The edge parameter, on the
other hand, simply represents a baseline tendency for edges to be present.

We have simulated graphs of various sizes from 30 to 500 nodes. Most
of the results we present here are based on graphs of 100 nodes, in part
because larger graphs cannot readily be depicted to illustrate various
points. Generally, we seek to simulate distributions of graphs with low
density, principally because high-density graphs have high clustering and
short paths anyway, so that the small world nature of such graphs is
hardly in question. And, once again, it is easier to illustrate certain points
with depictions of low-density graphs, as the clarity of an illustration is
sometimes lost when there are many edges present. We achieve lower-
density graphs by adjusting the edge parameter v in (3) as required.17

In our simulations, we use 500,000 iterations. Burn-in is checked by
observing the stabilization of the statistics across iterations. As burn-in
typically occurs relatively early, we generally remove the first 50,000 it-
erations to ensure we are sampling from the distribution. We then sample
every 100th graph, giving a typical sample size of 4,500 from each
distribution.

For each sampled graph, apart from the model statistics (number of

17 We note that despite the usefulness of graphical depictions, we have chosen examples
rather carefully to make the representations clear. Of course, empirical networks may
not result in such clarity when depicted, so in general the analysis is more important
than the graphical representation.
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edges, two- and three-stars, and triangles), we calculate the following
aggregate measures: degree distribution, geodesic distribution in percen-
tiles (although for simplicity we shall use quartiles here), and clustering
coefficient. (We also collect, for depiction, a number of graphs as typical
representatives of the distribution.18) So for our graph distribution, we
have an accompanying distribution of clustering coefficients. The situation
is somewhat more complicated for degree distribution, for each sampled
graph from the graph distribution has its own distribution of node degrees.
For instance, in our sample of graphs the frequency of nodes with degree
one varies across a certain range. Below we use a series of boxplots to
represent this “distribution within a distribution.”

Although it can be proven that in principle the Metropolis algorithm
yields convergence to the desired probability distribution, in practice con-
vergence may take an exceptionally large number of steps. For example
if x is a high-probability graph, and its neighboring graphs much less′x
probable, then the algorithm may retain x for a very large number of
steps. When this happens, we refer to x as a frozen structure, and to the
Markov chain as showing poor mixing (Gilks et al. 1996). These circum-
stances are discussed further below.

Comparing Graphs and Graph Distributions

Our measures of global structure can be used to describe any of our
sampled graphs, but it is difficult to interpret them in the absence of a
basis for comparison. For instance, on what basis do we judge a median
geodesic length as “short”? In the most general sense, there are a number
of possible comparisons that could be made. Pattison et al. (2000) illus-
trated how to draw judgments about global structure through comparing
a graph of interest against a range of different graph distributions of
increasing complexity. Here, however, we make comparisons against a
relevant Bernoulli graph distribution, because as explained above, we
expect graphs in that distribution generally to have short average geo-
desics and low clustering.

To consider the structure of an individual graph, our approach is as
follows: we simulate a comparative Bernoulli distribution of graphs. We
then examine the graph’s clustering coefficient C against the distribution
of clustering coefficients from the Bernoulli sample. If C is extreme in
that distribution—that is, if it is greater than the ninety-fifth percentile—
we say that the graph is highly clustered. Similarly, we say that the graph’s
median geodesic (G50) is short if it is not extreme compared to the dis-
tribution of median geodesics from the Bernoulli sample—that is, if it is

18 We depict graphs using Pajek (Batagelj and Mrvar 2002).
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less than the ninety-fifth percentile. We can define short first-quartile
geodesics (G25) and short third-quartile geodesics (G75) similarly. We then
define a small world graph as having a short G50 and high clustering.19

We need to determine the appropriate comparative Bernoulli distri-
bution. We simulate the Markov graph distribution and calculate the
mean number of edges from the sample. We then simulate a Bernoulli
distribution with the same expected number of edges. We can then assess
each graph in the Markov sample against the Bernoulli sample as in the
previous paragraph, and determine, for instance, the percentage of small
world graphs (noting that in the Bernoulli sample no more than 5% of
graphs can be small world by definition). This enables us to assess whether
the local parameterization tends to result in small world graphs or some
other structure. At the same time, a comparison of degree distributions
across the two graph distributions is helpful in understanding the graph
structure, as will be seen below.

Frozen Patterns

As noted above, for some choices of parameter values the simulation may
reach a particular high-probability graph that remains as the current
graph for a large number of steps in the simulation. Such behavior is
common as the size of the parameters increases. Within the context of
general pattern theory, Grenander (1993) described such behavior as freez-
ing and posed what he termed the first limit problem: How does the
probability distribution behave as the interactions among variables are
made stronger? In the context of model (3), the question becomes one of
characterizing the random graph distribution as the parameters become
larger in absolute value. As Grenander demonstrated, scaling the param-
eters by an increasingly large constant positive value inevitably leads1/g
to freezing. In particular, as the parameters become larger (small values
of g), the probability density becomes concentrated uniformly on a subset

19 One could, of course, adopt more or less stringent versions of these criteria. For
instance, Watts (1999a) investigated caveman graphs with clustering coefficients close
to one. We show such examples below. For the most part, however, we do not insist
on clustering coefficients close to one but adopt the traditional statistical approach of
investigating extremes in a comparison distribution, in this case the distribution of
Bernoulli graphs. Of course, in a long enough simulation, a Bernoulli graph distribution
will produce a (small) number of highly clustered graphs, so adopting the extreme 5%
criterion is not unreasonable.
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of structures having minimum energy;20 such structures are often very
regular in form and are referred to as frozen patterns. Conversely, as g

increases in magnitude, the parameters of the model become very small
and the graph distribution approximates a Bernoulli distribution. In the
context of statistical mechanics, the parameter g can be regarded as tem-
perature—hence the description of patterns associated with small values
of g as frozen. Frozen patterns often occur in “degenerate” regions of the
parameter space, as discussed in the next section.

The presence of freezing may be examined in several ways, for instance,
by observing low variance in the degrees of individual nodes across the
iterations, or by tracking the number of times a candidate graph is ac-
cepted by the simulation algorithm, since freezing is characterized by a
very small acceptance rate.

Model Interpretation and the Importance of the Three-Star Parameter

We have discussed above a substantive interpretation of the triangle pa-
rameter as expressing the outcomes of a local social process relating to
structural balance.21 The edge parameter represents a baseline tendency
to form social ties. The star parameters are somewhat more complex. The
two-star parameter may be interpreted as a tendency to have multiple
network partners, as indeed may the three-star parameter. What we pre-
sent here are models with positive two-star and negative three-star pa-
rameters. Our substantive interpretation of this parameter pattern is that
actors tend to want multiple network partners (positive two-star) but
experience a cost in having too many (negative three-star). It should be
noted that higher-order stars contain lower-order stars, so that a node

20 Define the energy of a graph x as and the minimum energy mH(x) p �� l z(x)AA

as the minimum value of over all graphs in the state space. If K denotes the setH(x)
of graphs with minimum energy m and is a scaling constant for parameters,1/g (g 1 0)
then a scaling of the parameters of model (1) yields the model given by prob (X p

. This model can be rewritten in the form:x) p (1/k) exp {� (l /g)z (x)}A AAPM

′
′prob (X p x) p exp {�(H(x) � m)/g}/ FKF � {�(H(x ) � m)/g} ,�[ ]

x �K

from which it is clear that as g becomes smaller (and the model parameters become
larger), the probability of graphs in the minimum energy set K approaches and1/FKF
the probability of all other graphs approaches zero.
21 We want to be clear that we are not interpreting the Metropolis algorithm as in-
stantiating such processes—rather that algorithm is used to simulate graph distribu-
tions with certain properties. These properties can be interpreted as the outcomes of
(possibly unobserved) social processes. An exponential random graph distribution may
be construed as the stationary distribution of structures emergent from more overtly
process-based models (Snijders 2001, 2002).
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with degree four, for instance, is at the center of six two-stars and four
three-stars. Accordingly, there comes a point in the degree distribution,
determined by the relative values of the two- and three-star parameters,
at which a tendency for additional partners moves from positive to
negative.

Models with three-star parameters are helpful in order to construct
models that yield even rough approximations to observed networks. If
the highest-order star parameter in the model is sufficiently positive, the
complete graph will be a minimum energy graph, and the simulation will
move toward the complete graph and stay there with very high proba-
bility. Such models have been termed “degenerate” by Handcock (2003).22

Likewise, if the higher-order star is sufficiently negative, then the null
graph will be a minimum energy network, and the simulation will grav-
itate toward the null graph. For example, if the only star parameter in
the model is for a two-star, then the null graph will be a minimum energy
graph for sufficiently negative values of , and the complete graph willj2

be a minimum energy network for sufficiently positive values of . Indeed,j2

the range of values of for which probability is widely dispersed acrossj2

graphs in the state space may be quite small. For example, in figure 2,
we show graph statistics for graphs in the distribution for the model with
a fixed edge parameter v and varying two-star parameter . It is clearj2

from these figures that while the effect of is dependent on the valuej2

of v, there is a relatively low range of parameter values for which the
corresponding graph distributions have average densities in other than
the very low or very high range (see also Park and Newman 2004). Thus,
models with just an edge and a two-star parameter may be too simple to
capture some important characteristics of observed networks (such as
some simple aspects of connectedness). Of course, the behavior of the
models changes with the addition of a triangle parameter, but many of
the same features persist.

Accordingly, we have included a nonzero three-star parameter in all of
the models that we simulate below. (It is worth noting that stars are related
to the degree distribution, so that to model up to three-stars is in effect
to model the first three moments of the degree distribution.)

22 For this class of models, the issue of model degeneracy for certain parameter values
was first discussed by Strauss (1986). By model degeneracy, Strauss (1986) meant
situations where tended in probability to a minimum as the number of nodesH(x)
became large. In fact, this notion of degeneracy relates to what Grenander (1993) terms
the second limit problem: How does the probability distribution behave as the order
of the graph (and hence the number of random edges in the model) tends to infinity?
In terms of Grenander’s first limit problem, with fixed numbers of nodes, Handcock
(2002, 2003) has extensively investigated degenerate parameter regions for two-star
models for very small networks.



Fig. 2.—Mean numbers of edges and two-stars in simulated graph distributions on 30
nodes for edge two-star models with various parameter values.
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Choosing Parameter Values

In this article, we have chosen various parameter values based on our
exploration of the parameter space, simply to illustrate various points. In
the main, we seek to demonstrate that it is possible to achieve properties
akin to the small world with a few locally specified parameters that can
be interpreted in terms of local behaviors. More generally, we wish to
illustrate certain behaviors of the model under different parameter con-
ditions. Our results are not intended as claims to universality, but rather
to draw attention to possibilities, so in what follows we have pragmatically
chosen particular parameter values for these purposes. The following then
is not intended as an exhaustive investigation of the parameter space, as
has been done by Handcock (2002, 2003) for two-star models in very small
networks. Ultimately, of course, any investigation of whether particular
parameter values are more likely than others has to rest on empirical
investigations of observed networks in the context of careful model spec-
ification. In related work not reported here (Robins 2003), our approach
has been to estimate parameters from empirical network data, using newly
available Monte Carlo maximum likelihood procedures, and then to sim-
ulate from these estimates using the procedures in this article to investigate
the global properties implied by the empirical estimates.

SIMULATION RESULTS

A Distribution of Small World Networks

With our model parameterization, it is in fact not difficult to produce
small world graphs through a judicious choice of parameter values. So
we begin by presenting a distribution in which a substantial majority of
graphs satisfy our small world criteria, and then by adjusting the param-
eter values we change the features of the distribution in ways that are
revealing. For these simulations, we are aiming to produce graphs on 100
nodes that have around 100 edges, so density is quite low, approximately
2%.

The Markov random graph distribution we present is based on the
following vector of parameter values (�4.0, 0.1, �0.05, 1.0), where the
values are for the edge, two-star, three-star, and triangle parameters, re-
spectively. The mean number of edges for graphs in this sample was 119.5;
the sample from the comparable Bernoulli distribution had a mean num-
ber of edges of 119.9. Table 1 presents the basic graph statistics for the
Markov random graph sample with those for the Bernoulli sample. We
see that the means of the basic statistics are similar, except for triangles
and hence for clustering.
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TABLE 1
Graph Statistics from Markov Random Graph and Bernoulli Samples

Markov Random
Graph Sample

Bernoulli
Sample

Mean SD Mean SD

Edges . . . . . . . . . . . . . . . . . 119.5 12.3 119.9 12.7
Two-stars . . . . . . . . . . . . 289 60 285 62
Three-stars . . . . . . . . . . . 226 74 223 80
Triangles . . . . . . . . . . . . . 6.2 3.1 2.3 1.7
Cluster coefficient . . . .06 .03 .02 .02

Of course, we could perform the usual null-hypothesis statistical tests
to determine whether there are significant differences between the means
in table 1, but at conventional alpha levels for two independent samples
of 4,500 each, we have rather excessive power, with a capability of de-
tecting even slight differences. It is more appropriate in these circum-
stances to use a measure of effect size. There are various possible measures
of effect size that could be used. We present here the differences between
means scaled in terms of the standard deviation from the Bernoulli graph
distribution, . For the means in table 1, the difference in means(m � m )/j1 2

does not exceed 0.07 of a standard deviation, except for the triangles,
where the difference is 2.3 standard deviations, and for the clustering
coefficient, where the difference in means is 2.4 standard deviations. We
infer that there is a substantial effect for clustering in the Markov
distribution.

In the Markov random graph distribution, 83% of graphs have short
G25 (first quartile of geodesic distribution), 82% have short G50 (the 95%
cutoff in the Bernoulli graph distribution is a median path length of seven),
but only 48% have short G75; 66% of these graphs have high clustering,
and in this sample 54% are small world according to our criteria. What
seems to be happening here is that the increased clustering is not greatly
affecting median path length (G50) but is at the cost of increasing the
“long” geodesics (i.e., above the third-quartile G75). This is illustrated in
figure 3, which compares median geodesics and third-quartile geodesics
for both distributions. The patterns of median geodesics are not greatly
different, but for the longer geodesics there are substantially more infinite
G75 in the Markov graph distribution. And the comparison of degree
distributions indicates that there are not great differences between the
two samples (figure 4).

Finally figure 5 presents a representative graph from the Markov graph
distribution. This is a small world graph with 120 edges, a median path
length of five, and a clustering coefficient of 0.07. To the eye, the graph
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Fig. 3.—Frequencies of median geodesic (G50) and third-quartile geodesic (G75): Markov
graph sample and comparison Bernoulli graph sample.
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Fig. 4.—Small worlds: degree distribution for Markov graph and Bernoulli samples. (NB:
Dn refers to the number of nodes of degree n. Boxplots indicate the range of Dn across the
sample; outliers are excluded.)
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Fig. 5.—A small world graph

does not appear greatly different from a Bernoulli graph (not presented
here); a couple of important features are a tendency for some long cycles
and plenty of nodes with degree of four, five, or more (in line with figure
4). It is worth noting that many of the cycles intersect one another. In
terms of Watts’s (1999a) notion of shortcuts, two cycles that jointly in-
tersect create shortcuts for each other. This seems a highly efficient way
to create short paths. It is also worth noting that a node that is at the
intersection of two cycles must be at least a four-star.

Long Path Networks

We now present results for a simulation with parameters (�1.2, 0.05,
�1.0, 1.0). Compared to the previous example, the most important change
is to adjust the three-star parameter to be strongly negative, at the same
time as to increase the edge parameter to achieve a comparable density
of around 2%. We produce a Markov graph sample with a mean number
of edges of 123.6 (SDp4.1). Not surprisingly, the graphs in this sample
have fewer stars, especially higher-order stars, compared with the Ber-
noulli: for the Markov graph sample, the mean number of three-stars is
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69.7 (SDp10.0) compared to 252.3 (SDp74.6) for the Bernoulli sample
(difference in means is 2.4 Bernoulli standard deviations). But despite the
positive triangle parameter, the mean clustering coefficient for the Markov
graph sample of 0.030 (SDp0.02) is not substantially different from the
mean clustering coefficient of the Bernoulli sample (0.023, SDp0.02, dif-
ference in means is 0.4 of a standard deviation). According to our criteria,
less than 15% of the Markov graphs are highly clustered. The difference
in the number of stars is clearly illustrated by the truncated degree dis-
tribution of the Markov graph sample (see figure 6). In the sample, all
have long first-quartile geodesics (G25) and 99.8% have long median
geodesics (G50), although interestingly, few of the Markov graphs have
infinite G75, whereas a substantial proportion of the Bernoulli graphs do.
Apparently, as the short and median geodesics tend to be longer in the
Markov graph sample, more nodes become connected, so that there are
fewer infinite geodesics. This is borne out by figure 6, where the number
of isolated nodes (D0) is lower in the Markov graph sample.

In figure 7, we present a graph from the Markov graph sample that
illustrates the effect of the longer G25 and G50. This graph has 122 edges
and is typical of the distribution with low clustering coefficient and long
G25 and G50. The rather tight “circularity” of the graph in figure 5 still
seems to be apparent, but closer inspection reveals that paths tend to be
more implicated in larger cycles. There are fewer isolated nodes but,
importantly, few stars of higher order than three. In the graph in figure
7 there are only four four-stars, compared to 194 four-stars in the graph
in figure 5. As a result, there are many fewer mutually intersecting cycles.

To illustrate the point further, we present in figure 8 a graph from a
distribution generated from parameter values (�2.2, 0.05, �2.0, 1.0). For
this model, we have made the negative three-star effect even stronger and
adjusted the edge parameter. Without presenting all the details, some 80%
of these graphs have long G50, and 9% have high clustering, with only
1% small world. It is clear that the graph with 94 edges in figure 8 has
long paths and zero clustering. We compare it with an example of a
Bernoulli graph with 96 edges in figure 9. At this lower density, we see
that the Bernoulli graph has itself a number of long paths, but the higher-
order stars continue to create several larger intersecting cycles.

A Local Process to Produce a Global Small World

Of course, we are not claiming that these types of simulations represent
the only processes that can give rise to a small world. What we do wish
to illustrate is how locally specified effects may produce particular global
structures. Substantively, we argue that a network is likely to be small
world if the following conditions apply:



Fig. 6.—Long paths: degree distribution for Markov graph and Bernoulli samples
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Fig. 7.—A graph with long median paths

1. Individuals seek more than one network partner.
2. But the costs of maintaining many partners are high, so there is a

tendency against a multitude of partners.
3. There is some tendency for network partners to agree about other

possible partners (i.e., structural balance and clustering).
4. But this tendency is neither too strong (else the network becomes

too cliquelike with insufficient links between cliques for smaller ge-
odesics — which we illustrate below), nor too weak (else there is
little clustering in the network).

The last condition might be interpreted in terms of Granovetter’s (1973)
strong- and weak-ties argument. If all we have are strong ties, which tend
to cluster, then our “reach” across the network is limited.

In an organizational context, DeCanio, Dibble, and Amir-Atefi (2000)
argued that an efficient communication structure in a network can emerge
through mutually intersecting cycles, resulting from a tendency for mul-
tiple partners combined with a cost against having too many partners.
They performed a series of simulations based on cost and reward functions
that in effect implemented such rules. This result does not seem to be
widely known among small world researchers. Of course, a shortcut as
defined by Watts (1999a) is a global feature (because one can never be
sure that a path is indeed a shortcut unless one knows about the structure
of the rest of the graph). But the basis of the simulations by DeCanio et
al. (2000), as embodied in their cost and reward functions, is locally spec-
ified. The fact that these simulations produce shortcuts through mutually
intersecting cycles, in conjunction with our results reported here, provides
one possible local description of how short paths may emerge.
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Fig. 8.—A long path graph with low clustering

A Denser Nonclustered “World”

We now give an example of a denser network simulation, where what is
of interest is not so much geodesic length (because as noted above path
length tends to be short in denser graphs anyway). Rather, in this example
we wish to make some points about the degree distribution and also to
illustrate a tendency against clustering. We simulate for a strong propen-
sity for multiple partners, while retaining some cost against too many
partners, but with a large negative clustering effect, using the parameter
values (�3.2, 1, �0.3, �4.0). In this case, we have not fully compensated
with a large negative edge parameter to create very low-density graphs.
The strong tendency for two-stars results in a sample with a mean number
of edges of 371.5 (SDp5.0), implying a mean density of 7.5%, is three to
four times greater than in the previous samples.23 The first point to note
is that the negative triangle parameter successfully removes most triangles
from the Markov graphs, with the mean number of triangles being 1.0
(SDp1.0) compared to 67.9 (SDp12.5) in the comparative Bernoulli sam-

23 At this density, distinctive features in the structure are not readily discernible to the
eye, so we do not present examples of actual graphs.
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Fig. 9.—A Bernoulli graph

ple. The two degree distributions are presented in the top two panels of
figure 10. It is immediately apparent that the Markov sample has a degree
distribution that is truncated at both ends compared to the Bernoulli
sample.

Of course, this result in part arises from the restriction on the number
of nodes. Substantively, these parameter values can be interpreted to
describe persons who wish to have many network partners but have only
99 others from whom to choose. Hence we see very few low-degree nodes.
(In that sense, the effect of the actual parameter value is dependent on
the number of nodes, an issue we discuss further below.)

It is interesting to compare this result with the degree distribution for
a simulation without the negative triangle (negative t) effect, with pa-
rameters (�3.2, 1, �0.3, 0.0). The sample for this distribution has a mean
number of edges of 383.5 (SDp5.0), some two standard deviations above
that of the negative t distribution, but has a mean number of triangles
of 52.7 (SDp8.3), over six standard deviations above the negative t dis-
tribution. This is not surprising. What is interesting, however, is to con-
sider the degree distribution, which is presented in the bottom panel of
figure 10. While there are some differences between the two Markov
degree distributions, they nevertheless seem quite similar in comparison
to the Bernoulli distribution. An important point to make here, then, is



Fig. 10.—Degree distributions for some denser graphs
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that knowledge of the degree distribution does not necessarily give knowl-
edge about clustering.

The absence of triangles is not just a curiosity but has substantive
interpretation. There are real social networks where we see fewer triangles
than in random networks, for instance, networks of heterosexual partners.
What we have in the sample of negative t networks are graphs with
hardly any triangles (three-cycles) but many four-cycles.24 We might expect
to see such patterns in promiscuous heterosexual networks, with triangles
perhaps more prominent in homosexual (and maybe bisexual) networks.
The balance between three- and four-cycles in a sexual network may then
relate to levels of multiple partnerships among and across actors of dif-
ferent sexual orientation. Such outcomes have clear implications for the
understanding of HIV networks.

Sexual networks are a simple example of the possible relevance of four-
cycles as opposed to three-cycles. But they are not the only example. In
organizational contexts, for instance, four-cycles have important theoret-
ical implications in terms of generalized exchange and the building of
trust (Lazega and Pattison 1999).

RANDOMNESS AND STRUCTURE

We introduced frozen patterns earlier as minimum energy graphs and we
observed that there is a tendency for the simulation algorithm to become
“trapped” by such graphs. Although this poor mixing on the part of the
Metropolis algorithm is deleterious in terms of producing an adequate
simulation of the graph distribution, such regions of the parameter space
are often interesting in their own right, because they represent regular
structures. When such frozen patterns represent regular and stable struc-
tural forms, a description of the forms that they take and the class of
models from which they are derived are of theoretical interest in their
own right. As we noted earlier, we can consider g as a temperature factor,
so that as the temperature increases, the model can move from a frozen
to a less regular structure.

From Caveman Graphs to Random Graphs

Watts (1999a) introduced caveman graphs as part of his initial argument
about the importance of paths. These graphs comprise subsets of nodes
(the caves), which are fully connected within subsets but have no con-
nections between subsets (i.e., several complete components in the graph,

24 That is, cyclic paths that involve four nodes.
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with no connections between components). A connected caveman graph
has a cyclic pattern connecting the caves. These two graph types are
clearly highly structured, and the chance of observing them in a Bernoulli
distribution of graphs is miniscule.

We present here a series of simulations with a fixed set of values that,
once scaled by a temperature factor g, become the parameter values. For
ease of visual presentation of graphs, we fix the number of nodes to 30
in this illustration. We select a vector , 1, �0.3, 3.0); these valuesl p (�3.2
are based on the previous example, except that here we need a large and
positive triangle value (necessary to create the caves).25 In figure 11, we
compare two graphs from simulations for and . The graphg p 1 g p 6
for in the top panel of figure 11 is a highly regular caveman struc-g p 1
ture, comprising two fully connected components of 15 nodes each. The
second graph, however, is a much less regular structure, as we explain
below.

When , every sampled graph from our simulation has 210 edgesg p 1
and clustering coefficient of one. Across the sample (after burn-in), the
degree of each vertex never changes (which means that no changes to the
graph are accepted for every 100 iterations). Clearly this simulation has
frozen, mirrored by the perfect transitive structure presented in figure 11.
We have checked this stimulation with a number of random starts to
ensure we have not found a local energy minimum. There are variations
depending on random starts, but in all cases, two large caves resulted
although there might be variation in the size of the caves with the number
of nodes varying between 13 and 17, and possibly some isolates ap-
pearing.26 As the temperature increases, some small variation begins to
appear. For instance, by the time , a mean of 2.5 changes to theg p 4
graph are accepted for every 100 iterations, so the structure is not com-
pletely frozen. In the sample the mean number of edges is 205g p 4
(SDp2), and the mean clustering coefficient is 0.97 (SDp0.01). The me-
dian G50 is infinite. Yet, at some point between and we seeg p 4 g p 6
a phase transition, as the structure melts. (At , for instance, muchg p 5
longer runs are required to burn in to a highly regular two-cave structure,
indicating closeness to a transition.)

At , however, the distribution shows no signs of being frozen atg p 6
all. The graph in the lower panel of figure 11 has 180 edges and a clustering

25 The size of the triangle parameter, relative to the other parameter values, determines
the number and size of the caves. As shown in figure 11, the value of three chosen
here produces two caves when , whereas if we had chosen a value of two, theg p 1
result would be three caves.
26 We have similarly checked other simulations described in this section with multiple
starts to reach consistent conclusions.



Fig. 11.—Effects of parameter scaling for two temperatures



American Journal of Sociology

930

coefficient of 0.44. Across the sample, the mean number of edges is 173.0
(SDp5.7), and the mean clustering coefficient is 0.427 (SDp0.02). In this
simulation, an average of 65 changes to the graph are accepted for every
100 iterations. And the median G50 is now two. Yet this is not quite a
totally random graph distribution. A comparable Bernoulli graph sample
indeed has a median G50 of two, but has a mean clustering coefficient
of 0.397, over one standard deviation below that of the sample.g p 6
So a large proportion (94%) of graphs in the Markov sample are more
highly clustered than the Bernoulli graphs and have similar median path
lengths, that is, they are small world graphs by our criteria. But by the
time we increase the temperature to , there is little to differentiateg p 10
the sample from a comparable Bernoulli sample.27 For instance, the mean
clustering coefficient is 0.42 (SDp0.02) compared to 0.41 (0.03) for the
comparable Bernoulli sample, with median G50 remaining at two for
both samples.

This result concurs with those of Watts (1999a), in that at a certain
temperature a small addition to “randomness” (in our case, a small increase
in temperature) pushes a structured graph distribution with long median
geodesics into a less regular distribution with frequent small world graphs.
The ratios of the parameter values are of course retained as temperature
changes, but these ratios determine the frozen structure. So the particular
ratios chosen here lead to a clustered caveman world for low temperatures,
whereas for our first small world example above, decreasing the temper-
ature results in an empty graph, principally because in that case we chose
parameters to produce a low-density graph.

We have experimented with various parameter ratios, and with judi-
cious choices we can produce various structural forms at low tempera-
tures. In figure 12 we show some interesting examples that involve neg-
ative triangle parameters, producing cyclic structures of various types. In
the top panel of the figure we have a structure of cycles produced from
the parameter vector (�5.0, 5.0, �1.0,�6.0). The first point to note is that
this structure has four structural equivalence classes and could be sim-
plified into a perfectly fitting block model (White, Boorman, and Breiger
1976). There are no within-block ties, and each node is tied to every other
node in two other blocks. This structure can be construed as a frozen
generalized exchange structure, highly reminiscent of Bearman’s (1997)
cycle of marriage exchange among residents of Groote Eylandt (except
that the marriage cycle had eight equivalence classes). By adjusting the
parameters slightly, with a parameter vector (�4.2, 1.0, �0.05, �6.0), we

27 Although the Bernoulli sample does seem to have somewhat wider dispersion for
the statistics.
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Fig. 12.—Some frozen graph structures. Top panel: cyclic structures with four structural
equivalence classes. Bottom panel: complete bipartite graph.

produce the graph in the bottom panel of figure 12, a complete bipartite
graph.

CONCLUSIONS

In this article, we have (1) shown how to simulate a distribution of Markov
random graphs based on assumptions about simple local social processes;
(2) developed a method to examine the resulting global structures by
comparison with an appropriate Bernoulli distribution of graphs; (3) pro-
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vided examples of various stochastic global worlds that may result, in-
cluding small worlds, long path worlds, and dense nonclustered worlds
with many four-cycles; (4) suggested one locally specified social process
that may result in small world global properties; (5) shown how parameter
scaling relates to the movement from structure to randomness, with a
phase transition occurring at a certain scaling (temperature) so that a
highly regular structure melts into a less regular form; and (6) provided
examples of frozen structures, including highly clustered caveman graphs,
bipartite structures, and global cyclic structures involving structurally
equivalent groups.

There are some important points to make that bear on future work.
First of all, our methods are deliberately based on small-scale fixed-node
networks, which constitute a large proportion of the empirical work in-
volving social network analysis. Using these methods, an empirically ob-
served network can be compared to an appropriate Bernoulli graph dis-
tribution to investigate levels of clustering, geodesic length, and degree
distribution, permitting an examination of global structure. The methods
could be further built on by the comparison of an observed network
against a range of graph distributions with given properties expressing
certain structural hypotheses, as in Pattison et al. (2000). Such empirical
examination need not be confined to unimodal networks: we are currently
studying global structures of interlocking directorships through similar
approaches to bipartite graphs (Robins and Alexander 2004). On the other
hand, to consider local structure, one might fit an exponential random
graph (p*) model to the network, using recently developed Monte Carlo
maximum likelihood techniques (Handcock 2002, 2003; Snijders 2002).28

Even so, model specification remains an important issue, especially with
the need to avoid degenerate regions of the parameter space. Snijders et
al. (manuscript) propose new specifications for exponential random graph
models that go beyond Markov graph parameterizations. These specifi-
cations assist in avoiding degeneracy when fitting models to empirical
network data.

But these methods open additional possibilities for model examination:
by fitting models and then producing a distribution of graphs as described
above, a researcher can investigate whether the model is successful in
reproducing aspects of the observed global structure. If the global struc-
ture is not successfully reproduced, then it may be that model specification
should be reconsidered. In our introduction, we argued that observation,
modeling, and simulation should not be seen as separate, but rather as a

28 Approximate pseudolikelihood techniques (Strauss and Ikeda 1990), previously a
standard approach, should now be relied on only when maximum likelihood is not
feasible.
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package of complementary tools. To examine simulated global structure
from a model fitted to an observed network may be a demanding test of
model specification,29 but it clearly illustrates the value of combining these
approaches.

Even though our focus has been on fixed-node networks, the effect of
given parameter values for networks with different numbers of nodes is
an important issue. This is a matter for ongoing work. There are con-
ceptual problems here, however, as the number of nodes becomes in-
creasingly large. The Markov random graph dependence assumption im-
poses dependency among all possible ties from one actor to all other actors.
This seems to us, ultimately, to be untenable on substantive grounds:
individuals do not “know” all other actors in a large social network and
may have no plausible opportunity to meet some “distant” actors. In what
sense can such highly unlikely ties be said to influence possible ties to
those who are much more socially “proximate”? It is for such reasons that
Pattison and Robins (2002) introduced the notion of overlapping social
settings as “social locales” within which dependency amongst ties can come
into being. In this case, examination of node scale-up issues may not
require extension to graphs of indeterminate size.

There is much to be done on parameter scale-up and the transition
from less to more regular structures. The more regular structures are those
on which much of social network analysis has focused. We have presented
some simple examples here, but there are more complex possibilities: in
a multiple network framework, Pattison (2002) showed how freezing a
stochastic model can result in classic balance and strong-weak tie
descriptions.

We began by referring to the global structure of the Medici network
as the outcome of local social processes. Clearly, the Medici were particular
in that network, and Padgett and Ansell make clear why they were his-
torically special. In the end, our models may not be able to rest on node
homogeneity. The qualities of the actors are likely to count. It is in the
interplay of actor attributes and network ties that more realistic local
social processes will be described. Thus, an important next step is to extend
the approach described here to social selection models (Robins, Elliott,
and Pattison 2001), to social influence models (Robins, Pattison, and Elliott
2001), and to dynamic conjunctions of the two. It remains to be seen
exactly what the implications of these extensions will be for global struc-
ture, but it is likely that such a move will have the added benefit of
modeling the greater dispersion of degrees typically seen in empirical
networks compared to homogeneous random graphs (Albert and Barabási
2002; Pattison and Wasserman 2002).

29 Although not an impossible one—see Robins (2003).
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