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Abstract

This thesis explores how to sparsely represent distributions of points for geometric
statistical problems. A coreset C is a small summary of a point set P such that
if a certain statistic is computed on P and C, then the difference in the results
is guaranteed to be bounded by a parameter ε. Two examples of coresets are ε-
samples and ε-kernels. An ε-sample can estimate the density of a point set in any
range from a geometric family of ranges (e.g., disks, axis-aligned rectangles). An
ε-kernel approximates the width of a point set in all directions. Both coresets have
size that depends only on ε, the error parameter, not the size of the original data
set. We demonstrate several improvements to these coresets and how they are useful
for geometric statistical problems.

We reduce the size of ε-samples for density queries in axis-aligned rectangles to
nearly a square root of the size when the queries are with respect to more gen-
eral families of shapes, such as disks. We also show how to construct ε-samples of
probability distributions.

We show how to maintain “stable” ε-kernels, that is, if the point set P changes by
a small amount, then the ε-kernel also changes by a small amount. This is useful in
surveillance and tracking problems, and the stable properties leads to more efficient
algorithms for maintaining ε-kernels.

We next study when the input point sets are uncertain and their uncertainty
is modeled by probability distributions. Statistics on these point sets (e.g., radius
of smallest enclosing ball) do not have exact answers, but rather distributions of
answers. We describe data structures to represent approximations of these distribu-
tions and algorithms to compute them. We also show how to create distributions of
ε-kernels and ε-samples for these uncertain data sets.

Finally, we examine a spatial anomaly detection problem: computing a spatial
scan statistic. The input is a point set P and measurements on the point set. The
spatial scan statistic finds the range (e.g., an axis-aligned bounding box) where the
measurements inside the range are the most different from measurements outside
of the range. We show how to compute this statistic efficiently while allowing for a
bounded amount of approximation error. This result generalizes to several statistical
models and types of input point sets.
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Introduction

This thesis describes how to create small summaries of large data sets to answer geo-
metric statistical questions. For several problems we decrease the size of the summary
or increase the speed of the algorithm while preserving or improving accuracy. We
also develop new models; in particular, we define the stability of descriptors for dy-
namic data, and we propose a new way to represent statistics on uncertain input
data.

Sensed Data

In gathering data there is a trade-off between quantity and accuracy. The drop in the
price of hard drives and other storage costs has shifted this balance towards gathering
enormous quantities of data, yet with noticeable and sometimes intentional impreci-
sion. However, often as a benefit from the large data sets, models are developed to
describe the pattern of the data error. To properly analyze this data, computational
and statistical-based analysis should be used to compress the data to a useful form.

Let us take as an example Light Detection and Ranging (LIDAR) data gathered
for Geographic Information Systems (GIS) [76], specifically height values at millions
of locations on a terrain. Each data point (x, y, z) has an x-value (longitude), a
y-value (latitude), and a z-value (height). This data set is gathered by a small plane
flying over a terrain with a laser aimed at the ground measuring the distance from
the plane to the ground. Error can occur due to inaccurate estimation of the plane’s
altitude and position or artifacts on the ground distorting the laser’s distance reading.
But these errors are well-studied and can be modeled by replacing each data point
with a probability distribution of its actual position. Greatly simplifying, we could
represent each data point as a 3-variate normal distribution centered at its recorded
value. Also, as artifacts (e.g., bridges, mailboxes) are discovered and corrected the
data may by dynamically updated.

Similarly, large data sets are gathered and maintained for many other applica-
tions. In robotic mapping [113, 42] error models are provided for data points gath-
ered by laser range finders and other sources. In data mining [1, 12] original data
(such as published medical data) are often perturbed by a known model to preserve
anonymity. In spatial databases [51, 106, 33] large data sets may be summarized as
probability distributions to store them more compactly, and can be often updated.
Sensor networks [38] stream in large and changing data sets collected by cheap and
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thus inaccurate sensors. In protein structure determination [103] every atom’s posi-
tion is imprecise due to inaccuracies in reconstruction techniques and the inherent
flexibility in the protein. In summary, there are many large data sets with modeled
errors and dynamic updates.

Coresets

In the last decade, much work has focused on computing a “small summary” of large
data sets and on obtaining a good trade-off between the quality of the summary and
its size. One can then compute statistics on the summary instead of the entire data
set and prove that the statistic computed on the summary is a good approximation
of the optimal solution on the entire data set. This approach, however, generally
assumes that the original raw data are correct or that the errors generated by the
summary are comparable with the sensing errors and thus are acceptable.

Coresets, such as ε-samples [31] (often referred to as ε-approximations) and α-
kernels [4, 5], are examples of such approximate summaries (we described these
incarnations in more detail below). Specifically, for an input set P , a coreset C ⊂ P
is a (hopefully small) subset of P with the property that when certain functions
are calculated on C instead of P , the error is bounded in terms of ε or α. The
power of a coreset-based based approach is that we can use any coreset algorithm to
approximate a data set and then run the same algorithm on the coreset instead of
the original set, and thereby substantially reducing the required runtime.

ε-Samples. An ε-sample (often called an ε-approximation) is defined for a data set
P , often called a ground set, and a family of subsets of the data A, often called ranges.
This pairing of ground set and ranges is called a range space. For instance, the data
set P may be a point set describing the location of every household in the US, and
the family of subsets A may be all subsets of households within a fixed radius from
a query point (i.e. within a circular disk). Such a subset is shaded in Figure 1(b).
An ε-sample is a subset Q ⊂ P of the ground set such that for any range R ∈ A,
the fraction of points from Q in R is different from the fraction of points from P in
R by at most ε. Thus if Q is an ε-sample of US households and disks, and we ask
what fraction of the households in the US are within 150 miles of Philadelphia, we
can give an answer within ε (the answer might be 0.11 with ε = 0.02). Amazingly,
it has been shown [116] that a random sample of households of size proportional
to (1/ε2) log(1/εδ) is an ε-sample with probability ≥ 1 − δ. Thus if we sample on
the order of 10, 000 households, then with probability ≥ 0.99, we can answer any
such query within error ε = 0.02. Furthermore, the same number of samples would
work for the entire world with the same guarantees and for any query disk (e.g., the
fraction of world households within 600 miles of Zürich).

α-Kernels. An α-kernel approximates the extreme points for a set of d-dimensional
points P ⊂ Rd, so that it approximately preserves the width in every direction. Let
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(a) (b) (c)
Figure 1: (a) A point set P ⊂ R2. (b) An ε-sample Q ⊂ P with respect to disks,
highlighted. (c) An α-kernel K ⊂ P highlighted.

ω(P, u) be the width of a point set in direction u, see Figure 1(c). An α-kernel K ⊂ P
approximates P so that in any direction u the following holds ω(K, u) ≤ ω(P, u) ≤
(1 + α) · ω(K, u). We can construct α-kernels of size proportional to 1/α(d−1)/2 in
time linear in the size of the original data set [4]. For example, consider the set of
major league baseball players. For a particular season we can compute statistics of
how well they played, for instance, their on base percentage and slugging percentage.
Then we can represent the ith player as a two-dimensional point pi = (bi, si) where
bi is his on base percentage and si is his slugging percentage. Let P be the set of all
players, each represented as a 2-dimensional point. A popular statistic is on base plus
slugging (OPS) which for player i is described bi + si. So the maximum OPS among
all players is achieved by the extreme point in P in direction u, where u = (1, 1) —
this vector weights bi and si equally. However, say we wanted to compute a variation
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3-OPS

of OPS called γ-OPS that weights on base percentage by
γ and for player i is described as γbi+si. Then the player
with the maximum γ-OPS would be the extreme point
in P in direction uγ where uγ = (γ, 1) — this vector
weights bi γ times what it weights si. If we have an α-
kernel K ⊂ P of all players, then we can approximate
the best γ-OPS in P by the most extreme point in K
in direction uγ. This approximate maximum γ-OPS will
be within a (1 + α) factor of the true maximum. If we
keep more statistics for each player, then each player represents a higher dimensional
point; and if we construct a higher dimensional α-kernel of each player, then for any
linear combination of their statistics we can approximate the best value within a
(1 + α) factor.

Coresets exist for other problems, such as the smallest enclosing ball [25], k-center
clustering [10, 54], and shape fitting [119]. Additionally, ε-nets [58], a weaker form
of ε-samples, are coresets.

However, it is not always realistic or possible to assume that the input data are
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completely accurate, an assumption made by most generic algorithms for construct-
ing coresets. For instance, the US census does not release the exact location of all
households, just the number in each zip code. And we may want to predict a baseball
player’s statistics for the next year using a model for each player. Incorporating these
error models into the above examples could be visualized by replacing each point p
in Figure 1 with a normal distribution centered at p describing the possible location
of the true value of p. These normal distributions then model the uncertainty of the
point sets. Alternatively, we may find an error in the statistics of a certain baseball
player and may want to update our α-kernel without rebuilding the entire α-kernel.

Error Parameters

The algorithms we study in this thesis allow for three types of error parameters,
which for notational convenience we consistently denote with different Greek letters:
ε, α, and δ.

• Relative counting error is set by the parameter ε, such as in ε-samples. This
occurs in cases where we report a fraction of the total data set and are off in
this value by at most ε. For instance, we can estimate that Barack Obama
received 0.53 fraction (or 53%) of the 2008 popular vote for President with an
error of ε = 0.005, if the true value is between 0.525 and 0.535.

• Relative geometric error is set by the parameter α, such as in α-kernels. This
occurs when some extent measure on a point set is off by a (1+α) factor. For ex-
ample, we can report that the diameter (distance between two furthest points)
of Earth is 12770km with an error of at most 50km, then α = 50/12770 ≤ 0.004
(i.e. the true diameter is between 12720km and 12820km).

• Randomization error is set by the parameter δ. This occurs for a randomized
algorithm that may fail with probability δ. For example, two friends may have
10 identical outfits and would not want to both wear the same one on the
first day of school. If each chooses an outfit at random (this is a randomized
algorithm), then with probability δ = 1/10 they will wear the same outfit and
fail. An algorithm where δ = 0 is said to be deterministic.

The coresets we compute will have size dependent only on these parameters, not
the size of the input data. As a general rule, as the error parameters increase, the
algorithms run faster and produce smaller size summaries, but allow for larger errors.

Contributions of this Thesis.

This thesis improves on the construction of ε-samples and α-kernels in several ways
relevant to calculating statistics on dynamic and uncertain data. It builds several
algorithmic techniques that can be used for statistical geometric problems. It also
illustrates some of these techniques on a specific problem.
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Chapter 1 describes a deterministic algorithm for computing ε-samples of size
(1/ε) logO(1)(1/ε) for range spaces where the ground set is a point set in Rd and the
ranges are defined by a family of shapes that includes axis-aligned rectangles. We
also describe how to construct small ε-samples when the ground set represents a
probability distribution or a terrain. This chapter is mainly based on [96].

Chapter 2 describes an algorithm for dynamically maintaining an α-kernel under
dynamic insertions and deletions of points so that when one point is changed in the
original set a constant number of points change in the α-kernel. We call such an α-
kernel stable. The described algorithm is also the fastest known dynamic algorithm
for α-kernels, even if they are not required to be stable. This chapter also explores
the stability of the minimal size of an α-kernel with respect to the parameter α. This
chapter is based on [9] with Pankaj K. Agarwal and Hai Yu.

Chapter 3 focuses on data sets where instead of exact and precise point sets,
each point is modeled by a probability distribution. For such data sets, the answers
to statistical queries are not exact answers, but distributions of answers. Thus we
produce answers in the form of data structures to represent different types of dis-
tributions called ε-quantizations and ε-sip functions. This work heavily uses results
developed in Chapter 1 and develops the extension of α-kernels for this sort of data.
This chapter is based on [79] with Maarten Löffler.

Chapter 4 calculates spatial scan statistics, a spatial anomaly detection problem.
We provide algorithms with guaranteed approximation factors which perform as well
as or better than heuristic algorithms. This can be extended to deal with data of
the form focused on in Chapter 3. This chapter is based on two papers: The first [3]
is with Deepak Agarwal and Suresh Venkatasubramanian, and the second [2] is with
Deepak Agarwal, Andrew McGregor, Suresh Venkatasubramanian, and Zhengyuan
Zhu.
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1

Algorithms for ε-Samples of Distributions

Motivation

Representing complex objects by point sets (i.e. ε-samples) may require less storage
and may make computation on them faster and easier. For instance discrete ver-
sions of terrains or probability distributions may be represented as piecewise-linear
domains, but range volume queries over these domains requires complex integration.
Finding ranges which optimize statistics over piecewise-linear domains can reduce to
algebraic problems with no closed form solutions. Conversely, comparable queries
on domains represented as discrete point sets are often well studied with efficient
solutions, usually reducing to just counting the data points in a range. Because
polygonal domains usually already approximate a smooth domain and because solu-
tions on them cannot always be solved without numerical methods, it motivates the
use of other simpler forms of approximation, such as using discrete point sets.

Furthermore, it may be necessary to approximate a domain with a discrete point
set. Consider a domain that represents the distribution of some quantity that needs
to be gathered or monitored and for which we wish to deploy a set of sentinel nodes
proportional to the density of the domain. For example, given a distribution of where
crimes may occur, we may wish to place a set of police precincts so that within any
range, the proportions of crimes and of precincts are within some bound.

Alternatively, if the data is already a discrete point set, approximating it with
a much smaller point set relative to a fixed error tolerance can be used to greatly
reduce the size of a data set with limited sacrifice in quality. Other applications
include sensor networks, where a set of monitoring nodes are spread over a region.
We may want to monitor an area for large events that affect all nodes in a range
while conserving battery power and only keeping a fraction of the nodes (sentinel
nodes) on at any given time. The smaller the size of the sentinel node set, the longer
the same set of nodes can monitor an area by alternating which are turned on at any

6



given time.
This chapter focuses on algorithms for creating ε-samples, in particular those

which represent distributions as discrete point sets. Our main contributions are
two-fold. First, we describe for discrete distributions and range spaces using rectilin-
ear ranges how to deterministically create ε-samples of size (1/ε) logO(1)(1/ε). This
produces sets smaller than those created by deterministic algorithms for general
range spaces or those created by random sampling techniques. Second, we extend
these techniques to domains which represent Lebesgue-measurable point sets (e.g.
probability distributions and terrains), for rectilinear ranges as well as more general
families of ranges. We begin with definitions and background on ε-samples, as well
as on discrepancy, which is the basis for most deterministic ε-sample algorithms.

1.1 Definitions and Background

This section provides basic information on ε-samples and discrepancy. The sub-
section on ε-samples will be useful not only in this chapter, but also later in this
thesis. Discrepancy provides the basis for deterministic ε-sample algorithms, specif-
ically, combinatorial discrepancy for discrete points sets and Lebesgue discrepancy
for Lebesgue-measureable point sets such as probability distributions and terrains.

1.1.1 ε-Samples

In this chapter we mainly study point sets, which we call ground sets and we label
as P . These ground sets are usually either finite sets or are Lebesgue-measureable
sets. For a given ground set P , let A be a set of subsets of P induced by containment
in some geometric shape (such as balls or axis-aligned rectangles). The pair (P,A)
is called a range space. Let µ(·) represent the cardinality of a discrete set or the
Lebesgue measure for a Lebesgue-measurable set. We say that Q is an ε-sample of
(P,A) if

max
R∈A

∣∣∣∣
µ(R ∩Q)

µ(Q)
− µ(R ∩ P )

µ(P )

∣∣∣∣ ≤ ε.

A is said to shatter a discrete set X ⊆ P if each subset of X is equal to R ∩ X
for some R ∈ A. The cardinality of the largest discrete set X that A can shatter
is known as the VC-dimension. A classic result of Vapnik and Chervonenkis [116],
improved by Li, Long, and Srinivasan [74]1 states that for any range space (P,A)

1 Consider the metric dθ(a, b) = |a− b|/(a + b + θ) [57]. Li, Long, and Srinivasan [74] show that if
Q ⊂ P is a random sample of size O((1/ε2θ)(ν log(1/θ) + log(1/δ)) then with probability at least
1 − δ that for all R ∈ A dθ(µ(R ∩ Q)/µ(Q), µ(R ∩ P )/µ(P )) ≤ ε. Thus, setting θ = 1,

∣∣∣∣
µ(R ∩ Q)

µ(Q)
− µ(R ∩ P )

µ(P )

∣∣∣∣ ≤ ε

(
µ(R ∩ Q)

µ(Q)
+

µ(R ∩ P )

µ(P )
+ θ

)
≤ 3ε.

Hence, after scaling ε by 1/3, if Q ⊂ P is a random sample from P of size O((1/ε2)(ν + log(1/δ))
it is an ε-sample with probability at least 1 − δ.
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with constant VC-dimension ν there exists a subset Q ⊂ P consisting of O((ν/ε2))
points that is an ε-sample for (P,A). They also show, if each element of Q is drawn
uniformly at random from P such that |Q| = O((1/ε2)(ν + log(1/δ))), then Q is
an ε-sample with probability at least 1 − δ. Thus, for a large class of range spaces
random sampling produces an ε-sample of size O((1/ε2)). There exist ε-samples of
slightly smaller sizes [84], but efficient constructions are not known. If (P,A) has
VC-dimension ν, this also implies that (P,A) contains at most |P |ν sets.

Similarly, the shatter function π(P,A)(m) of a range space (P,A) is the maximum
number of sets S ∈ (P,A) where |S| = m. The shatter dimension σ of a range space
(P,A) is the minimum value such that π(P,A)(m) = O(mσ). It can be shown [55] that
σ ≤ ν and ν = O(σ log σ). For a range space (P,A′) where each element A′ ∈ A′ is
described by a function of k ranges A1, . . . , Ak ∈ A, then (P,A′) has VC-dimension
O(νk log k) [55].

For a range space (P,A) the dual range space is defined (A, P ∗) where P ∗ is all
subsets Ap ⊆ A defined for an element p ∈ P such that Ap = {A ∈ A | p ∈ A}.
If (P,A) has VC-dimension ν, then (A, P ∗) has VC-dimension ≤ 2ν+1. Thus, if
the VC-dimension of (A, P ∗) is constant, then the VC-dimension of (P,A) is also
constant [82]. Hence, the standard ε-sample theorems apply to dual range spaces as
well.

Let g : R → R+ be a function where
∫∞

x=−∞ g(x) dx = 1. We can create an
ε-sample Qg of (g, I+), where I+ describes the set of all one-sided intervals of the
form (−∞, t), so that

max
t

∣∣∣∣∣∣

∫ t

x=−∞
g(x) dx− 1

|Qg|
∑

q∈Qg

1(q < t)

∣∣∣∣∣∣
≤ ε.

We can construct Qg of size O(1/ε) by choosing a set of points in Qg so that the
integral between two consecutive points is always ε. But we do not need to be so

precise. Consider the set of 2/ε points {q′1, q′2, . . . , q′2/ε} such that
∫ q′i

x=−∞ = iε/2. Any

set of 2/ε points Qg = {q1, q2, . . . , q2/ε} such that q′i ≤ qi ≤ q′i+1 is an ε-sample.
A shape P ⊂ Rd+1 may describe a distribution µ : Rd → [0, 1]. Specifically,

for a point (p, h) ∈ Rd × R+, (p, h) ∈ P if h ≤ µ(p). Given a family of subsets of
Rd, this represents a probability space (Rd,A, µ). For notational convenience, we
sometimes represent this probability space as a range space as (µ,A). We note that
many common distributions µ, such as multivariate Gaussian distributions, can be
approximated by a polygonal shape P ∈ Rd. We call such distributions polygonally
approximable (see Section 1.4.3).

Deterministic construction of ε-samples. There exist deterministic constructions for
ε-samples. When P is the unit cube [0, 1]d there are constructions which can be in-
terpreted as ε-samples of size O(1/ε2d/(d+1)) for half spaces [81] and O((1/ε2d/(d+1)) ·
logd/(d+1)(1/ε)) for balls in d-dimensions [21]. Both have the same lower bounds
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of Ω(1/ε2d/(d+1)) [13]. See Matoušek [82] or Chazelle [31] for more similar results.
For a domain P , let Rd describe the subsets induced by axis-parallel rectangles in
d dimensions, and let Qk describe the subsets induced by k-oriented polygons (or
more generally polytopes) with faces described by k predefined normal directions.
More precisely, for β = {β1, . . . , βk} ⊂ Sd−1, let Gβ describe the set of convex poly-
topes such that each face has an outward normal ±βi for βi ∈ β. If β is fixed,
for a ground set P we will use Qk to denote the subsets of P described by inclu-
sion in a polytope from Gβ since it is the size k and not the actual set β that is
important. When P = [0, 1]d, then the range space (P,Rd) has an ε-sample of
size O((1/ε) logd−1(1/ε)) [52]. Also, for range space (Rd,A) where A is defined as
all homothets (translations and uniform scalings) of any particular G ∈ Gk, Skrig-
anov constructs an ε-sample of size O((1/ε) logd−1(1/ε) polylog(log(1/ε))). When
P is a discrete point set of size n, ε-samples of size O(((1/ε) log(1/ε))2−2/(ν+1))
exist for bounded VC-dimension ν [84], but there are not efficient constructions
known for sets of this size. Alternatively, ε-samples of size O((ν/ε2) log(ν/ε)) can
be constructed in time O(n · ((ν3/ε2) log(ν/ε))ν). In this spirit, for R2 and a dis-
crete point set of size n, Suri, Toth, and Zhou [112] construct an ε-sample of size
O((1/ε) log(εn) log4((1/ε) log(εn))) in the context of a streaming algorithm which
can be analyzed to run in time O(n((1/ε) log4(1/ε))3).

1.1.2 Lebesgue and Combinatorial Discrepancy

Lebesgue discrepancy. The Lebesgue discrepancy is defined for an n-point set Q ⊂
[0, 1]d relative to the volume of a unit cube [0, 1]d. 2 Given a range space ([0, 1]d,A)
and a point set Q, the Lebesgue discrepancy is defined

D(Q,A) = sup
R∈A

|D̄(Q,R)|, where D̄(Q,R) = n · |R ∩ [0, 1]d| − |R ∩Q|.

Optimized over all n-point sets, define the optimal Lebesgue discrepancy of ([0, 1]d,A)
as

D̂(n,A) = inf
Q⊂[0,1]d,|Q|=n

D(Q,A).

The study of Lebesgue discrepancy arguably began with the Van der Corput
set Cn [114], which satisfies D(Cn,R2) = O(log n). This was generalized to higher
dimensions by Hammersley [53] and Halton [52] so that D(Cn,Rd) = O(logd−1 n).
However, it was shown that many lattices also provide O(log n) discrepancy in the
plane [82]. This is generalized to O(logd−1 n log1+τ log n) for τ > 0 over Rd [108,
109, 22]. For a more in-depth history of the progression of these results we refer
to the notes in Matoušek’s book [82]. For application of these results in numerical
integration see Niederreiter’s book [91]. The results on lattices extend to homothets
of anyGk ∈ Qk forO(log n) discrepancy in the plane [108] andO(logd−1 n log1+τ log n)

2 Although not common in the literature, this definition can replace [0, 1]d with an hyper-rectangle
[0, w1] × [0, w2] × . . . × [0, wd].
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discrepancy, for τ > 0, in Rd [110], for some constant k. A wider set of geometric
families which include half planes, right triangles, rectangles under all rotations,
circles, and predefined convex shapes produce Ω(n1/4) discrepancy.

Lebesgue discrepancy describes an ε-sample of ([0, 1]d,A), where ε = f(n) =
D̂(n,A)/n. Thus we can construct an ε-sample for ([0, 1]d,A) of size gD(ε,A) as
defined below. (Solve for n in ε = D̂(n,A)/n).)

gD(ε,A) =

{
O((1/ε) logτ (1/ε)) for D̂(n,A) = O(logτ n)

O((1/ε)1/(1−τ)) for D̂(n,A) = O(nτ )
(1.1)

Combinatorial discrepancy. Given a range space (P,A) where P is a finite point set
and a coloring function χ : P → {−1,+1} we say the combinatorial discrepancy of
(P,A) colored by χ is

discχ(P,A) = max
R∈A

discχ(P ∩R) where

discχ(P ) =
∑

p∈P

χ(p) = |{p ∈ P : χ(p) = +1}| − |{p ∈ P : χ(p) = −1}| .

Taking this over all colorings and all point sets of size n we say

d̂isc(n,A) = max
{P :|P |=n}

min
χ:P→{−1,+1}

discχ(P,A).

Results about combinatorial discrepancy are usually proved using the partial
coloring method [20] or the Beck-Fiala theorem [24]. The partial coloring method
usually yields lower discrepancy by some logarithmic factors, but is nonconstructive.
Alternatively, the Beck-Fiala theorem actually constructs a low discrepancy coloring,
but with a slightly weaker bound. The Beck-Fiala theorem states that for a family of
ranges A and a point set P such that maxp∈P |{A ∈ A : p ∈ A}| ≤ t, disc(P,A) ≤
2t − 1. So the discrepancy is only a constant factor larger than the largest number
of sets any point is in.

Srinivasan [111] shows that d̂isc(n,R2) = O(log2.5 n), using the partial coloring

method. An earlier result of Beck [19] showed d̂isc(n,R2) = O(log4 n) using the
Beck-Fiala theorem [24]. The construction in this approach reduces to O(n) Gaus-
sian eliminations on a matrix of constraints that is O(n) × O(n). Each Gaussian
elimination step requires O(n3) time. Thus the coloring χ in the construction for

d̂isc(n,R2) = O(log4 n) can be found in O(n4) time. For more results on discrepancy
see Beck and Chen’s book [23].

Similar to Lebesgue discrepancy, the set Q = {q ∈ X | χ(q) = +1} generated

from the coloring χ for combinatorial discrepancy d̂isc(n,A) describes an ε-sample

of (X,A) where ε = f(n) = d̂isc(n,A)/n. Thus, given this value of ε, we can say
that Q is an ε-sample for (X,A) of size

g(ε,A) =

{
O((1/ε) logτ (1/ε)) for d̂isc(n,A) = O(logτ n)

O((1/ε)1/(1−τ)) for d̂isc(n,A) = O(nτ ).
(1.2)
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In the next section we generalize this result.

1.2 Deterministic Construction of ε-Samples for Discrete Point

Sets

Lemma 1.1. d̂isc(n,Qk) = O(log2k n) for points in Rd and the coloring that generates
this discrepancy can be constructed in O(n4) time, for k constant.

The proof combines techniques from Beck [19] and Matoušek [83].

Proof. Given a class Qk, each potential face is defined by a normal vector from
{β1, . . . , βk}. For j ∈ [1, k] project all points along βj. Let a canonical interval be
of the form

[
t
2q ,

t+1
2q

)
for integers q ∈ [1, log n] and t ∈ [0, 2q). For each direction βj

choose a value q ∈ [1, log n] creating 2q canonical intervals induced by the ordering
along βj. Let the intersection of any k of these canonical intervals along a fixed βj

be a canonical subset. Since there are log n choices for the values of q for each of the
k directions, it follows that each point is in at most (log n)k canonical subsets. Using
the Beck-Fiala theorem, we can create a coloring for X so that no canonical subset
has discrepancy more than O(logk n).

Each range R ∈ Qk is formed by at most O(logk n) canonical subsets. For each
ordering by βi, the interval in this ordering induced by R can be described by O(log n)
canonical intervals. Thus the entire range R can be decomposed into O(logk n)
canonical subsets, each with at most O(logk n) discrepancy.

Applying the Beck-Fiala construction of size n, this coloring requires O(n4) time
to construct.

Corollary 1.1. d̂isc(n,Rd) = O(log2d n) and the coloring that generates this discrep-
ancy can be constructed in O(n4) time, for d constant.

A better nonconstructive bound exists due to Matoušek [83], using the partial

coloring method. For polygons in R2 d̂isc(n,Qk) = O(k log2.5 n
√

log(k + log n)), and

for polytopes in Rd d̂isc(n,Qk) = O(k1.5⌊d/2⌋ logd+1/2 n
√

log(k + log n)).
Next we will describe how to iteratively apply this process efficiently to achieve

these bounds for any value of ε.

1.2.1 From Combinatorial Discrepancy to ε-Samples

We generalize the framework of Chazelle and Matoušek [32] describing an algorithm
for creating an ε-sample of a range space (P,A). Consider any range space (P,A),
with |P | = n, for which there is an algorithm to generate a coloring χ that yields the
combinatorial discrepancy discχ(P,A) and can be constructed in time O(nw · l(n))
where l(n) = o(n). For simplicity, we refer to the combinatorial discrepancy we can

construct discχ(P,A) as d̂isc(n,A) to emphasize the size of the ground set, and we
use equation (1.2) to describe g(ε,A), the size of the ε-sample it corresponds to.
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The values d̂isc(n,A), w, and l(n) are dependent on the range space (P,A) (i.e.,
see Lemma 1.1), but not necessarily its VC-dimension as in [32]. As used above, let

f(n) = d̂isc(n,A)/n be the value of ε in the ε-sample generated by a single coloring
of a set of size n — the relative error. We require that, f(2n) ≤ (1 − δ)f(n), for
constant 0 < δ ≤ 1; thus it is a geometrically decreasing function.

The algorithm will compress a set P of size n to a set Q of size O(g(ε,A)) such
that Q is an ε-sample of (P,A) by recursively creating a low discrepancy coloring.
We note that an ε-sample of an ε′-approximation is an (ε+ ε′)-approximation of the
original set.

We start by dividing P into sets of size O(g(ε,A)),3 here ε is a parameter. The
algorithm proceeds in two stages. The first stage alternates between merging pairs
of sets and halving sets by discarding points colored χ(p) = −1 by the combinatorial
discrepancy method described above. The exception is after every w + 2 halving
steps, we then skip one halving step. The second stage takes the one remaining
set and repeatedly halves it until the error f(|Q|) incurred in the remaining set Q
exceeds ε/(2 + 2δ). This results in a set of size O(g(ε,A)).

Algorithm 1.2.1 Creates an ε-sample for (P,A) of size O(g(ε,A)).

1: Divide P into sets {P0, P1, P2, . . .} each of size 4(w + 2)g(ε,A). 2

2: repeat {Stage 1}
3: for w + 2 steps do {or stop if only one set is left}
4: Merge: Pair sets arbitrarily (i.e. Pi and Pj) and merge them into a single

set (i.e. Pi := Pi ∪ Pj).
5: Halve: Halve each set Pi using the coloring χ from disc(Pi,A) (i.e. Pi =

{p ∈ Pi | χ(p) = +1}).
6: Merge: Pair sets arbitrarily and merge each pair into a single set.
7: until only one set, Q, is left
8: repeat {Stage 2}
9: Halve: Halve Q using the coloring χ from disc(Q,A).

10: until f(|P |) ≥ ε/(2 + 2δ)

Theorem 1.1. For a finite range space (P,A) with |P | = n and an algorithm to
construct a coloring χ : P → {−1,+1} such that

• the set {p ∈ P : χ(p) = +1} is an α-approximation of (P,A) of size g(α,A)
with α = discχ(P,A)/n (see equation (1.2)).

• χ can be constructed in O(nw · l(n)) time where l(n) = o(n).

then Algorithm 1.2.1 constructs an ε-sample for (P,A) of size O(g(ε,A)) in time
O(ww−1n · g(ε,A)w−1 · l(g(ε,A)) + g(ε,A)).

3 If the sets do not divide equally, artificially increase the size of the sets when necessary. These
points can be removed later.
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Proof. Let 2j = 4(w + 2)g(ε,A), for an integer j, be the size of each set in the
initial dividing stage (adjusting by a constant if δ ≤ 1/4). Each round of Stage 1
performs w + 3 Merge steps and w + 2 Halve steps on sets of the same size and
each subsequent round deals with sets twice as large. The union of all the sets is an
γ-sample of (P,A) (to start γ = 0) and γ only increases in the Halve steps. The ith
round increases γ by f(2j−1+i) per Halve step. Since f(n) decrease geometrically as
n increases, the size of γ at the end of the first stage is asymptotically bounded by the
increase in the first round. Hence, after Stage 1 γ ≤ 2(w+2)f(4(w+2)g(ε,A)) ≤ ε/2.
Stage 2 culminates the step before f(|P |) ≥ ε/(2 + 2δ). Thus the final Halve step
creates an (εδ/(2 + 2δ))-approximation and the entire second stage creates an ε/2-
approximation, hence overall Algorithm 1.2.1 creates an ε-sample. The relative error
caused by each Halve step in stage 2 is equivalent to a Halve step in a single round
of stage 1.

The running time is also dominated by Stage 1. Each Halve step of a set of
size 2j takes O((2j)wl(2j)) time and runs on n/2j sets. In between each Halve

step within a round, the number of sets is divided by two, so the running time is
asymptotically dominated by the first Halve step of each round. The next round
has sets of size 2j+1, but only n/2j+w+2 of them, so the runtime is at most 1/2 that
of the first Halve step. Thus the running time of a round is less than half of that
of the previous one. Since 2j = O(wg(ε,A)) the running time of the Halve step,
and hence the first stage is bounded by O(n · (w · g(ε,A))w−1 · l(g(ε,A)) + g(ε,A)).
Each Halve step in the second stage corresponds to a single Halve step per round
in the first stage, and does not affect the asymptotics.

We can invoke Theorem 1.1 along with Lemma 1.1 and Corollary 1.1 to com-
pute χ in O(n4) time (notice that w = 4 and l(·) is constant), so g(ε,Qk) =
O((1/ε) log2k(1/ε)) and g(ε,Rd) = O((1/ε) log2d(1/ε)). We obtain the following
important corollaries.

Corollary 1.2. For a set of size n and over the ranges Qk an ε-sample of size
O((1/ε) log2k(1/ε)) can be constructed in time O((n/ε3) log6k(1/ε)).

Corollary 1.3. For a set of size n and over the ranges Rd an ε-sample of size
O((1/ε) log2d(1/ε)) can be constructed in time O((n/ε3) log6d(1/ε)).

Weighted case. These results can be extended to the case where each point p ∈ P
is given a weight µ0(p) and for any Q ⊆ P let µ(Q) =

∑
q∈Q µ0(q). Now an ε-sample

of a range space (P,A) is a set Q ⊆ P and a weighting µ0 : P → R such that

max
R∈A

∣∣∣∣
µ(Q ∩R)

µ(Q)
− µ(P ∩R)

µ(P )

∣∣∣∣ ≤ ε.

The weights on Q may differ from those on P . A result from Matoušek [80], invoking
the unweighted algorithm several times at a geometrically decreasing cost, creates a
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weighted ε-sample of the same asymptotic size and with the same asymptotic runtime
as for an unweighted algorithm. This extension is important when we combine ε-
samples representing regions of different total measure. For this case we weight each
point relative to the measure it represents.

1.3 Sampling from Polygonal Ground Sets

We will prove a general theorem for deterministically constructing small ε-samples
for polygonal ground sets which will have direct consequences on polygonal terrains.
A key observation of Matoušek [80] is that the union of ε-samples of disjoint ground
sets forms an ε-sample of the union of the ground sets. Thus for any polygonal
ground set P we first divide it into pieces for which we can create ε-samples. Then
we merge all of these point sets into an ε-sample for the entire domain. Finally, we
use Theorem 1.1 to reduce the sample size.

Instead of restricting ourselves to ground sets which we can divide into cubes
of the form [0, 1]d, thus allowing the use of Lebesgue discrepancy results, we first
expand on a result about lattices and polygons.

Lattices and polygons. A lattice Λ in Rd is an infinite set of points defined such that
for d vectors VΛ = {v1, . . . , vd} that form a basis, for any point p ∈ Λ, p + vh and
p − vh are also in Λ for any h ∈ [1, d]. We also specify an origin point v0 ∈ Λ. Λ is
irrational with respect to any polytope in Gβ if for all βi ∈ β, for all vh ∈ VΛ, and for
all j, l ≤ d, the fraction βi,j/vh,l is irrational. (Note that βi,j (resp. vh,l) represents
the jth (resp. lth) element of the vector βi (resp. vh).) Lattices with Λ irrational
(relative to the face normals) generate low discrepancy sets.

Theorem 1.2. Let β, β′ ⊂ Sd−1 be sets of k and h directions, respectively. Let
Gh ∈ Gβ′ be a fixed convex polytope. Let Qk be the set of ranges defined by directions
β. We can choose a lattice Λ such that Λ ∩ Gh is an ε-sample of (Gh,Qk) of size
O(((k + h)/ε) logd−1(1/ε) polylog(log(1/ε))).

Proof. Consider polytope sGh ∈ Gβ′ and lattice Λ, where the uniform scaling factor
s is treated as an asymptotic quantity, and let µ(Gh) = O(1/n) (i.e. the Lebesgue-
measure in Rd of polytope Gh is Θ(1/n)) for some integer n. For notational simplicity
let MΛ = Λ ∩ [0, 1]d, and assume sGh + t ⊂ [0, 1]d. Skriganov’s Theorem 6.1 in [110]
claims

max
t∈Rd

D̄(MΛ, sGh + t ∩MΛ) = O

(
sd−1ρ−θ +

∑

f

Sf (Λ, ρ)

)

where
Sf (Λ, ρ) = O(logd−1 ρ log1+τ log ρ)

for τ > 0, as long as Λ is irrational with respect to the normal of the face f of Gh

and infinite otherwise, where θ ∈ (0, 1) and ρ can be arbitrarily large. Note that this
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is a simplified form yielded by invoking Theorem 3.2 and Theorem 4.5 from [110].
By setting ρθ = sd−1,

max
t∈Rd

D̄(MΛ, sGh + t ∩MΛ) = O(h logd−1 s log1+τ log s). (1.3)

Now by noting that as s grows, the number of lattice points in sGh grows by a
factor of sd, and we can set s = n1/d so (1.3) implies that D̄(MΛ, sGh ∩ MΛ) =
O(h logd−1 n log1+τ log n) for |MΛ| = n.

The discrepancy is a sum over the set of h terms, one for each face f , each of
which is small as long as Λ is irrational with respect to f ’s normal βf . Hence this
lattice gives low discrepancy for any polytope in the analogous family Gβ such that
Λ is irrational with respect to Gβ. Finally we realize that any subset Gh ∩ Gk for
Gh ∈ Gβ′ and Gk ∈ Gβ is a polytope defined by normals from β′∪β. Let Qk+k′ be the
ranges defined by directions β ∪ β′, and then refer to gD(ε,Qk+k′) in (1.1) to bound
the size of the ε-sample from the given Lebesgue discrepancy.

Remark. Skriganov’s result [110] is proved under the whole space model where the
lattice is infinite (tGh is not confined to [0, 1]d), and the relevant error is the difference
between the Lebesgue measure of tGh versus the cardinality |tGh ∩ Λ|, where each
p ∈ Λ represents 1 unit of measure. Skriganov’s main results is summarized in
equation (1.3) and only pertains to a fixed polytope Gh instead of, more generally,
a family of polytopes Gβ, as shown in Theorem 1.2.

Samples for polygonal terrains. Combining the above results and weighted extension
of Theorem 1.1 implies the following results.

Theorem 1.3. We can create a weighted ε-sample of size O((k+k′)(1/ε) · log2k(1/ε))
of (P,Qk) in time O((k + k′)(n/ε4) polylog(1/ε)) for any d-dimensional ground set
P which can be decomposed into n d-dimensional convex k′-oriented polytopes.

Proof. We divide the domain into n k′-oriented polytopes and then approximate each
polytope Gk′ with a point set Λ∩Gk′ using Theorem 1.2. We observe that the union
of these point sets is a weighted ε-sample of (P,Qk), but is quite large. Using the
weighted extension of Theorem 1.1 we can reduce the point sets to the size and in
the time stated.

This has applications to terrain ground sets P defined with a piecewise-linear
base B and height function h : B → R. We decompose the terrain so that each
linear piece of h describes one 3-dimensional polytope, then apply Theorem 1.3 to
get the following result.

Corollary 1.4. For terrain ground set P with piecewise-linear base B and height
function h : B → R with n linear pieces, we construct a weighted ε-sample of (P,Qk)
of size O(k(1/ε) log4(1/ε)) in time O(k(n/ε4) polylog(1/ε)).
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1.3.1 ε-Samples for Distributions and Shapes with Bounded VC-Dimension.

In this subsection we extend the results described in this section to ranges A so that
(Rd,A) has bounded VC-dimension.

The general scheme to create an ε-sample for (P,A), where P ∈ Rd is a polyg-
onal shape, is to use a lattice Λ of points. We first create a discrete (ε/2)-sample
M = Λ ∩ P of (P,A) and then create an (ε/2)-sample Q of (M,A) using standard
techniques [32] or Corollary 1.2. Then Q is an ε-sample of (P,A). For a shape P
with m (d − 1)-faces on its boundary, any subset A′ ⊂ Rd that is described by a
subset from (P,A) is an intersection A′ = A ∩ P for some A ∈ A. Since P has m
(d−1)-dimensional faces, when νA is the VC-dimension of (Rd,A), we can bound the
VC-dimension of (P,A) as ν = O((m+ νA) log(m+ νA)). Finally the set M = P ∩Λ
is determined by choosing an arbitrary initial origin point in Λ and then uniformly
scaling all vectors {v1, . . . , vd} until |M | = Θ((ν/ε2) log(ν/ε)) [82].

It follows that we can create such an ε-sample of size |M | in time O(|M |m log |M |)
by starting with a scaling of the lattice so a constant number of points are in S and
then doubling the scale until we get to within a factor of d of |M |. If there are n
points inside S, it takes O(nm) time to count them.

Lemma 1.2. For a polygonal shape P ⊂ Rd with m facets, we can construct an
ε-sample for (P,A) of size O((ν/ε2) log(ν/ε)) in time O(m(ν/ε2) log2(ν/ε)), where
(P,A) has VC-dimension νA and ν = O((νA +m) log(νA +m)).

Remark. An important part of the above construction is the arbitrary choice of
the origin points of the lattice Λ. This allows us to arbitrarily shift the lattice defining
M and thus the set Q. In Section 3.5 we need to construct n ε-samples {Q1, . . . , Qn}
for n range spaces {(P1,A), . . . , (Pn,A)}. In Algorithm 3.5.2 we examine sets of
νA points, each from separate ε-samples that define a minimal shape A ∈ A. It is
important that we do not have two such (possibly not disjoint) sets of νA points that
define the same minimal shape A ∈ A. (Note, this does not include cases where
say two points are antipodal on a disk and any other point in the disk added to a
set of νA = 3 points forms such a set; it refers to cases where say four points lie
(degenerately) on the boundary of a disc.) We can guarantee this by enforcing a
property on all pairs of origin points p and q for (Pi,A) and (Pj,A). For the purpose
of construction, it is easiest to consider only the lth coordinates pl and ql for any
pair of origin points or lattice vectors (where the same lattice vectors VΛ are used
for each lattice). We enforce a specific property on every such pair pl and ql, for all
l and all distributions and lattice vectors.

First, consider the case where A = Rd describes axis-aligned bounding boxes. It
is easy to see that if for all pairs pl and ql that (pl − ql) is irrational, then we cannot
have > 2d points on the boundary of an axis-aligned bounding box, hence the desired
property is satisfied.

Now consider the more complicated case where A = B describes smallest en-
closing balls. There is a polynomial of degree 2 that describes the boundary of
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the ball, so we can enforce that for all pairs pl and ql that (pl − ql) is of the form
c1(rpl

)1/3 + c2(rql
)1/3 where c1 and c2 are rational coefficients and rpl

and rql
are dis-

tinct integers that are not multiple of cubes. Now if ν = d + 1 such points satisfy
(and in fact define) the equation of the boundary of a ball, then no (d + 2)th point
which has this property with respect to the first d+ 1 can also satisfy this equation.

More generally, if A can be described with a polynomial of degree p with ν
variables, then enforce that every pair of coordinates are the sum of (p + 1)-roots.
This ensures that no ν+1 points can satisfy the equation, and the undesired situation
cannot occur.

1.4 Sampling from Smooth Ground Sets

We can create an ε-sample for a smooth Lebesgue-measureable ground set P (one
which cannot be decomposed into polytopes) in a three stage process. The first stage
approximates any ground set with a set of polytopes. The second approximates each
polytope with a point set. The third merges all point sets and uses Theorem 1.1 to
reduce their size.

This section mainly focuses on the first stage, however, we also offer an im-
provement for the second stage in a relevant special case. More formally, we can
approximate a non-polygonal ground set P with a set of disjoint polygons Q such
that Q has properties of an ε-sample.

Lemma 1.3. If µ(P \Q) ≤ (ε/2)µ(P ) and Q ⊆ P then

max
R∈A

∣∣∣∣
µ(R ∩Q)

µ(Q)
− µ(R ∩ P )

µ(P )

∣∣∣∣ ≤ ε.

Proof. No range R ∈ A can have
∣∣∣∣
µ(R ∩Q)

µ(Q)
− µ(R ∩ P )

µ(P )

∣∣∣∣ > ε

because if µ(P ) ≥ µ(Q) (w.l.o.g.), then µ(R∩P )−(µ(P )/µ(Q))µ(R∩Q) ≤ εµ(P ) and
µ(R∩Q)(µ(P )/µ(Q))−µ(R∩P ) ≤ εµ(P ). The first part follows from µ(P )/µ(Q) ≥ 1
and is loose by a factor of 2. For the second part we can argue

µ(R ∩Q)
µ(P )

µ(Q)
− µ(R ∩ P ) ≤ µ(R ∩Q)

1

1 − ε/2
− µ(R ∩ P )

≤ µ(R ∩ P )
1

1 − ε/2
− µ(R ∩ P )

=
ε/2

1 − ε/2
µ(R ∩ P )

≤ εµ(R ∩ P ) ≤ εµ(P ).
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We say a ground set P ⊂ Rd is polygonal approximable if there exists a polygonal
shape Q ⊂ P with m facets such that µ(P \ Q) ≤ εµ(P ) for any ε > 0. Usually, m
is dependent on ε.

For terrain ground set P defined with a base B and a height function h : B →
R, if B is polygonal we can decompose it into polygonal pieces, otherwise we can
approximate it with constant-size polygonal pieces according to Lemma 1.3. Then,
similarly, if h is polygonal we can approximate the components invoking Corollary
1.4; however, if it is smooth, then we can approximate each piece according to Lemma
1.3.

Section 1.4.1 improves on Theorem 1.2 for the second stage and gives a more
efficient way to create an ε-sample for (P,Rd ×R) of a terrain when B is a rectangle
and h is linear. Ranges from the family Rd×R are generalized hyper-cylinders in d+1
dimensions where the first d dimensions are described by an axis-parallel rectangle
and the (d + 1)st dimension is unbounded. Section 1.4.2 focuses on the first stage
and uses this improvement as a base case in a recursive algorithm (akin to a fair
split tree) for creating an ε-sample for (P,Rd × R) when B is rectangular and h is
smooth.

1.4.1 Stretching the Van der Corput Set

The Van der Corput set [114] is a point set Qn = {q0, . . . , qn−1} in the unit square
defined for qi = (i/n, b(i)) where b(i) is the bit reversal sequence. For simplicity we
assume n is a power of 2. The function b(i) writes i in binary, then reverses the
ordering of the bits, and places them after the decimal point to create a number in
[0, 1). For instance for n = 16, i = 13 = 1101 in binary and b(13) = 0.1011 = 11/16.
Formally, if i =

∑log n
i=0 ai2

i then b(i) =
∑log n

i=0 (ai/2
i+1).

Halton [52] showed that the Van der Corput setQn satisfiesD(Qn,R2) =O(log n).
We can extend this to approximate any rectangular domain. For a rectangle [0, w]×
[0, l] (w.l.o.g.) we can use the set Qn,w,l where qi = (w · i/n, l · b(i)) and a version of
the Lebesgue discrepancy over a stretched domain is still O(log n).

We can stretch the Van der Corput set to approximate a rectangle r = [0, w]×[0, l]
with a weighting by an always positive linear height function h(x, y) = αx+ βy+ γ.
Let ∆(w, α, γ, i) be defined such that the following condition is satisfied

∫ ∆(w,α,γ,i)

0

(αx+ γ)dx =
i

n

∫ w

0

(αx+ γ)dx.

Note that we can solve for ∆ explicitly and because h is linear it can simultaneously
be defined for the x and y direction. Now define the stretched Van der Corput set
Sn,w,l,h = {s0, . . . , sn} for si = (∆(w, α, γ, i),∆(l, β, γ, b(i) · n)).

Theorem 1.4. For the stretched Van der Corput set Sn,w,l,h, D(Sn,w,l,h,R2) = O(log n)
over the domain [0, w]× [0, l] with h : [0, w]× [0, l] → R+ a linear weighting function.
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The proof follows the proof in Matoušek [82] for proving logarithmic discrepancy
for the standard Van der Corput set in the unit square.

Proof. Let a canonical interval be of the form [∆(l, β, γ, k)/2q, ∆(l, β, γ, k + 1)/2q)
for integers q ∈ [1, n] and k ∈ [0, 2q). Let any rectangle r = [0, a) × I where I is
canonical and a ∈ (0, 1] be called a canonical rectangle.

Claim 1.1. For any canonical rectangle r, D̄(Sn,w,l,h, r) ≤ 1.

Proof. Like in the Van der Corput set, every subinterval of r such that h(r) = 1/n has
exactly 1 point. Let I = [∆(l, β, γ, k)/2q, ∆(l, β, γ, k + 1)/2q). Thus each rectangle
rj = [∆(l, β, γ, j2q/n),∆(l, β, γ, (j+1)2q/n))× I contains a single point from Sn,w,l,h

and h(rj) = 1/n, where h(r) =
∫

r
h(p)dp.

So the only part which generates any discrepancy is the canonical rectangle rj

which contains the segment a×I. But since |Sn,w,l,h∩rj ∩r| ≤ 1 and h(rj ∩r) ≤ 1/n,
the claim is proved.

Let Cd be the family of ranges defined by d-dimensional rectangles with the lower
left corner at the origin. Let C(x,y) ∈ C2 be the corner rectangle with upper right
corner at (x, y).

Claim 1.2. Any corner rectangle C(x,y) can be expressed as the disjoint union of at
most O(log n) canonical rectangles plus a rectangle M with |D̄(Sn,w,l,h,M)| ≤ 1.

Proof. Starting with the largest canonical rectangle r0 = [0, a)× I within C(x,y) such
that I = [∆(l, β, γ, 0)/2q, ∆(l, β, γ, 1)/2q) for the smallest value possible of q, keep
including the next largest disjoint canonical rectangle within C(x,y). Each consecutive
one must increase q by at least 1. Thus there can be at most O(log n) of these.

The left over rectangle M = [mx, x] × [my, y], must be small enough such that∫ w

0

∫ y

my
h(p, q) dqdp < 1/n, thus it can contain at most 1 point and D̄(Sn,w,l,h,M) ≤

1.

It follows from Claim 1.1 and Claim 1.2 that disc(S,C2) = O(log n). We conclude
by using the classic result [82] that D(S,C2) ≤ D(S,R2) ≤ 4D(S,C2) for any point
set S.

This improves on the discrepancy for this problem attained by using Theorem
1.2 by a factor of log(1/ε).

Corollary 1.5. A stretched Van der Corput set Sn,w,l,h forms an ε-sample of (P,R2)
of size n = O((1/ε) log(1/ε)) for P defined by a rectangle [0, w] × [0, l] with a linear
height function h.

Remark. This extends to higher dimensions. A stretched b-ary Van der Corput
set [82] forms an ε-sample of (P,Rd) of size O((1/ε) logd−1(1/ε)) for P defined by
×d

i=1[0, wi] with a linear height function.
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1.4.2 Approximating Smooth Terrains

Given a terrain ground set P where B ⊂ R2 is rectangular and h : B → R+ is a
C2-continuous height function we can construct an ε-sample based on a parameter
ε and properties z−P , dP , and λP . Let z−P = minp∈B h(p). Let dP = maxp,q∈B ||p− q||
be the diameter of P . Let λP be the largest eigenvalue of Hh where

Hh =

[
d2h
dx2

d2h
dxdy

d2h
dydx

d2h
dy2

]

is the Hessian of h.
We first create a set of linear functions to approximate h with a recursive algo-

rithm. If the entire domain cannot be approximated with a single linear function,
then we split the domain by its longest direction (either x or y direction) evenly.
This decreases dP by a factor of 1/

√
2 each time. We recur on each subset domain.

Lemma 1.4. For a ground set P with rectangular base B ⊂ R2 and with a C2-
continuous height function h : B → R we can approximate h with O((λPd

2
P/z

−
P ε))

linear pieces hε so that for all p ∈ B hε(p) ≤ h(p) ≤ hε(p) + ε.

Proof. First we appeal to Lemma 4.1 which says that the error of a first order linear
approximation at a distance d is bounded by λPd

2. Thus we take the tangent at the
point in the middle of the range and this linear (first order) approximation has error
bounded by λP (dP/2)2 = λPd

2
P/4. The height of the linear approximation is lowered

by λPd
2
P/4 from the tangent point to ensure it describes a subset of P . Thus, as

long as the upper bound on the error λPd
2
P/2 is less than z−P ε then the lemma holds.

The ratio (λPd
2
P/2z

−
P ε) is halved every time the domain is split until it is less than

1. Thus it has O(λPd
2
P/z

−
P ε) base cases.

After running this decomposition scheme so that each linear piece L has er-
ror ε/2, we invoke Corollary 1.5 to create an (ε/2)-approximation point set of size
O((1/ε) log(1/ε)) for each (L,R2 × R). The union creates a weighted ε-sample of
(P,R2 ×R), but it is quite large. We can then reduce the size according to Corollary
1.3 to achieve the following result.

Theorem 1.5. For a ground set P with rectangular base B ⊂ R2 and with a C2-
continuous height function h : B → R we can deterministically create a weighted
ε-sample of (P,R2 ×R) of size O

((
λPd

2
P/z

−
P ε
)
((1/ε) log(1/ε))

)
. We reduce the size

to O((1/ε) log4(1/ε)) in time O
((
λPd

2
P/z

−
P

)
(1/ε5) log13(1/ε)

)
.

This generalizes in a straightforward way for B ∈ Rd. Similar results are possible
when B is not rectangular or when B is not even piecewise-linear. The techniques
of Section 1.3 are necessary if Qk is used instead of R2, and are slower by a factor
O(1/ε).
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1.4.3 ε-Samples for a Normal Distribution

A normal distribution, often referred to as a Gaussian distribution, is a family of
continuous distributions often used to model error. The central limit theorem high-
lights its power by showing that the sum of independent and identically distributed
distributions with bounded variance converge to a normal distribution as the set size
grows. A normal distribution N(m,σ2) is defined by two parameters, a mean m
marking the center of the distribution and a variance σ2 scaling the spread of the
distribution. Specifically, we can analyze a random variable X distributed according
to a normal distribution, denoted X ∼ N(m,σ2). We then say that

ϕm,σ2(x) =
1

σ
√

2π
e−

(x−m)2

2σ2

describes the probability that a point X drawn randomly from a normal distribution
N(m,σ2) is located at x ∈ R. Since it is a distribution, then

∫
x∈R

ϕm,σ2(x) = 1. A
standard normal distribution N(0, 1) has mean 0 and variance 1. As the variance
changes, the normal distribution is stretched symmetrically and proportional to σ so
the integral is still 1. The inflection points of the curve describing the height of the
distribution are at the points m− σ and m+ σ.

A multivariate normal distribution is a higher dimensional extension to the nor-
mal distribution. A d-dimensional random variable X = [X1, . . . , Xd]

T is drawn from
a multivariate normal distribution if for every linear combination Y = a1X1 + . . .+
adXd (defined by any set of d scalar values ai) is normally distributed. Thus for a
d-dimensional random variable X defined over the domain Rd, any projection of X
to a one dimensional subspace of Rd is normally distributed.

We now discuss how to create ε-samples for (P,R2 × R) where P is a 2-variate
normal distribution with domain R2. Extensions to higher dimensions will follow
easily. We primarily follow the techniques outlined in Section 1.4.2 for a smooth
terrain with properties z−P , dP , and λP . What remains is to approximate P with
another ground set P ′ such that P ′ has better bounds on the quantities z−P ′ and dP ′ .
The approximation will obey Lemma 1.3, replacing P with P ′ by just truncating the
domain of P .

The cumulative distribution function Φm,σ2(x) for a normal distribution ϕm,σ2

describes the probability that a random variable X ∼ N(m,σ2) is less than or equal
to x. We can write

Φm,σ2(x) =

∫ x

−∞
ϕm,σ2(t) dt =

1

σ
√

2π

∫ x

−∞
e−

(t−m)2

2σ2 dt =
1

2

(
1 + erf

(
x−m

σ
√

2

))
,

where erf(x) = (2/
√
π)
∫ x

0
e−t2 dt. W.l.o.g. we can set m = 0. We want to find the

value of x such that Φ0,σ2(x) ≥ 1− ε/4 so that if we truncate the domain of ϕ0,σ2(x)
which is being approximated, the result will still be within ε/2 of the original domain.
We can bound erf(x) with the following inequality which is very close to equality as
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x becomes large:

1 − erf(x) ≤ e−x2

x
√
π
.

For a γ ≤ 1/(e
√
π) then

1 − erf(x) ≤ γ when x ≥
√

− ln(γ
√
π).

We say that the tail of Φ0,σ2 is sufficiently small when

1 − Φ0,σ2 = (1/2) − (1/2)erf(x/(σ
√

2)) ≤ ε/4.

Thus letting γ = ε/4, this is satisfied when

x ≥ σ

√
2 ln(1/(ε

√
π/2)).

Thus ∫ m+σ
q

2 ln(1/(ε
√

π/2))

m−σ
q

2 ln(1/(ε
√

π/2)

ϕm,σ2(x) dx ≥ 1 − ε/2

and bounding the domain of the normal distribution ϕm,σ2 to
[
m− σ

√
2 ln(1/(ε

√
π/2)),m+ σ

√
2 ln(1/(ε

√
π/2))

]

will approximate the distribution within ε/2.
For a multivariate normal distribution, we truncate in the directions of the x-

and y-axis according to the variance in each direction. Letting P ′ be the normal
distribution with this truncated domain, then the diameter of the space is dP ′ =
O(σmax

√
log(1/ε)), where σmax is the maximum variance over all directions. (σmin is

the minimum variance.) In d-dimensions, the diameter is dP ′ = O(σmax

√
d log(1/ε)).

The lower bound z−P ′ is now on the boundary of the truncation. In one dimension,
the value at the boundary is

ϕ0,σ2

(
σ

√
2 ln(1/(ε

√
π/2))

)
=

1

σ
√

2π
e
−

„

σ
q

2 ln(1/(ε
√

π/2))

«2

/(2σ2)
=

ε

2σ
.

For a 2-variate normal distribution the lower bound occurs at the corner of the
rectangular boundary where in the 1-variate normal distribution that passes through

that point and m = 0 the value of x =
√

2σ
√

2 ln(1/(ε
√
π/2)). Thus the value at

the lowest point is

z−P ′ = ϕ0,σ2

(√
2σ

√
2 ln(1/(ε

√
π/2))

)
=

1

σc

√
2π
e
−

„√
2σc

q

2 ln(1/(ε
√

π/2))

«2

/(2σ2
c )

=
ε2
√
π/2

2σc

= Ω(ε2/σc),
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where σ2
c is the variance in the direction of the corner. In the d-variate case, the

lowest point is Ω(εd/σc).
We calculate a bound for λP ′ by examining the largest second derivative along

the 1-dimensional normal distribution and along an ellipse defined by the minimum
and maximum variance. In the first case we can write

d2ϕ0,σ2(x)

dx2
= ϕ0,σ2

(
x2 − σ2

σ4

)

which is maximized at x =
√

3σ. And

d2ϕ0,σ2(
√

3σ)

dx2
=

1

σ3

√
2

πe3
= O(1/σ3).

For a bivariate normal distribution the largest eigenvalue of the Hessian of the
extension of ϕ0,σ2 is similarly not large in the tail. Thus our choice of ε does not
effect this value.

Hence, we can write
(
λP ′d2

P ′/z−P ′

)
= O((1/ε2) log(1/ε)) for constant σ. And,

using Theorem 1.5, we can state the following theorem.

Theorem 1.6. For a d-variate normal distribution ϕ with constant variance, we can
deterministically create an ε-sample of the range space (ϕ,Rd×R) of size O((1/εd+2)·
log2(1/ε)). This can be improved to a set of size O((1/ε) log2d(1/ε)) in additional
time O((1/εd+5) log14(1/ε)).

1.5 Applications

Creating smaller ε-samples improves several existing algorithms, including those de-
scribed in Chapter 3 and Chapter 4.

1.5.1 Terrain Analysis

After creating an ε-sample of a terrain we are able to approximately answer questions
about the integral over certain ranges. For instance, a terrain can model the height
of a forest. A foresting company may deem a region ready to harvest if the average
tree height is above some threshold. Computing the integral on the ε-sample will be
much faster than integrating over the full terrain model.

More interesting analysis can be done by comparing two terrains. These can
represent the forest height and the ground height or the elevation of sand dunes at
two snapshots or the distribution of a population and a distribution of a trait of
that population. Let T1 and T2 be two terrains defined by piecewise-linear height
functions h1 and h2, respectively, over a subset of R2. The height h = h1 − h2 may
be negative in some situations. This can be handled by dividing it into two disjoint
terrains, where one is the positive parts of h and the other is the negative parts. Each
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triangle can be split by the h = 0 plane at most once, so this does not asymptotically
change the number of piecewise-linear sections.

Once an ε-sample has been created for the positive and negative terrain, the
algorithms of Chapter 4 can be used to find the rectangle with the largest positive
integral. For n points this takes O(n2 log n) time. The same can be done for finding
the rectangular range with the most negative integral. The range returned indicates
the region of largest difference between the two terrains. The runtime is dominated
by the time to create the ε-sample in Corollary 1.4.

1.5.2 Cuts in Sensor Networks

Sensor networks geometrically can be thought of as a set of n points in a region P .
These points (or nodes) need to communicate information about their environment,
but have limited power. Shrivastava et. al. [107] investigates the detection of large
disruptions to the domain that affect at least εn nodes. They want to detect these
significant events but with few false positives. In particular, they do not want to
report an event unless it affects at least (ε/2)n nodes.

We say Q ⊆ P is an ε-sentinel of (P,A) if for all R ∈ A

• if µ(R ∩ P ) ≥ εµ(P ) then µ(R ∩Q) ≥ ε(3/4)µ(Q), and

• if µ(R ∩Q) ≥ ε(3/4)µ(Q) then µ(R ∩ P ) ≥ ε(1/2)µ(P ).

Shrivastava et. al. [107] construct ε-sentinels for half spaces of size O(1/ε) and in
expected time O((n/ε) log n). They note that an ε/4-approximation can be used as
an ε-sentinel, but that the standard upper bound for ε-samples [116] requires roughly
O((1/ε2) log(1/ε)) points which is often impractical. They pose the question: For
what other classes of ranges can an ε-sentinel be found of size O((1/ε) polylog(1/ε))?

Followup work by Gandhi et. al. [45] construct ε-sentinels for any A with
bounded VC-dimension v (such as disks or ellipses) of size O((1/ε) log(1/ε)) and
in time O(n(1/ε2v) logv(1/ε)).

As an alternative to this approach, by invoking Corollary 1.2 we show that we
can construct a small ε-sentinel for Qk.

Theorem 1.7. For a discrete point set P of size n, we can compute ε-sentinels for
(P,Qk) of size O((1/ε) log2k(1/ε)) in time O(n(1/ε3) log6k(1/ε)).

In fact, if we can choose where we place our nodes we can create an ε-sentinel of
size O((1/ε) log2k(1/ε)) to monitor some region P , where P is Lebesgue-measureable.
We can invoke Theorem 1.2 or Theorem 1.5, depending on the nature of P .

Additionally, by modifying the techniques of this paper, we can create O(nε/
log2k(1/ε)) disjoint sets of ε-sentinels. At every Halve step of Algorithm 1.2.1
we make a choice of which points to discard. By branching off with the other set
into a disjoint ε-sample, we can place each point into a disjoint ε-sentinel of size
O((1/ε) log2k(1/ε)). Since the Halve step now needs to be called O(nε/ log2k(1/ε))
times on each of the O(log(nε)) levels, this takes O(n(1/ε3) log(nε) log6k(1/ε)) time.
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Theorem 1.8. For a discrete point set P of size n, we can create O(nε/ log2k(1/ε))
disjoint sets of ε-sentinels in O(n(1/ε3) log(nε) log6k(1/ε)) total time.

The advantage of this approach is that the nodes can alternate which sensors
are activated, thus conserving power. If instead a single node is used in multiple
ε-sentinels it will more quickly use up its battery supply, and when its batter runs
out, the ε-sentinels using that node can no longer make the appropriate guarantees.
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2

Stability of α-Kernels

2.1 Motivation

In a number of applications, the input data is being updated periodically or one may
want to change some algorithm parameter slightly. Thus dynamic algorithms have
been developed to update coresets on the fly [15, 29, 118, 61, 112]. Since the known
algorithms focus on minimizing the size of the coreset, a weakness of most of them is
that changing a single point in the input set P may drastically change the resulting
coreset, e.g., this is the case for the algorithms in [15, 112, 29, 4]. This is particularly
undesirable when the computed summary is the input to another dynamic data
structure for maintaining another information: the dynamic data structure running
on the coreset will not benefit from the small change in P as one may have to
reconstruct the entire data structure. For example, kinetic data structures (KDS)
based on coresets have been proposed to maintain various extent measures of a set
of moving points [5]. If an insertion or deletion of an object changes the entire
summary, then one has to reconstruct the entire KDS instead of locally updating it.
It is also not well-understood how the coreset may change when the error parameter
α changes.

In this chapter we study the stability of α-kernels: how α-kernels change as we
update the input set or vary the value of α.

α-Kernels. For any direction u ∈ Sd−1 let 〈p, u〉 describe the inner product of p and
u. And let P [u] = arg maxp∈P 〈p, u〉 be the extreme point from P in the direction
u. Let ω(P, u) = 〈P [u] − P [−u], u〉 describe the directional width of P along the
direction u. For a given α > 0, we say that K ⊂ P ⊂ Rd is an α-kernel [4] of P if
for all directions u ∈ Sd−1

〈P [u] −K[u], u〉 ≤ αω(P, u).
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Note that this is a slightly stronger version than defined in [4] and that an α-kernel
K gives a relative (1 + 2α)-approximation of ω(P, u) for all u ∈ Sd−1 (i.e. ω(K, u) ≤
ω(P, u) ≤ (1 + 2α)ω(K, u)). It has been shown in [4, 5, 28, 29] that α-kernels lead
to efficient approximation algorithms for a wide range of problems. For simplicity,
we will assume that α ∈ (0, 1), because when α ≥ 1, it is always possible to choose
a constant number of points to form an α-kernel.

Agarwal et al. [4] showed that there exists an α-kernel of size O(1/α(d−1)/2) and
it can be computed in time O(n + 1/α3d/2). The running time was improved by
Chan [28] to O(n+ 1/αd−3/2) (see also [119]). An α-kernel of size O(1/α(d−1)/2) can
be maintained dynamically by spending O((1/α(d−1)/2) log n + 1/αd−3/2) time per
insertion or deletion [29] and can be easily adapted to have size O((1/αd−1) log n)
and update time O(log n). Alternatively, in a streaming setting where points are
only inserted, an α-kernel of size O(1/α(d−1)/2) in O(1/α(d−1)/2 log(1/α)) space can
be maintained in O((1/α(d−1)/2) log 1/α) time per insertion [120]. In R2 this can
be improved to optimal space O(1/

√
α) with update time O(log 1/α) [118]. These

streaming algorithms can be converted to maintain a stable insertion-only α-kernel of
size O((1/α(d−1)/2) log 1/α) in Rd or O(1/

√
α) in R2 with the same update times by

extending standard deamortization techniques [93] in the same way as our algorithms
for maintaining insertions and deletions, described below.

Dynamic stability. We call an α-kernel γ-stable if the insertion or deletion of a point
causes the α-kernel to change by at most γ points. For brevity, if γ = O(1), we
call the α-kernel to be stable. An interesting question is whether there is an efficient
algorithm for maintaining a stable α-kernel of size O(1/α(d−1)/2), as points are being
inserted or deleted. Maintaining a stable α-kernel dynamically is difficult for two
main reasons. First, for an input set P , many algorithms compute α-kernels in
two or more steps. They first construct a large α-kernel K ′, and then use a more
expensive algorithm to create a small α-kernel of K ′. However, if the first algorithm
is unstable, then K ′ may change completely each time P is updated. Second, all
of the known α-kernel algorithms rely on first finding a “rough shape” of the input
set P (e.g., finding a small box that contains P ), estimating its fatness [18]. This
rough approximation is used crucially in the computation of α-kernel. However, this
shape is itself very unstable under insertions or deletions to P . Circumventing these
difficulties, we prove the following (Section 2.2):

Theorem 2.1. Given a parameter 0 ≤ α ≤ 1, we can maintain a stable α-kernel of
size O(1/α(d−1)/2) of a point set of n points in Rd under insertions and deletions in
O(1/α(d−1)/2 + log n) time.

Approximation stability. If the size of an α-kernel K is O(1/α(d−1)/2), then decreas-
ing α changes K quite predictably. However, this is the worst-case bound, and it
is possible that the size of K may be quite small, e.g., O(1), or in general much
smaller than the 1/α(d−1)/2 maximum (efficient algorithms are known for computing
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α-kernels of near-optimal size [5]). Then how much the size can increase as we reduce
the allowable error from α to α/2? Many shape simplification problems suffer from
this unstability, i.e., the size of simplification can change drastically as we reduce
the allowable approximation error. We prove the following result for α-kernels (Sec-
tion 2.3). For any α > 0, let κ(P, α) denote the minimum size of an α-kernel of
P .

Theorem 2.2. There are constants c1, c2 > 0 for which the following hold:

(1) there exist a point set P and some α > 0, such that

κ(P, α/2) ≥ c1 · min
{⌈

1/α(d−1)/2
⌉
, κ(P, α)⌊d/2⌋} ;

(2) for any point set P and for any α > 0,

κ(P, α/2) ≤ c2 · min
{⌈

1/α(d−1)/2
⌉
, κ(P, α)⌊d/2⌋ logd−2(1/α)

}
.

2.2 Dynamic Stability

In this section we describe an algorithm that proves Theorem 2.1. Then we show
in Section 2.2.1 how to maintain a stable α-kernel when the input point set retains
its rough shape. Next, we extend in Section 2.2.2 our algorithm to handle the case
when the rough shape of the point set changes. Finally, Section 2.2.3 composes three
dynamic stable algorithms to achieve the main result, which also improves on the
previous best result for dynamic (non-stable) α-kernels!

We begin by noting a powerful property of α-kernels: If K is an α-kernel of a
point set P , and K ′ is an α′-kernel of K, then K ′ is an (α+α′)-kernel of P . However,
this property cannot, in general, be used for dynamic α-kernel algorithms because
a change to P may change all of K and thus cause O(|K|) updates to the dynamic
algorithm creating an α′-kernel of K. However, stable α-kernels have precisely the
property needed to compose dynamic α-kernel algorithms.

Lemma 2.1 (Composition Lemma). If K is an s-stable α-kernel of P and K ′ is an
s′-stable α′-kernel of K, then K ′ is an (s · s′)-stable (α+ α′)-kernel of P .

Proof. The (α + α′)-kernel is true by the above property. The stability results can
be seen because every 1 change to P causes s changes to K, in turn, each of the s
changes to K causes s′ changes to K ′. Thus each 1 change to P causes s · s′ changes
to K ′.

Fatness of point sets. We say a point set P is β-fat if

maxu∈Sd−1 ω(P, u)

minu∈Sd−1 ω(P, u)
≤ β.
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If β is a constant, we sometimes just say a point set is fat. To make a point set
P fat, we first choose a set of d + 1 anchor points A = {a0, a1, . . . , ad} using the
following procedure of Barequet and Har-Peled [18]. Choose a0 arbitrarily. Let a1

be the farthest point from a0. Then inductively, let ai be the furthest point from
the flat span(a0, . . . , ai−1). (See Figure 2.1.) The anchor points A define a bounding
box IA with center at a0 and orthogonal directions defined by vectors from the flat
span(a0, . . . , ai−1) to ai. The extents of IA in each orthogonal direction is defined by
placing each ai on a bounding face and extending IA the same distance from a0 in
the opposite direction. Next we perform an affine transform TA on P such that the
vector from the flat span(a0, . . . , ai−1) to ai is equal to ei, where e0 = (0, . . . , 0), e1 =
(1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). This ensures that TA(P ) ⊆ TA(IA) = [−1, 1]d.

Lemma 2.2. For all u ∈ Sd−1

ω(TA(A), u) ≤ ω(TA(P ), u) ≤ ω(TA(IA), u) ≤ βd · ω(TA(A), u), (2.1)

for a constant βd ≤ 2dd3/2d!. Hence TA(P ) is βd-fat.

Proof. The first two inequalities follow by A ⊂ P ⊂ IA. We can upper bound
maxu ω(TA(IA), u) = ω([−1, 1]d, u) ≤

√
d. The volume of the convex hull conv(TA(A))

is 1/d! since it is a d-simplex and 〈TA(a0)− TA(ai), ei〉 = 1 for each direction ei. We
can then scale conv(TA(A)) by a factor 1/2 (shrinking the volume by factor 1/2d) so
it fits in [0, 1]d. Now we can apply a lemma from [56] that the minimum width of a
convex shape that is contained in [0, 1]d is at least 1/d times its d-dimensional volume,
which is 1/(2dd!). The fatness of TA(P ) follows from the fatness of TA(IA).

Figure 2.1: Transform TA applied to points in R2. Anchor points are hollow.

Agarwal et al. [4] show if K is an α-kernel of P , then T (K) is an α-kernel of T (P )
for any affine transform T . For any points set P and anchor points A, if

〈P [u] −K[u], u〉 ≤ αω(A, u)
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then we say K is an α-kernel of P with respect to A.

2.2.1 Stable α-Kernels of Fat Point Sets

This subsection deals with algorithms that assume the input set P ∈ Rd to be fat
relative to a fixed set of anchor points A = {e0, . . . ed} and that IA = [−1, 1]d. We
first infer some important lemmas from known α-kernel algorithms of Agarwal et
al. [4] and Chan [28]. We then extend the framework of Chan to create an efficient,
optimal-size stable α-kernel for a fat point set.

Agarwal et al. describes an orthogonal grid construction for an α-kernel. It
starts by placing a d-dimensional orthogonal grid over the hypercube [−1, 1]d along
directions e0, e1, . . . , ed. Each side of the hypercube is divided into 2/α intervals of
width α, and the cross product of these intervals for each side forms the grid. The
total number of grid cells is O(1/αd). We choose an arbitrary point of P from each
grid cell (if it contains a point of P ) to form an α-kernel K ′. We can create an
α-kernel K of size (1/αd−1) by fixing one grid direction ei and only choosing the first
and last point of K ′ along direction ei in K from each grid column. The set K ′ can
be maintained in O(1) time, and K can the be maintained in O(log 1/α) time.

Lemma 2.3. Let P ⊂ Rd be a point set of size n that is updated by insertions and
deletions but remains of size O(n) and for A, a set of anchor points, for all u ∈ Sd−1

ω(P, u) ≤ cω(A, u) for c > 0. For a given α ∈ (0, 1), we can preprocess P in O(n)
time using O(n) space so that a 2-stable α-kernel of P with respect to A of size
O(1/αd−1) can be maintained in O(log 1/α) time per update.

Chan introduces a technique called discrete Voronoi diagrams. Let [E] = {1, 2,
. . . , E} and let Eτ ≤ F ≤ E for some τ ∈ (0, 1). For a finite set of points P ⊂ Rd

and a query point q ∈ Rd, let ψP (q) be the closest point to q in P .

Lemma 2.4 (Chan [28]). Let P ⊂ [E]d−1 × R be a set of at most Ed−1 points. For
all grid points in b ∈ [F ]d−1 × {0}, we can compute ψP (b) in total time O(Ed−2F ).

Chan [28] describes a framework for quickly creating an optimal size α-kernel
using Lemma 2.4. He first applies the orthogonal grid construction d times for each
direction ei. That is, he constructs d α-kernels K ′

1, . . . , K
′
d, where K ′

i contains the
first and last grid point along each grid column in direction ei. Let the grid base
points Bs

i for s ∈ {−,+} be a scaled and translated set from [F ]i−1 × {0} × [F ]d−i,
where F = ⌈2

√
d/α⌉, so that Bs

i ⊂ Hs
i = [−2, 2]i−1 × {s2} × [−2, 2]d−i and no point

on the hypercube Hs
i is further than

√
α from a point of Bs

i . Chan then uses a
discrete Voronoi diagram to compute ψK′

i
(b) for each b ∈ B+

i ∪ B−
i , in O(1/αd−3/2)

time. The set

K =
d⋃

i=1

⋃

b∈B+
i ∪B−

i

ψK′
i
(b)

forms an α-kernel of size O(1/α(d−1)/2).
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A stable version of Chan’s algorithm. We describe the following for one direction
(w.l.o.g. ed) and set of grid base points B+

d , but it is repeated for all d directions
e1, . . . , ed and corresponding sets of grid base points B+

i and B−
I . Invoke Lemma 2.3

along direction ed to create a set Pd, the available grid input points. The grid cells
are indexed as [i1, . . . , id] indicating the number of grid cells along each direction
it is from the corner of I at (−1, . . . ,−1). Create a set of O(1/α(d−1)/2) groups of
columns along direction ed. For (j1, . . . , jd−1) = J ∈ [F ]d−1 and F = ⌈2

√
d/α⌉, let

group

GJ = [j1⌈
√
α/d⌉, (j1 + 1)⌈

√
α/d⌉]× . . .× [jd−1⌈

√
α/d⌉, (jd−1 + 1)⌈

√
α/d⌉]× [−1, 1].

Each group GJ accounts for up to O(1/α(d−1)/2) points P ′
J ⊂ Pd.

For all grid base points b ∈ B+
d and for each group GJ , find a deputy point

aJ = ψP ′
J
(b); Set Db = {aJ | J ∈ [F ]d−1}. The set

⋃d
i=1

⋃
s∈{−,+}{ψDb

(b) | b ∈ Bs
i } is

an α-kernel of P , where Db is defined symmetrically for each direction and sign, but
we add points to the kernel iteratively to make it stable.

Assign an arbitrary order to the points 〈b1, b2, . . .〉 = B+
d , and process them one-

by-one as follows, starting with bi = b1. For bi assign a∗bi
= ψDbi

(bi) to K. For
the group GJ such that a∗bi

∈ P ′
J , remove a∗bi

from P ′
J and update a∗bi

’s column in
the grid as in Lemma 2.3. Then recalculate the deputy point aJ for all b ∈ B+

d in
O(1/α(d−1)/2) time. Then process bi+1. This guarantees the following two properties

(P1) a∗bi
6= a∗bj

for i 6= j

(P2) each a∗bi
is closer to bi than any other point in Pd \ {a∗b1 , . . . , a∗bi−1

}.

This preprocessing runs in a total time of O(1/αd−1).
We can now handle insertions and deletions stably in O(1/α(d−1)/2) time as long

as inserted points are within IA and the point set remains fat with respect to A. If a
point p is inserted, we process all grid base points B+

d one-by-one in the same order
as above, starting with bi = b1 and q = p. If ||q− bi|| < ||a∗bi

− bi|| then we replace a∗bi

in K with q and set q = a∗bi
, then process bi+1 with the new value of q. In the end,

only one point is removed from K, and all deputy points for that point’s group can
be updated in O(1/α(d−1)/2) time as above. Properties (P1) is maintained because
we only allow each q to replace one a∗bi

and (P2) are maintained because if any q is
closer than a∗bi

to bi, then it is replaced.
If a point p is deleted from P ′

J , we recompute all deputies aJ for all points B+
d .

If p was in K as the closest point to b ∈ B+
d , then we recompute a∗b = ψDb

(b) and
place it in K, and we move b to the end of the order of points in B+

d . For the group
GJ such that a∗b ∈ P ′

J we recompute the deputies aJ for all points B+
d . Property

(P1) is maintained because a∗b is replaced with a new point if needed. We maintain
property (P2) by moving b to the end of the order of points because all other points
already conformed to (P2) ignoring b, then since b is at the end of the list we just
need to find ψP ′\K(b). This process takes O(1/α(d−1)/2) time because deputy points
are recomputed for up to two groups and ψPJ

(b) is calculated at most once.
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Lemma 2.5. Let P ⊂ Rd be a point set of size n that is updated by insertions
and deletions but remains of size O(n) and for A, a set of anchor points, for all
u ∈ Sd−1 ω(P, u) ≤ cω(A, u) for c > 0. For a given α ∈ (0, 1), we can preprocess
P in O(n + 1/αd−1) time so that a stable α-kernel of P with respect to A of size
O(1/α(d−1)/2) can be maintained in O(1/α(d−1)/2) time per update.

2.2.2 Stable α-Kernels with Varying Fatness

In this subsection we describe two related algorithms for stable α-kernels that do
not require the point set to remain fat. The first divides the point set into inner
and outer points so an α-kernel with respect to a fixed set of anchor points can
be maintained for the inner points for a specified number of updates. The second
technique, a modification of Chan’s dynamic coreset algorithm [29], creates several
layers of point sets where the more inner layers maintain α-kernels with respect to
fixed anchor points for a larger specified number of updates. We apply techniques
from the previous subsection on the inner points for both techniques.

Outer kernels. We create an outer kernel by pealing off m “layers” of anchor points,
we will chose m to be 1/αd−1 or 1/α(d−1)/2. We first find an approximate center point
a0 of P . We then select d other anchor points according to Barequet and Har-Peled
[18]. Let A1 denote this first set of anchor points, where a0 is the first anchor point,
and set P1 = P \ A1. We repeat this m times, finding each set of anchor points Ai

from Pi−1 and always using a0 as the first anchor point. The last set of anchor points
is labeled A′ = Am and the remaining points P ′ = Pm. Let A =

⋃m
i=1Ai be called

the outer kernel.
If m = 1/αd−1, then we construct a stable α-kernel KI for P ′ with respect to A′

using Lemma 2.3, and if m = 1/α(d−1)/2 we construct a stable α-kernel KI for P ′

with respect to A′ using Lemma 2.5. We set K = KI ∪ A to be the α-kernel of P .
We maintain K under insertion or deletion of points from P as follows. If a point

in IA′ is removed or inserted, we maintain KI using Lemma 2.5 or Lemma 2.3. If
we insert or delete a point outside of IA′ we insert it to or delete it from A. After
O(m) insertions or deletions outside of IA′ we rebuild the entire structure (outer and
inner kernel). Since, rebuilding the α-kernel requires we update K with at most
O(m) points and only occurs once every at least Ω(m) updates, in an amortized
sense these algorithms are stable.

Naively we can construct the outer kernel A ⊂ P of size O(m) in O(mn) time,
where |P | = n. Each set Ai takes O(n) time to construct with O(d) scans over Pi−1

to find the furthest point. Alternatively, we can build the outer kernel using Chan’s
dynamic α-kernel algorithm. We construct a τ -kernel K of P of size O( 1

τd−1 log n) in
O(n) time, for a constant τ ≤ 1. We then build a set of anchor points A1 from K in
O( 1

τd−1 log n) time, and remove each point in O(log n) time. This causes TA1(P1) to
be (βd/τ)-fat. Thus to build m sets of anchor points takes O(n+m 1

τd−1 log n) time,
which when τ ≤ 1 and 1/τ = O(1) is O(n+m log n) time.
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Lemma 2.6. If fewer than m points have been inserted or deleted from P since the
last time K = KI ∪ A was built, then K is an (αβd)-kernel of P of size O(m).

Proof. We can guarantee that at least one set of anchor points (w.l.o.g. Ai) is still
completely in K. Thus we can show that Ai ∪KI forms an α-kernel of Ai ∪ P ′. For
any direction u ∈ Sd−1

ω(KI , u) ≤ ω(P ′, u) ≤ ω(KI , u) + α · ω(P ′ ∪ A′, u)

≤ ω(KI , u) + α · ω(Pi, u)

≤ ω(KI , u) + α · ω(Ii, u)

≤ ω(KI , u) + αβd · ω(Ai, u) [via (2.1)]

≤ ω(KI , u) + αβd · ω(P ′ ∪ Ai, u).

Thus, for any direction u ∈ Sd−1 the extreme point of P ′ ∪ Ai is either in P ′ or Ai.
In the first case, KI approximates the width within a factor of αβd · ω(P ′ ∪ Ai, u).
In the second case, the extreme point is in K because all of Ai is in K. Thus the set
P ′ ∪ Ai has an α-kernel in K, and the rest of the points are also in K, so K is an
α-kernel of the full set P .

The size of K starts at O(m) because both KI and A are of size O(m). At most
m points are inserted outside of IA′ and hence into A, thus the size of K = KI ∪ A
is still O(m) after m steps.

Lemma 2.7. For a point set P ⊂ Rd of size n and a parameter α ∈ (0, 1), we can
maintain a stable α-kernel of P under insertions and deletions with

(a) size O(1/α(d−1)/2) and update time O(nα(d−1)/2 + 1/α(d−1)/2 + log n).

(b) size O(1/αd−1) and update time O(nαd−1 + log n).

Proof. We build an outer kernel of size O(m) in O(n + m log n) time. It lasts for
Ω(m) insertions or deletions, so its construction time can be amortized over that
many steps, and thus it costs O(n/m+ log n) time per insertion or deletion.

In maintaining the inner kernel the preprocessing time can be amortized over m
steps, but the update time cannot. In case (a) we maintain the inner kernel of size
m = O(1/α(d−1)/2) with Lemma 2.5. The update time is O(nα(d−1)/2 + 1/α(d−1)/2).
In case (b) we maintain the inner kernel of size m = O(1/αd−1) with Lemma 2.3.
The update time is O(nαd−1 + log(1/α)).

The update time can be made worst case using a standard deamortization tech-
niques [93]. More specifically, we start rebuilding the inner and outer kernels after
m/2 steps and spread out the cost over the next m/2 steps. We put all of the needed
insertions in a queue, inserting a constant number of points to K each update to
P . Then after the new kernel is built, we enqueue required deletions from K and
perform a constant number each update to P over the next m/2 steps.
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Chan’s dynamic coresets. Chan [29] describes a dynamic α-kernel algorithm for a set
of n points P that decomposes P into h = O(log n) disjoint point sets 〈P1, . . . , Ph〉,
where |Pi| ≥ γ

∑h
j=i+1 |Pj| for some constant γ > 1 so |Pi| ≥ 2|Pi+1|, and |Ph| =

1/αd−1. P1 is constructed first, and recursively each Pi are the “inner” remaining
points. For each set Pi (for i < h) there exists a set of anchor points Ai defining a
bounding box IAi

(i.e., Pi ⊂ IAi
) and for which an α-kernel of Pi can be maintained

with respect to for at least Ω(|Pi|) insertions or deletions to P . The insertion of a
point p into P can be placed in Pi such that p ∈ IAi

for the smallest i. We can
then invoke Lemma 2.3 to maintain a stable α-kernel Ki for Pi with respect to Ai,
and amortize the cost of rebuilding Ki to the number of insertions or deletions we
construct a new set Ai. The last set Ph has size O(1/αd−1) so we set Kh = Ph. The
set K =

⋃h
i=1Ki is an α-kernel of P .

Lemma 2.8. For any α ∈ (0, 1), Chan’s dynamic coreset algorithm can maintain
a stable α-kernel of size O((1/αd−1) log n) that can be updated in time O(log n) per
insertion or deletion.

Proof. First, we clarify that the kernel Ki of Pi needs to be rebuilt if c|Pi| insertions
or deletions have taken place, for some constant c, or if Kl needs to be rebuilt, for
l < i. We can handle the second case by rebuilding Ki when Ki+1 is rebuilt and Ki

would need to be rebuilt before Ki+1 would otherwise need to be rebuilt again. Since
|Pi| ≥ 2|Pi+1|, this only decreases the number of updates to P before Ki is rebuilt be
a constant fraction because Ki+1 will be rebuilt at least twice before Ki is rebuilt.

Given this adjusted updating plan it takes at least twice as many updates to P
before Ki is rebuilt, compared to Ki+1. And Kh is rebuilt after c/αd−1 updates, for
a constant c. Since the entire system is rebuilt after Θ(|P1|) = Θ(n) updates, we
call this interval a round. We can bound the updates to K in a round by charging
O(1/αd−1) each time a Ki is rebuilt.

h∑

i=1

Θ(n)

Θ(|Pi|)
·O(1/αd−1) ≤

h∑

i=1

Θ(n) ·O(1/αd−1)

Ω(|Ph|2h−i)
=

h∑

i=1

Θ(n)

Ω(2i)
= O(n).

Thus there are O(n) updates to the α-kernel K for every Θ(n) updates to P . Thus,
in an amortized sense, for each update to P there are O(1) updates to K.

This process can be deamortized, in a similar way as with outer kernels. If a
kernel Ki is valid for k insertions or deletions to P , then we start construction on
the next kernel Ki after k/2 insertions or deletions have taken place since the last
time Ki was rebuilt. All insertions can be put in a queue and added to K by the
time k/2 steps have transpired. All deletions from old Ki to new Ki are then queued
and removed from K before another k/2 insertions or deletions. This can be done
by performing O(1) queued insertions or deletions from K each insertion or deletion
from P .
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2.2.3 Putting It All Together

For a point set P ⊂ Rd of size n, we can produce the best size and update time
tradeoff for stable α-kernels by invoking Lemma 2.1 to compose three stable α-
kernel algorithms, as illustrated in Figure 2.2. We first apply Lemma 2.8 to maintain
a stable (α/3)-kernel K1 of P of size O((1/αd−1) log n) with update time O(log n).
We then apply Lemma 2.7(b) to maintain a stable (α/3)-kernel K2 of K1 of size
O(1/αd−1) with update time O(|K1|αd−1+log |K1|) = O(log n+log(1/α)). Finally we
apply Lemma 2.7(a) to maintain a stable (α/3)-kernel K of K2 of size O(1/α(d−1)/2)
with update time O(|K2|α(d−1)/2 + 1/α(d−1)/2 + log |K2|) = O(1/α(d−1)/2). K is a
stable α-kernel of P of size O(1/α(d−1)/2) with update time O(log n + 1/α(d−1)/2).
This completes the proof of Theorem 2.1.

P

n

K1

(1/α
d−1) log n

K2

1/α
d−1

K
1/α

(d−1)/2

log n log n 1/α
(d−1)/2

Lem 2.8 Lem 2.7(b) Lem 2.7(a)

Figure 2.2: Composing stable α-kernel algorithms

2.3 Approximation Stability

In this section we prove Theorem 2.2. We first give a short proof for the lower-bound
and then a more involved proof of the upper bound.

2.3.1 Lower Bound

Take a cyclic polytope with n vertices and Ω(n⌊d/2⌋) facets and convert it into a fat
polytope P using standard procedures [4]. For a parameter α > 0, we add, for each
facet f of P, a point pf that is α far away from the facet. Let P be the set of vertices
of P together with the collection of added points. We choose α sufficiently small so
that points in P are in convex position and all non-facet faces of P remain as faces
of conv(P ). Then the size of an optimal α-kernel of P is at most n (by taking the
vertices of P as an α-kernel), but the size of an optimal α/2-kernel is at least the
number of facets of P, because every point of the form pf has to be present in the
kernel. The first half of the lower bound is realized with O(1/α(d−1)/2) evenly-spaced
points on a sphere, and hence the full lower bound is proved.

2.3.2 Upper Bound

By [4], it suffices to consider the case in which P is fat and the diameter of P is
normalized to 1. Let C be an α-kernel of P of the smallest size. Let P = conv(C), and
Pα = P⊕αBd. We have P ⊆ conv(P ) ⊆ Pα by the definition of α-kernels. It suffices
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to show that there is a set C ′ ⊆ P such that for P′ = conv(C ′), P′ ⊆ conv(P ) ⊆ P′
α/2,

and |C ′| = O(|C|⌊d/2⌋ logd−2(1/α)) [4].
For convenience, we assume that C ′ is not necessarily a subset of points in P ;

instead, we only require C ′ to be a subset of points in conv(P ). By Caratheodory’s
theorem, for each point x ∈ C, we can choose a set Px ⊆ P of at most d + 1
points such that x ∈ conv(Px). We set

⋃
x∈C′ Px as the desired (α/2)-kernel of P ;

|Px| ≤ (d+ 1)|C ′| = O(κ(P, α)⌊d/2⌋ logd−2(1/α)).
We also assume that P is a simplicial polytope. The proof can be extended to a

non-simplicial polytope by triangulating each non-simplicial face into simplicies and
then applying a similar argument.

Construction of C ′. For each face f of P, we denote by f ∗ ⊆ Sd−1 the dual of f in
the Gaussian diagram of P. Recall that if f has dimension k (0 ≤ k ≤ d− 1), then
f ∗ has dimension d− 1 − k. The region Pα \ int P is partitioned into a collection of
|P| regions (where |P| is the number of faces of all dimensions in P) as follows (see
Figure 2.3):

{σ(f) = f × (αf ∗) | f is a face of P}.

f

α

f
α

f
α

(a) f is a vertex of P (b) f is an edge of P (c) f is a facet of P

Figure 2.3: An illustration of different types of regions in the partition of Pα \ int P

in three dimensions.

The number of regions in the decomposition is equal to |P| = O(|C|⌊d/2⌋) by the
Upper Bound Theorem [85]. For each region σ(f), we next describe a procedure to
choose a set Kf ⊆ conv(P ) of O(logd−2(1/α)) points such that

conv(Kf ) ⊆ conv(P ) ∩ σ(f) ⊆ conv(Kf ) ⊕ (α/2)Bd.

The proof is completed by setting C ′ =
⋃

f Kf .
To provide better intuition, we first give an informal overview of the construction

of Kf . At a high level, we sample a constant number of directions in f ∗, and for
each sample direction u, a constant number of slices of f × αu along direction u.
For each slice (which is a translated copy of f), we recursively construct a certain
exponentially distributed grid inside the slice (see Figure 2.4 for an illustration).
Intuitively, the grid points that fall inside conv(P ) provide a good approximation
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Figure 2.4: Recursively constructing an exponentially distributed grid in a simplex.

and are retained in Kf . For technical reasons, the actual construction of Kf is more
involved.

For convenience, in the following we write a point q = q̄ + z · u ∈ σ(f), where
q̄ ∈ f, 0 ≤ z ≤ α, and u ∈ f ∗, in the form of q̄z[u] (which intuitively reads, the point
whose projection onto f is q̄ and which is at a distance z above f in direction u).
We also write q[v] = q̄+ z · v (intuitively, q[v] is obtained by rotating q w.r.t. f from
direction u to direction v). Similarly, we write a simplex ∆̄z[u] = ∆̄⊕ z · u, where ∆̄
is a simplex inside f , 0 ≤ z ≤ α, and u ∈ f ∗, and write ∆[v] = ∆̄ ⊕ z · v.

Let k be the dimension of f . Set δ = α/10d. In order to construct Kf , we
construct a set Σ of point-simplex pairs, each of the form 〈p,∆〉 with p ∈ ∆. The set
Kf is the collection of points in these point-simplex pairs. Σ is the union of at most
k sets Σk,Σk−1, · · · , which are defined in a recursive manner: each Σj is defined by
a set Lj of simplexes, and Lj is in turn defined by Σj+1. In more detail:

• Initially, we choose an arbitrary direction v ∈ f ∗ and set Lk = {fα[v]}.
• Suppose Lj has been defined for some index j ≤ k. We construct Σj as

follows. For each simplex ∆ ∈ Lj, and each i = 5d, 5d + 1, · · · , 10d − 1, we
set ∆i = ∆iδ and proceed as follows. We find a (1/10d)-net N∆i

of the set
U∆i

= {u ∈ f ∗ | ∆i[u] ∩ conv(P ) 6= ∅}, so that for any u ∈ U∆i
there exists

some v ∈ N∆i
such that the angle spanned between u and v is at most 1/10d.

Note that |N∆i
| = O(1). For each u ∈ N∆i

, choose an arbitrary point p (called
support point) from ∆i[u] ∩ conv(P ), and add 〈p,∆i〉 into the set Σj.

• Finally, for each 〈p,∆〉 ∈ Σj, we construct a set Hp,∆ of O(log(1/α)) simplexes
within ∆ (to be described shortly). We set Lj−1 =

⋃
〈p,∆〉∈Σj

Hp,∆ and continue
the recursion.

• For k ≤ d− 2, we stop the recursion naturally at j = 0. For k = d− 1, we stop
the recursion at j = 1 as follows: for each line segment ℓ ∈ L1 that intersects
conv(P ), we find the two endpoints q1, q2 of ℓ∩ conv(P ) and add 〈q1, ℓ〉, 〈q2, ℓ〉
into Σ1.

The sizes of Lj and Σj satisfy the following recurrence for some constants c3, c4 >
0:

|Σj| ≤ c3|Lj|, |Lj−1| ≤ c4 log(1/α)|Σj|, for j ≤ k.
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A simple calculation shows that |Kf | ≤
∑

j≤k |Σj| = O(logk(1/α)) for k ≤ d − 2,

and |Kf | ≤ ∑
j≤k |Σj| = O(logk−1(1/α)) for k = d − 1. In both cases, |Kf | =

O(logd−2(1/α)).
It remains to describe the construction of Hp,∆, for a point p and a j-simplex ∆,

with p ∈ ∆ and the diameter of ∆ bounded by 1. For each facet H of ∆, we proceed
as follows (see Figure 2.5). Let q1, · · · , qj be the vertices of H. For 1 ≤ i ≤ j,
let xi be the point on the line segment qip that is δ away from qi, and let di be
the distance from xi to the facet H. Set dH = min1≤i≤j di. The value dH has the
following property:

Lemma 2.9. For any point q ∈ ∆ which is at most dH distance away from H, let q′

be the intersection of the line segment qp with the (j − 1)-flat at distance dH from
H; then ‖qq′‖ ≤ δ.

Consider (j−1)-flats in the span of ∆ that are at distances dH , (1+1/10d2)dH , (1+
1/10d2)2dH , · · · from H and have nonempty intersections with the j-simplex formed
by H and p. The set of nonempty intersections of these flats with ∆ is called a
family of (j − 1)-simplicies induced by the facet H. Because the diameter of ∆ is
at most 1, it can be shown that the number of such simplexes is O(log(1/δ)) =
O(log(1/α)). Repeat this construction for each facet of ∆, and the collection of all
resulting simplexes constitutes Hp,∆. We have |Hp,∆| = O(log(1/α)).

q2

p pp ∆

H

q1

Figure 2.5: The construction of Hp,∆.

Proof of correctness. Let f be a k-face of P (0 ≤ k ≤ d − 1). We need to show
conv(P )∩σ(f) ⊆ conv(Kf )⊕(α/2)Bd, or in other words, for any point p ∈ conv(P )∩
σ(f), there is a point q ∈ conv(Kf ) such that ‖pq‖ ≤ α/2. If p ∈ f × (α/2)f ∗, then
clearly the projection q of p onto f , which belongs to conv(Kf ) as f ⊆ P ⊆ conv(Kf ),
satisfies ‖pq‖ ≤ α/2. So in the following, we assume p = p̄z[u] for some p̄ ∈ f , u ∈ f ∗

and α/2 < z ≤ α. Let h be the largest multiple of δ with h ≤ z.
Before describing the technical details, we first provide some intuition regarding

the proof. Eventually, we need to find a nearby point of p in conv(Kf ). Our basic
strategy is to find some “helper point” pk−1 for p so that if pk−1 has a nearby point in
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conv(Kf ), then so does p. If pk−1 itself is in conv(Kf ), then we are done. Otherwise,
we recursively find a “helper point” pk−2 for pk−1, and a “helper point” pk−3 for pk−2,
and so on. We stop the recursion when we have found a “helper point” which itself
is in conv(Kf ). Tracing back along the recursion, we can then prove that p has a
nearby point in conv(Kf ).

Formally, for j = k, k − 1, · · · , we now make a sequence of recursive definitions,
for a simplex ∆̄j ⊆ f , a direction uj, a point p̄j ∈ f , and a real value hj ≤ α. As a

convention, for each j, ∆j is implicitly defined as ∆̄
hj

j [uj], and pj is implicitly defined

as p̄
hj

j [uj]. We will maintain the following invariants for each index j:

(a) pj ∈ conv(P ) and pj ∈ ∆j;

(b) hj is a multiple of δ, and hj+1 − δ ≤ hj ≤ hj+1 (for j 6= k);

(c) the dimension of ∆̄j is j; and

(d) ‖uj − uj+1‖ ≤ 1/10d (for j 6= k).

Initially, we set ∆̄k = f, uk = u, p̄k = p̄, and hk = h. Note that pk ∈ conv(P )
(because pk ∈ pp̄) and pk ∈ ∆k.

Assume that for an index j ≤ k, ∆̄j, uj, p̄j, and hj have been defined. Since (a)
implies ∆j ∩ conv(P ) 6= ∅ and as such uj ∈ U∆j

, there is a direction u′j−1 ∈ Nhj ,∆̄j

such that the angle between uj and u′j−1 is at most 1/10d. Set p′′j−1 = pj[u
′
j−1]. Let

ηj−1 be the support point selected from ∆j[u
′
j−1] ∩ conv(P ). Let H be the facet of

∆j[u
′
j−1] that is intersected by the ray

−−−−−→
ηj−1p

′′
j−1. Let ∆′

j−1 be the first simplex in the
family of (j − 1)-simplexes induced by H inside ∆j[u

′
j−1] that are intersected by the

ray
−−−−−→
p′′j−1ηj−1, and let p′j−1 be their intersection. (See Figure 2.6). If the ray

−−−−−→
ηj−1p

′′
j−1

does not intersect any simplex in the family of (j−1)-simplexes induced by H inside
∆j[u

′
j−1], we say that pj is close to the boundary.

Next we consider two cases:

Case 1: (Figure 2.6 (a)) If p′j−1 does not exist, we set pj−1 = ηj−1 and terminate
the recursion early.

Case 2: (Figure 2.6 (b)) Otherwise (i.e., p′j−1 lies on the segment p′′j−1ηj−1). We
set p̄j−1 as the projection of p′j−1 onto f and ∆̄j−1 as the projection of ∆′

j−1 onto
f . It remains to define uj−1 and hj−1. Observe that pj, ηj−1 ∈ conv(P ), and as
such pjηj−1 ⊆ conv(P ). There is a point q on pjηj−1 whose projection onto f is
p̄j−1. Let q = p̄j−1 + h′uj−1 for some h′ and uj−1 ∈ f ∗. Observe that ‖uj−1 − uj‖ ≤
‖u′j−1 − uj‖ ≤ 1/10d. Using this observation, it can be shown that hj − δ ≤ h′ ≤ hj.
Let hj−1 be the largest multiple of δ with hj−1 ≤ h′. This completes the definitions
of ∆̄j−1, uj−1, p̄j−1 and hj−1, and transitively ∆j−1 and pj−1. As for the invariants,
we have shown that (b)–(d) are all properly maintained. For (a), observe that pj−1

lies on qp̄j−1, and q, p̄j−1 ∈ conv(P ). Hence pj−1 ∈ conv(P ). It is also clear that
pj−1 ∈ ∆j−1 by the above construction.

Assume the recursion does not terminate early. For the case k < d− 1, we stop
the recursion at j = 0 and set p0 = η0. For the case k = d− 1, we stop the recursion
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Figure 2.6: (a) Case 1: p′j−1 does not exist. (b) Case 2: p′j−1 lies on the segment
p′′j−1ηj−1.

at j = 1. Note that for k = d − 1, since f ∗ is a singleton set, it can be proved
inductively that pj ∈ conv(P ) for all 1 ≤ j ≤ k.

This completes the description of the recursive definition.
Let pm be the last point defined in the sequence. By construction, pm ∈ conv(P ).

For each m ≤ j ≤ k, let qj = pj[um] and Ξj = ∆j[um]. We have the following key
lemma.

Lemma 2.10. For each j ≥ m, there is a point q′j ∈ Ξj such that

(1) ‖q′jqj‖ ≤ jδ; and

(2) q′′j = q′j − 2(j −m)δum ∈ conv(P ).

Proof. We prove the lemma by induction on j. For j = m, since qm = pm ∈ conv(P ),
the claim is trivially true by setting q′m = qm. Assume the claim is true for some
j ≥ m. Now consider the case j + 1. Let y be the intersection of the ray

−−−→
p̄j p̄j+1 with

∂f . Let xj be the projection of q′j onto f , and let xj+1 be the intersection of yxj

with the line passing through p̄j+1 and parallel to p̄jxj (see Figure 2.7). There are
two cases:

Case 1: pj+1 is close to the boundary. Then by Lemma 2.9, we know that
‖p̄j+1p̄j‖ ≤ δ. We set q′j+1 = xj

hj+1 [um]. As such,

‖q′j+1qj‖ = ‖p̄j+1xj‖ ≤ ‖p̄j+1p̄j‖ + ‖p̄jxj‖ ≤ δ + jδ = (j + 1)δ.

Moreover, since hj+1 − 2(j+1−m)δ ≤ hj − 2(j−m)δ, q′′j+1 lies on the segment q′′j xj

and therefore q′′j+1 ∈ conv(P ).

Case 2: Otherwise. In this case, we have

‖xjxj+1‖
‖xjy‖

=
‖p̄j p̄j+1‖
‖p̄jy‖

≤ 1/10d2

1 + 1/10d2
≤ 1/10d2.

We set q′j+1 = xj+1
hj+1 [um]. First observe that

‖q′j+1qj+1‖ = ‖xj+1p̄j+1‖ ≤ ‖xj p̄j‖ ≤ jδ ≤ (j + 1)δ.
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Figure 2.7: The inductive step for proving ‖q′j+1qj+1‖ ≤ (j + 1)δ and q′′j+1 ∈
conv(P ).

Furthermore, let z be the intersection of yq′′j with q′j+1xj+1. We then have

‖q′j+1z‖ ≤ (hj+1−hj)+‖q′jq′′j ‖+(1/10d2) ·‖q′′j xj‖ < δ+2(j−m)δ+δ = 2(j+1−m)δ.

Therefore q′′j+1 lies below z and as such q′′j+1 ∈ △xjyq
′′
j . Since △xjyq

′′
j ⊆ conv(P ) by

the induction hypothesis, we have q′′j+1 ∈ conv(P ).

Lemma 2.11. ‖pq′′k‖ ≤ α/2.

Proof. For j = k, Lemma 2.10 implies that ‖q′kqk‖ ≤ kδ, and q′′k ∈ conv(P ). It
follows that

‖pq′′k‖ ≤ ‖ppk‖ + ‖pkqk‖ + ‖qkq′k‖ + ‖q′kq′′k‖
≤ δ + dδ + kδ + 2(k −m)δ

≤ 5dδ = α/2,

as desired.

The above lemma concludes the proof of Theorem 2.2.

2.3.3 Remarks

(1) For d = 2 and 3, the theorem indicates that κ(P, α/2) is only a factor of O(1)
and O(log(1/α)), respectively, larger than κ(P, α); therefore, the sizes of optimal
α-kernels in these dimensions are relative stable. However, for d ≥ 4, the stabil-
ity drastically reduces in the worst case because of the superlinear dependency on
κ(P, α).

(2) Neither the upper nor the lower bound in the theorem is tight. For d = 3,
we can prove a tighter lower bound of Ω

(
κ(P, α) log(1/(α ·κ(P, α)))

)
. We conjecture

that κ(P, α/2) = Θ
(
κ(P, α)⌊d/2⌋ logd−2(1/(α(d−1)/2 · κ(P, α)))

)
in Rd.
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3

Shape Fitting on Point Sets with Probability

Distributions

Motivation

This chapter deals specifically with data sets where each “data point” is actually a
distribution of where a data point may be. In this chapter we focus on geometric
problems on this data, however, many of the ideas, data structures, and algorithms
extend to non-geometric problems.

Since the input data we consider has uncertainty, given by probability distribu-
tions, we argue that computing exact answers may not be worth the effort. Further-
more, many problems we consider may not have compact closed form solutions. As
a result, we produce approximate answers.

However, as discussed in the introduction, much raw data is not immediately
given as a set of probability distributions, rather as a set of points, each drawn from a
probability distribution itself. Approximate algorithms may treat this data as exact,
construct an approximate answer, and then postulate that since the raw data is not
exact and has inaccuracies, the approximation errors made by the algorithm may
be similar to the inaccuracies of the imprecise input data. This is a very dangerous
postulation, as demonstrated by the following example.

Example. Consider a robot trying to determine the boundary of a convex room. Its
strategy is to use a laser range finder to get data points on objects in the room (hopefully
boundary walls), and then take the convex hull of these points.

However, large errors may occur if the room has windows; a few laser scans may not
bounce off the window, and thus return data points (say, 100 meters) outside the room.
Standard techniques (e.g., α-kernels) would include those points in the convex hull, but
may allow some approximation (say, up to 10 meters). Hence, the outlier data points
could still dramatically warp the shape of the room, outside the error tolerance.

However, an error model on these outlier data points, through regression to the mean,
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would assign some probability to them being approximately correct and some probability to

them actually being inside (or much closer to) the true room. An algorithm which took this

error model into account would assign some probability of a shape near the true room shape

and some probability to the oblong room that extends out through the window.

It is clear from this example, that an algorithm can only provide answers as good
as the raw data and the models for error on that data. This chapter is not about how
to construct error models, but how to take error models into account. While many
existing algorithms produce approximations with respect only to the raw input data,
algorithms in this chapter approximate with respect to the raw input data and the
error models associated with them.

Other error models. In the 1980s and 1990s, many data sets in computational geom-
etry could be assumed to be precise as they we often hand-constructed for computer
graphics or simulations. An early model to quantify imprecision in geometric data,
motivated by finite precision of coordinates, is ε-geometry, introduced by Guibas et
al. [49]. In this model, the input is given by a traditional point set P , where the
imprecision is modeled by a single extra parameter ε. The true point set is not
known, but it is certain that for each point in P there is a point in the disk of radius
ε around it. (See also the work of Milenkovic [86], Hoffman [62], and Joskowitz et
al. [67].) This model has proven fruitful and is still used due to its simplicity. To
name a few, Guibas et al. [50] define strongly convex polygons: polygons that are
guaranteed to stay convex, even when the vertices are perturbed by ε. (See also [75].)
Bandyopadhyay and Snoeyink [16] compute the set of all potential simplices in R2

and R3 that could belong to the Delaunay triangulation. Held and Mitchell [59] and
Löffler and Snoeyink [78] study the problem of preprocessing a set of imprecise points
under this model, so that when the true points are specified later some computation
can be done faster. Cabello and van Krevald consider matching of point sets under
this model [26].

A more involved model for imprecision can be obtained by not specifying a single
ε for all the points, but allowing a different radius for each point, or even other shapes
of imprecision regions. This allows for modeling imprecision that comes from different
sources, independent imprecision in different dimensions of the input, etc. This extra
freedom in modeling comes at the price of more involved algorithmic solutions, but
still many results are available. Nagai and Tokura [87] compute the union and
intersection of all possible convex hulls to obtain bounds on any possible solution, as
does Ostrovsky-Berman and Joskowicz [92] in a setting allowing some dependence
between points. Van Kreveld and Löffler [115] study the problem of computing the
smallest and largest possible values of several geometric extent measures, such as the
diameter or the radius of the smallest enclosing ball, where the points are restricted
to lie in given regions in the plane. Kruger [69] extends some of these results to
higher dimensions.

These models, in general, give worst case bounds on error, for instance upper and
lower bounds on the radius of minimum enclosing ball. When the error is derived
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entirely from precision errors, this information can be quite useful (as much of the-
oretical computer science is based on worst case bounds). However, when data is
sensed, the maximum error range used as input are often manufactured by truncat-
ing a probability distribution, so the probability that a point is outside that range is
below some threshold. Since the above models usually produce algorithms and an-
swers very dependent on boundary cases, these artificial (and sometimes arbitrary)
thresholds play large roles in the answers. Furthermore, the true location of the
data points are often not near the boundary of the error range, but near the center.
Hence, it makes more sense to use the original probability distributions, and then
if needed, we can apply a threshold based on probability to the final solution. This
ensures that the truncation errors have not accumulated.

3.1 Problem Statement

Let µp : Rd → R+ describe the probability distribution of a point p where the integral∫
x∈Rd µp(x) dx = 1. Let µP : Rd ×Rd × . . .×Rd → R+ describe the distribution of a

point set P by the joint probability over each p ∈ P . For brevity we write the space
Rd×. . .×Rd as Rdn. For this chapter we will assume µP (q1, q2, . . . , qn) =

∏n
i=1 µpi

(qi),
so the distribution for each point is independent, although for some of our algorithms
this restriction can be easily circumvented.

Given a distribution µP we ask a variety of shape fitting questions about the
uncertain point set. For instance, we can ask what is the radius smallest enclosing
ball or what is the smallest axis-aligned bounding box of an uncertain point set. In
the presence of imprecision, the answer to such a question is not a single value or
structure, but also a distribution of answers. The focus of this chapter is not just how
to answer such shape fitting questions about these distributions, but how to concisely
represent them. As a result, we introduce two types of approximate distributions as
answers, and a technique to construct coresets for these answers.

ε-Quantizations. Let f : Rdn → Rk be a function on a fixed point set. Examples
include the radius of the minimum enclosing ball where k = 1 and the width of the
minimum enclosing axis-aligned rectangle in along the x-axis and y-axis where k = 2.
Define the “dominates” binary operator � so that (p1, . . . , pk) � (v1, . . . , vk) is true
if for every coordinate pi ≤ vi. Let Xf (v) = {Q ∈ Rdn | f(Q) � v}. For a query
value v define,

FµP
(v) =

∫

Q∈Xf (v)

µP (Q) dQ.

Then FµP
is the cumulative density function of the distribution of possible values

that f can take1. Ideally, we would return the function FµP
so we could quickly

1 In this chapter, for a function f and a distribution of point sets µP , we will always represent the
cumulative density function of f over µP by FµP

.
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(a) (b)

(d) (c)
Figure 3.1: (a) The true form of the function. (b) The ε-quantization R as a point
set in R. (c) The inferred curve hR in R2. (d) Overlay of the two images.

answer any query exactly, however, it is not clear how to calculate FµP
(v) exactly for

even a single query value v. Rather, we introduce a data structure, which we call an
ε-quantization, to answer any such query approximately and efficiently, illustrated
in Figure 3.1 for k = 1. An ε-quantization is a point set R ⊂ Rk which induces a
function hR where hR(v) describes the fraction of points in R that v dominates. Let
Rv = {r ∈ R | r � v}. Then hR(v) = |Rv|/|R|. For an isotonic (monotonically
increasing in each coordinate) function FµP

and any value v, an ε-quantization, R,
guarantees that

|hR(v) − FµP
(v)| ≤ ε.

When k = 1, we say R is a univariate ε-quantization, otherwise we say R is a k-
variate ε-quantization. A 2-variate ε-quantization is illustrated in Figure 3.2. The
space required to store the data structure for R is dependent only on ε and k, not
on |P | or µP .

(a) (b) (c) (d)
Figure 3.2: (a) The true form of the 2-variate function. (b) The ε-quantization
R as a point set in R2. (c) The inferred surface hR in R3. (d) Overlay of the two
images.

(ε, δ, α)-Kernels. Rather than compute a new data structure for each measure we
are interested in, we can also compute a single data structure (a coreset) that allows
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us to answer many types of questions. For an isotonic function FµP
: R+ → [0, 1], an

(ε, α)-quantization data structure M describes a function hM : R+ → [0, 1] so for any
x ∈ R+, there is an x′ ∈ R+ such that (1) |x−x′| ≤ αx and (2) |hM(x)−FµP

(x′)| ≤ ε.
An (ε, δ, α)-kernel is a data structure that can produce an (ε, α)-quantization, with
probability at least 1− δ, for FµP

where f measures the width in any directions and
whose size depends only on 1/ε, 1/α, and 1/δ. The notion of (ε, α)-quantizations is
generalized to a k-variate version, as are (ε, δ, α)-kernels, in Section 3.3.

Shape inclusion probabilities. A summarizing shape of a point set P ⊂ Rd is a
Lebesgue-measureable subset of Rd that is determined by P . Examples include
the smallest enclosing ball, the minimum-area axis-aligned bounding rectangle, or
the convex hull. We consider some class of shapes S and the summarizing shape
S(P ) ∈ S is the shape from S that is optimized in some aspect with respect to P .
For a family of summarizing shapes S we can study the shape inclusion probability
function sµP

: Rd → [0, 1] (or sip function), where sµP
(q) describes the probability

that a query point q ∈ Rd is included in the summarizing shape2. There does not
seem to be a closed form for many of these functions. Rather we calculate an ε-sip
function ŝ : Rd → [0, 1] such that ∀x∈Rd |sµP

(x) − ŝ(x)| ≤ ε. The space required to
store an ε-sip function depends only on ε and the complexity of the summarizing
shape.

3.1.1 Contributions

We describe simple and practical randomized algorithms for the computation of ε-
quantizations, (ε, δ, α)-kernels, and ε-sip functions. Let Tf (n) be the time it takes to
calculate a summarizing shape of a set of n points Q ⊂ Rd, which generates a statis-
tic f(Q) (e.g., radius of smallest enclosing ball). We can calculate an ε-quantization
of FµP

, with probability at least 1− δ, in time O(Tf (n)(1/ε2) log(1/δ)). For univari-
ate ε-quantizations the size is O(1/ε), and for k-variate ε-quantizations the size is
O(k2(1/ε) log2k(1/ε)). We can calculate an (ε, δ, α)-kernel of size O((1/α(d−1)/2) ·
(1/ε2) log(1/δ)) in O((n + (1/αd−3/2))(1/ε2) log(1/δ)) time. With probability at
least 1 − δ, we can calculate an ε-sip function of size O((1/ε2) log(1/δ)) in time
O(Tf (n)(1/ε2) log(1/δ)). All of these randomized algorithms are simple and practi-
cal, as demonstrated by some experimental results.

In addition, we provide deterministic algorithms for computing ε-quantizations
of a specific class of functions. Let S be a family of summarizing shapes such that
(Rd, S) has bounded VC-dimension. Let f : Rdn → Rk be a function that for a point
set P ∈ Rdn describes a statistic on summarizing shape S(P ) ∈ S. An ε-quantization
for FµP

can be computed in deterministic time O(poly(n, 1/ε)), as described in Table
3.2.

2 For technical reasons, if there are (degenerately) multiple optimal summarizing shapes, we say
each are equally likely to be the summarizing shape of the point set.
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This chapter describes results for shape fitting problems for distributions of point
sets in Rd, in particular, we will use the smallest enclosing ball and the axis-aligned
bounding box as running examples in the algorithm descriptions. The concept of
ε-quantizations extends to many other problems with uncertain data. In fact, vari-
ations of our randomized algorithm will work for a more general array of problems.

3.2 Randomized Algorithm for ε-Quantizations

We start with a general algorithm (Algorithm 3.2) which will be made specific in
several places in this chapter. We assume we can draw a point from µp for each
p ∈ P in constant time; if the time depends on some other parameters, the time
complexity of the algorithms can be easily adjusted.

Algorithm 3.2.1 Approximate µP with regard to a family of shapes S or function
fS

1: for i = 1 to m = O((1/ε2) log(1/δ)) do

2: for pj ∈ P do

3: Generate qj ∈ µpj
.

4: Set Vi = fS({q1, q2, . . . , qn}).
5: Reduce or Simplify the set V = {Vi}m

i=1.

Algorithm for ε-quantizations. For a function f on a point set P of size n, it takes
Tf (n) time to evaluate f(P ). We now construct an approximation to FµP

by adapting
Algorithm 3.2.1 as follows. First draw a sample point qj from each µpj

for pj ∈ P ,
then evaluate Vi = f({q1, . . . , qn}). The fraction of trials of this process that produces
a value dominated by v is the estimate of FµP

(v). In the univariate case we can reduce
the size of V by returning 2/ε evenly spaced points according to the sorted order.

Theorem 3.1. Let Tf (n) be the time it takes to compute f(Q) for any point set Q
of size n. For a distribution µP of n points, with success probability at least 1 − δ,
there exists an ε-quantization of size O(1/ε) for FµP

, and it can be constructed in
O(Tf (n)(1/ε2) log(1/δ)) time.

Proof. Because FµP
: R → [0, 1] is an isotonic function, there exists another function

g : R → R+ such that FµP
(t) =

∫ t

x=−∞ g(x) dx where
∫

x∈R
g(x) dx = 1. Thus g is a

probability distribution of the values of f given inputs drawn from µP . This implies
that an ε-sample of (g, I+) is an ε-quantization of FµP

, since both estimate within ε
the fraction of points in any range of the form (−∞, x).

By drawing a random sample qi from each µpi
for pi ∈ P , we are drawing a

random point set Q from µP . Thus f(Q) is a random sample from g. Hence, using
the standard randomized construction for ε-samples, O((1/ε2) log(1/δ)) such samples

47



will generate an (ε/2)-sample for g, and hence an (ε/2)-quantization for FµP
, with

probability at least 1 − δ.
Since in an (ε/2)-quantization R every value hR(v) is different from FµP

(v) by
at most ε/2, then we can take an (ε/2)-quantization of the function described by
hR(·) and still have an ε-quantization of FµP

. Thus, we can reduce this to an ε-
quantization of size O(1/ε) by taking a subset of ε/2 points spaced evenly according
to their sorted order.

We can construct k-variate ε-quantizations using the same basic procedure as in
Algorithm 3.2. The output Vi of fS is k-variate and thus results in a k-dimensional
point. As a result, the reduction of the final size of the point set requires more
advanced procedures.

Theorem 3.2. Let Tf (n) be the time it takes to compute f(Q) for any point set Q
of size n. Given a distribution µP of n points, with success probability at least 1− δ,
we can construct a k-variate ε-quantization for FµP

(a) of size O((k2/ε2) log(1/δ)) and in time O(Tf (n)(k/ε2) log(1/δ)),

(b) of size O((k2/ε) log2k(1/ε)) and in time
O(Tf (n)(k/ε2) log(1/δ) + (k2/ε5) log6k(1/ε) log(1/δ)), or

(c) of size O((k2/ε2) log(1/ε)) and in time
O(Tf (n)(k/ε2) log(1/δ) + (k3k+1/ε2k+2) logk(k/ε) log(1/δ)).

Proof. Let R+ describe the family of ranges where a range Ap = {q ∈ Rk | q � p}.
In the k-variate case there exists a function g : Rk → R+ such that FµP

(v) =∫
x�v

g(x) dx where
∫

x∈Rk g(x) dx = 1. Thus g describes the probability distribution
of the values of f given inputs drawn randomly from µP . Hence a random point set Q
from µP , evaluated as f(Q), is still a random sample from the k-variate distribution
described by g. Thus, with probability at least 1−δ, a set of O((k/ε2) log(1/δ)) such
samples is an ε-sample of (g,R+), which has VC-dimension k, and the samples are
also a k-variate ε-quantization of FµP

.
We can then reduce the size of the ε-quantization R to O((k2/ε) log2k(1/ε)) in

time O(|R|(k/ε3) log6k(1/ε)) [96] or to O((k2/ε2) log(1/ε)) in time O(|R|(k3k/ε2k) ·
logk(k/ε)) [32], since the VC-dimension is k and each data point requires O(k) stor-
age.

There exist weighted variants of ε-quantizations, where each r ∈ R contributes
some value w(r) to the total fraction and

∑
r∈R w(r) = 1. For a weighted ε-

quantization (R,w)

hR(v) =
∑

r∈Rv

w(r).
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3.3 (ε, δ, α)-Kernels

The above construction works for a fixed family of summarizing shapes. This section
builds a single data structure, an (ε, δ, α)-kernel, for a distribution µP in Rd that can
be used to construct (ε, α)-quantizations for several families of summarizing shapes.
In particular, an (ε, δ, α)-kernel of µP is a data structure such that in any query
direction u ∈ Sd−1 we can create an (ε, α)-quantization for the cumulative density
function of ω(·, u), the width in direction u, with probability at least 1 − δ. This
data structure introduces a parameter α, which deals with relative geometric error,
in addition to the error parameter ε, which deals with relative counting error and
error parameter δ which accounts for potential error due to randomization.

We follow the randomized framework described above as follows. The desired
(ε, δ, α)-kernel K consisting of a set ofm = O((1/ε2) log(1/δ)) (α/2)-kernels, {K1, K2,
. . . , Km}, where eachKj is an (α/2)-kernel of a point setQj drawn randomly from µP .
Given K, with probability at least 1 − δ we can then create an (ε, α)-quantization
for the cumulative density function of width over µP in any direction u ∈ Sd−1.
Specifically, let M = {ω(Kj, u)}m

j=1.

Lemma 3.1. With probability at least 1 − δ, M is an (ε, α)-quantization for the
cumulative density function of width of µP in direction u.

Proof. The width ω(Qj, u) of a random point set Qj drawn from µP is a random
sample from the distribution over widths of µP in direction u. Thus, with probability
at least 1 − δ, m such random samples would create an ε-quantization. Using the
width of the α-kernels Kj instead of Qj induces an error on each random sample of
at most 2α ·ω(Qj, u). Then for a query width w, say there are γm point sets Qj that
have width at most w and γ′m α-kernels Kj with width at most w; see Figure 3.3.
Note that γ′ > γ. Let ŵ = w − 2αw. For each point set Qj that has width greater
than w it follows that Kj has width greater than ŵ. Thus the number of α-kernels
Kj that have width at most ŵ is at most γm, and thus there is a width w′ between
w and ŵ such that the number of α-kernels at most w′ is exactly γm.

ww
′

M

R

ŵ

2αw

Figure 3.3: (ε, α)-quantization M (white circles) and ε-quantization R (black
circles) given a query width w.

Since each Kj can be computed in O(n+1/αd−3/2) time, we obtain the following.
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Theorem 3.3. We can construct an (ε, δ, α)-kernel for µP on n points in Rd of size
O((1/α(d−1)/2)(1/ε2) log(1/δ)) and in time O((n+ 1/αd−3/2) · (1/ε2) log(1/δ)).

k-Dependent (ε, α)-Kernels. The definition of (ε, α)-quantizations can be extended
to a k-variate (ε, α)-quantizations data structure with the following properties. A
k-variate ε-quantization M is a set of points in Rk which induces a function hM :
Rk → [0, 1] where a query hM(x) = |Mx|/|M | returns the fraction of points in M
which are dominated by or equal to x. Let x(i) represent the ith coordinate of a
point x ∈ Rk. For a query x ∈ Rk, there exists a point x′ ∈ Rk such that (1) for all
integers i ∈ [1, k] |x(i) − (x′)(i)| ≤ αx(i) and (2) |M(x) − FµP

(x′)| ≤ ε.
In addition, (ε, δ, α)-kernels can be generalized to approximate cumulative density

functions of other functions f : Rdn → Rk, specified as follows. We say a point
p′ ∈ Rk is a relative θ-approximation of p ∈ Rk if for each coordinate i we have
|p(i) − p′(i)| ≤ θp(i). For a parameter a ∈ [0, 1], we say that f is relative θ(α)-
approximable if for all Q ∈ Rdn and for any α-kernel K of Q, f(K) is a relative
θ(α)-approximation of f(Q).

By setting m = O((k/ε2) log(1/δ)) in the above algorithm, we can build a k-
dependent (ε, δ, α)-kernel data structure K with the following properties. It has
size O((1/α(d−1)/2)(k/ε2) log(1/δ)) and can be built in time O((n+ 1/αd−3/2)(k/ε2) ·
log(1/δ)). To create a k-variate (ε, α)-quantization for a function f (with probability
at least 1 − δ), create a k-dimensional point pj = f(Kj) for each α-kernel Kj in K.
The set of m k-dimensional points forms the k-variate (ε, α)-quantization M .

Theorem 3.4. Given a distribution µP of n points in Rd, for m = O((k/ε2) log(1/δ)),
we can create a k-dependent (ε, δ, α)-kernel K of size O((1/α(d−1)/2)m) and in time
O((n + 1/αd−3/2)m). Let f be any relative θ(α)-approximable function that takes
Tf (N) time to evaluate on a set of N points. From K, we can create a k-variate
(ε, θ(α))-quantization of FµP

(a) of size O((k/ε2) log(1/δ)) and in time O(Tf (1/α
(d−1)/2)m),

(b) of size O((k/ε) log2k(k/ε)) and in time
O(Tf (1/α

(d−1)/2)m+ (k/ε3) log6k(1/ε)m), or

(c) of size O((k/ε2) log(k/ε)) and in time
O(Tf (1/α

(d−1)/2)m+ (k3k/ε2k) logk(k/ε)m)

Proof. Let Q = {Q1, . . . , Qm} be the m points sets drawn randomly from µP and for
the set K = {K1, . . . , Km} let Kj be the α-kernel of Qj. Consider the probability
distribution g describing the values of f(Q) where Q is drawn randomly from µP .
The set of m k-dimensional points {w1 = f(Q1), . . . , wm = f(Qm)} describes an
ε-sample of (g,R+) and hence also an ε-quantization of FµP

. We claim the set
{w′

1 = f(K1), . . . , w
′
m = f(Km)} forms an (ε, α)-quantization of FµP

.
For a query point w ∈ Rk, let γm point sets from Q produce a value wj = f(Qj)

such that wj � w, and let γ′m point sets from K produce a value w′
j = f(Kj) such
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that w′
j � w. Note that γ′ > γ. Let ŵ = w − θ(α)w; more specifically, for each

coordinate w(i) of w, ŵ(i) = w(i) − θ(α)w(i). Because f is relative θ(α)-approximable,
for each point set Qj ∈ Q such that wj � w, then w′

j � ŵ. Thus, the number of point
sets such that f(Kj) � ŵ is at most γm, and hence there is a point w′ between w
and ŵ such that the fraction of sampled point sets such that f(Kj) � w′ is exactly
γ, and hence is within ε of the true fraction of point sets sampled from µP with
probability at least 1 − δ.

To name a few examples, the width and diameter are relative 2α-approximable
functions, thus the results apply directly with k = 1. The radius of the minimum
enclosing ball is relative 4α-approximable with k = 1. The d directional widths of
the minimum perimeter or minimum volume axis-aligned rectangle is relative 2α-
approximable with k = d.

Remark. If an (ε, δ, α)-kernel is used for one query, it is correct with probability
at least 1− δ, and if it is used for another query, it is also correct with probability at
least 1− δ. Although there is probably some dependence between these two quanti-
ties, it is not easy to prove in general, hence we only claim the probability they are
both correct is at least (1 − δ)2. We can increase this back to 1 − δ for k queries
by setting m = O((k/ε2) log(1/δ)), but we need to specify k in advance. If we had
a deterministic construction to create an (ε, 0, α)-kernel this would not be a prob-
lem, and we could, say, guarantee an (ε, α)-quantization for width in all directions
simultaneously. However, this appears to be a much more difficult problem.

Other coresets. In a similar fashion, coresets of a point set distribution µP can
be formed using other coresets of discrete point sets. For instance, sample m =
O((1/ε2) log(1/δ)) points sets {P1, . . . , Pm} each from µP and then store α-samples
{Q1 ⊆ P1, . . . , Qm ⊆ Pm} of each. (If we use random sampling in the second set,
then not all distributions µpi

need to be sampled for each Pj in the first round.) This
results in an (ε, δ, α)-sample of µP , and can, for example, be used to construct (with
probability 1−δ) an (ε, α)-quantization for the fraction of points expected to fall in a
query disk. Similar constructions can be done for other coresets, such as ε-nets [58],
k-center [10, 54], or smallest enclosing ball [25].

3.3.1 Experiments with (ε, δ, α)-Kernels and ε-Quantizations

We implemented these randomized algorithms for (ε, δ, α)-kernels and ε-quantizations
for diameter (diam), width in a fixed direction (dwid), and radius of the smallest en-
closing ℓ2 ball (seb2). We used existing code from Hai Yu [119] for α-kernels and
Bernd Gärtner [46] for seb2. For the input set µP we generated 5000 points P ⊂ R3

on the surface of a cylinder piece with radius 1 and axis length 10. Each point p ∈ P
represented the center of a Gaussian with standard deviation 3. We set ε = δ = .2
and generated α-kernels of size at most 40 (the existing code did not allow the user
to specify a parameter α, only the maximum size). We generated a total of m = 40
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point sets from µP . The (ε, δ, α)-kernel has a total of 1338 points. We calculated
ε-quantizations and (ε, α)-quantizations for diam, dwid, and seb2, each of size 10; see
Figure 3.4 and Table 3.1.

α

ε

6.8176.535

α

ε

9.343 10.642

α

ε

13.017 13.633

(a) (b) (c)

Figure 3.4: (ε, α)-quantization (white circles) and ε-quantization (black circles)
for (a) seb2, (b) dwid, and (c) diam.

Table 3.1: (ε, α)-quantizations versus ε-quantizations.

func ap .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

seb2 ε 6.56 6.62 6.64 6.68 6.70 6.71 6.73 6.76 6.78 6.82

seb2 εα 6.53 6.59 6.61 6.63 6.65 6.67 6.69 6.71 6.74 6.78

dwid ε 9.53 9.75 9.86 9.93 10.13 10.18 10.27 10.36 10.43 10.64

dwid εα 9.34 9.63 9.83 9.92 10.04 10.15 10.20 10.36 10.42 10.64

diam ε 13.11 13.19 13.23 13.27 13.36 13.39 13.43 13.47 13.53 13.63

diam εα 13.02 13.08 13.18 13.21 13.22 13.30 13.35 13.37 13.45 13.53

3.4 Shape Inclusion Probabilities

We can also use a variation of Algorithm 3.2 to construct ε-shape inclusion proba-
bility functions. For a point set Q ⊂ Rd, let the summarizing shape SQ = S(Q) be
from some geometric family S so (Rd, S) has bounded VC-dimension ν. We randomly
sample m point sets Q = {Q1, . . . , Qm} each from µP and then find the summarizing
shape SQj

= S(Qj) (e.g. minimum enclosing ball) of each Qj. Let this set of shapes
be SQ. If there are multiple shapes from S which are equally optimal (as can happen
degenerately with, for example, minimum width slabs), choose one of these shapes
at random. For a set of shapes S ′ ⊆ S, let S ′

p ⊆ S ′ be the subset of shapes that

contain p ∈ Rd. We store SQ and evaluate a query point p ∈ Rd by counting what
fraction of the shapes the point is contained in, specifically returning |SQ

p |/|SQ| in

O(ν|SQ|) time. In some cases, this evaluation can be sped up with point location
data structures.

Theorem 3.5. Consider a family of summarizing shapes S where (Rd, S) has VC-
dimension ν and where it takes TS(n) time to determine the summarizing shape
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S(Q) for any point set Q ⊂ Rd of size n. For a distribution µP of a point set of
size n, with probability at least 1 − δ, we can construct an ε-sip function of size
O(2ν+1(ν/ε2) log(1/δ)) and in time O(TS(n)(1/ε2) log(1/δ)).

Proof. If (Rd, S) has VC-dimension ν, then the dual range space (S, P ∗) has VC-
dimension ν ′ ≤ 2ν+1, where P ∗ is all subsets Sp ⊆ S, for any p ∈ Rd, such that
Sp = {S ∈ S | p ∈ S}. Using the above algorithm, sample m = O((ν ′/ε2) log(1/δ))
point sets Q from µP and generate the m summarizing shapes SQ. Each shape is a
random sample from S according to µP , and thus SQ is an ε-sample of (S, P ∗).

Let wµP
(S), for S ∈ S, be the probability that S is the summarizing shape of a

point set Q drawn randomly from µP . Let WµP
(S′) =

∫
S∈S′ wµP

(S), where S′ ⊆ P ∗,
be the probability that some shape from the subset S′ is the summarizing shape of
Q drawn from µP .

We approximate the sip function at p ∈ Rd by returning the fraction |SQ
p |/m.

The true answer to the sip function at p ∈ Rd is WµP
(Sp). Since SQ is an ε-sample

of (S, P ∗), then with probability at least 1 − δ

∣∣∣∣∣
|SQ

p |
m

− WµP
(Sp)

1

∣∣∣∣∣ =

∣∣∣∣∣
|SQ

p |
|SQ| −

WµP
(Sp)

WµP
(P ∗)

∣∣∣∣∣ ≤ ε.

Since for the family of summarizing shapes S the range space (Rd, S) has VC-
dimension ν, each can be stored using that much space.

Using deterministic techniques the size can then be reduced to O(2ν+1(ν/ε2) ·
log(1/ε)) in time O((23(ν+1)(ν/ε2) log(1/ε))2ν+1 · 23(ν+1)(ν/ε2) log(1/δ)).

3.4.1 Representing ε-sip Functions by Isolines.

Shape inclusion probability functions are density functions. One convenient way of
visually representing a density function in R2 is by drawing the isolines. A γ-isoline
is a closed curve such that on the inside the density function is > γ and on the
outside is < γ.

In each part of Figure 3.5 and Figure 3.6 a set of 5 circles correspond to points with
a probability distribution. For part (a) of both figures, the probability distribution
is uniform over the inside of the circles, in part (b) of both figures it is drawn from
a multivariate Gaussian distribution with standard deviation as the radius. We
generate ε-sip functions for smallest enclosing ball in Figure 3.5 and for smallest
axis-aligned bounding box in Figure 3.6.

In all figures we draw approximations of {.9, .7, .5, .3, .1}-isolines. These drawing
are generated by randomly selecting m = 5000 (Figure 3.5) or m = 25000 (Figure
3.6) shapes, counting the number of inclusions at different points in the plane and
interpolating to get the isolines. The innermost and darkest region has probability
> 90%, the next one probability > 70%, etc., the outermost region has probability
< 10%.
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(a) (b)

Figure 3.5: (a) The shape inclusion probability for the smallest enclosing ball,
for points uniformly distributed inside the circles. (b) The same, but for normally
distributed points around the circle centers, with standard deviations given by the
radii.

(a) (b)

Figure 3.6: (a) The shape inclusion probability for the smallest enclosing axis-
aligned rectangle, for points uniformly distributed inside the circles. (b) The same,
but for normally distributed points.

A center point for µP . We can create a point q̄ ∈ Rd that is in the convex hull
of a sampled point set Q from µP with high probability. This implies that for
any summarizing shape that contains the convex hull, q̄ is also contained in that
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summarizing shape. For a point set P ⊂ Rd, a β-center point is a point q ∈ Rd, such
that any closed halfspace that contains q also contains at least 1/β fraction points
of all points in P . It is known that for any discrete point set a (d + 1)-center point
always exists [105]. Let H be the family of subsets defined by halfspaces. For a point
set P of size n, a (2d + 2)-center point can be created in O(d5d+3 logd d) time [34]
by first creating an (1/(2d + 2))-sample of (P,H), and then running a brute force
algorithm. Because the first step is creating an ε-sample, this can be extended to
Lebesgue-measureable sets such as probability distributions as well.

We use the following algorithm:

1. Create a (2d+ 2)-center point p̄i for each µpi
. Let the set be P̄ .

2. Create (2d+ 2)-center point q̄ of P̄ .

For d constant, the algorithm runs in O(n) time because we can create (2d+2)-center
points a total of n+ 1 times, and each takes O(1) time.

Lemma 3.2. Given a distribution of a point set µP (such that each point distribution
is polygonally approximable) of n points in Rd, there is an O(n) time algorithm to
create a point q̄ that will be in the convex hull of a point set drawn from µP with
probability at least 1 − (e1/(2d+2)2)n.

Proof. Because p̄i is a (2d+ 2)-center point of µpi
, any halfspace that contains p̄i on

its boundary (and does not contain q̄) has probability at least 1/(2d+2) of containing
a point randomly drawn from µpi

. Also, because q̄ is a (2d + 2)-center point of P̄ ,
for any direction u ∈ Sd−1 there are at least n/(2d + 2) points p̄i from P̄ for which
〈q, u〉 ≤ 〈p̄i, u〉. Thus, if a point qi is drawn from µpi

such that 〈q, u〉 ≤ 〈p̄i, u〉 then
the probability that 〈q̄, u〉 ≤ 〈qi, u〉 is at least 1/(2d + 2). Hence, the probability
that there is a separating halfspace between q̄ and the convex hull of Q (where the
halfspace is orthogonal to some direction u) is at most

(1 − 1/(2d+ 2))n/(2d+2) = ((1 − 1/(2d+ 2))1/(2d+2))n ≤ (e1/(2d+2)2)n.

Theorem 3.6. For a set of m < n point sets drawn i.i.d. from µP , it follows that q̄
is in each of the m convex hulls for each point sets with high probability (specifically
with probability ≥ 1 −m(e1/(2d+2)2)n).

Proof. Let β = e1/(2d+2)2 . For any one point set the probability that q̄ is contained
in the convex hull is at least 1 − βn. By the union bound, the probability that it is
contained in all m convex hulls is at least (1−βn)m = 1−mβn+

(
m
2

)
β2n−

(
m
3

)
β3n+. . ..

Since n > m, the sum of all terms after the first two in the expansion increase the
probability.
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We say a family of shapes S is convex if S(P ) ∈ S contains the convex hull of P
and S(P ) is always a convex set. When S is convex, then for any point q, the line
segment qq̄ is completely contained in S(P ) if and only if q ∈ S(P ). Thus, given a
set of m summarizing shapes, for every boundary of a summarizing shape qq̄ crosses,
q is outside that summarizing shape. This implies the following corollary.

Corollary 3.1. Consider a distribution µP of point sets of size n, a convex family of
shapes S inducing a sip function sS on µP , and a positive integer m < n. For γ ≤
1−1/m the subset of Rd inside of the γ-isoline of sS, exists, is connected, and is star-
shaped with high probability, specifically with probability at least 1 −m(e1/(2d+2)2)n.

3.5 Deterministic Constructions of ε-Quantizations

In this section we consider a family of shapes S which describe Lebesgue-measureable
subset of Rd, so that (Rd, S) has bounded VC-dimension, and for a point set P ⊂ Rd,
the summarizing shape of S(P ) minimizes some quantity f(P ) of the point set P . In
particular, we will focus on two examples. First, the seb2 case, let S describe the set
of discs in R2, S(P ) is the smallest enclosing disc of P , and f(P ) is the radius of the
smallest enclosing disc of P . Second, the aabbv case, let S describe the set of axis-
aligned bounding boxes in Rd, S(P ) is the minimum volume axis-aligned bounding
box of P , and f(P ) is its volume. We are concerned with µP = {µp1 × . . . × µpn

},
a distribution on point sets of size n, where for each µpi

we can deterministically
construct an ε-sample of (µpi

,A) using the results of Chapter 1.
The overall strategy will be to deterministically create a specific ε-sample Qpi

to
represent each µpi

. Let QP = {Qp1 , . . . , Qpn
} describe this set of point sets. Then

let the function f̃(QP , r) describe the fraction of point sets Q′ = (q1 ∈ Qp1 , q2 ∈
Qp2 , . . . , qn ∈ Qpn

) such that f(Q′) ≤ r. We prove two results: we show how to
generate a set of point sets QP such that

∣∣∣f̃(QP , r) − FµP
(r)
∣∣∣ ≤ ε

for all r ∈ R+ and we show how to efficiently evaluate f̃(QP , r).

3.5.1 Approximating µp

Let Af,n describe a family of Lebesgue-measureable sets defined by n − 1 points
T ⊂ Rd and a value w. Specifically, A(T,w) ∈ Af,n is the set of points {p ∈ Rd |
f(T ∪ p) ≤ w}. Figure 3.7(a) shows an example element of Af,8 for the seb2 case.
Figure 3.8(b) shows an example element of Af,8 for the aabbv case.

Theorem 3.7. Let µp1 × . . . × µpn
= µP describe the distribution of a point set of

size n. For 1 ≤ i ≤ n, let Qpi
be an ε′-sample of (µpi

,Af,n), then for any r
∣∣∣FµP

(r) − f̃({Qp1 , Qp2 , . . . , Qpn
}, r)

∣∣∣ ≤ ε′n.
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Proof. When P is drawn from a distribution µP , then we can write FµP
(r) as the

probability that f(P ) ≤ r as follows. Let 1(·) be the indicator function, i.e., it is 1
when the condition is true and 0 otherwise.

FµP
(r) =

∫

q1

µp1(q1) . . .

∫

qn

µpn
(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqndqn−1 . . . dq1

Consider the inner most integral
∫

qn

µpn
(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqn,

where {q1, q2 . . . , qn−1} are fixed. The indicator function is true when for qn

f({q1, q2, . . . , qn−1, qn}) ≤ r

and hence qn is contained in a shape A({q1, . . . , qn−1}, r) ∈ Af,n. Thus if we have an
ε′-sample Qpn

for (µpn
,Af,n), then we can guarantee that

∫

qn

µpn
(qn)1(f({q1, q2, . . . , qn}) ≤ r) dqn

≤ 1

|Qpn
|
∑

qn∈Qpn

1(f({q1, q2, . . . , qn−1, qn}) ≤ r) + ε′.

We can then move the ε′ to the outside, and we can change the order of the integrals
to write:

FµP
(r) ≤ 1

|Qpn
|
∑

qn∈Qpn(∫

q1

µp1(q1) . . .

∫

qn−1

µpn−1(qn−1)1(f({q1, q2, . . . , qn}) ≤ r) dqn−1 . . . dq1

)
+ ε′.

Repeating this procedure n times we get:

FµP
(r) ≤

(
n∏

i=1

1

|Qpi
|

) ∑

q1∈Qp1

· · ·
∑

qn∈Qpn

1(f({q1, q2, . . . , qn}) ≤ r) + ε′n.

= f̃(QP , r) + ε′n.

Using the same technique we can achieve a symmetric lower bound for FµP
(r).

By setting ε′ = ε/n we can achieve an additive ε-approximation by using an
ε′-sample for each (µpi

,Af,n).
In the aabbv case, (µpi

,Af,n) has constant VC-dimension. Shapes from Af,n are
determined by the placement of 2d points, the most extreme in each axis direction,
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(a) (b)

Figure 3.7: (a) A shape from Af,n for smallest enclosing ball using the L2 metric
in R2. The curves are circular arcs of two different radii. (b) The same shape divided
into wedges from Wf,n.

thus its shatter dimension is σf = 2d. Hence an ε-sample for (µpi
,Af,n) of size

O((1/ε2) log(1/ε)) can be calculated in time O((1/ε2) log2(1/ε)) for each µpi
.

In the seb2 case, (R2,Af,n) has VC-dimension Ω(n); for each A(T,w) ∈ Af,n,
the boundary may be described by up to 2n − 2 circular arcs of radius w or 2w.
Naive techniques would take time exponential in n to deterministically create an
ε-sample, but we can do better by decomposing shapes from Af,n into O(n) disjoint
shapes; See Figure 3.7(b). Let Wf be the family of shapes, wedges, formed by the
intersection of a disc and two halfspaces. We can decompose a shape A(T,w) ∈ Af,n

into wedges by choosing a point q in the convex hull of T , and then for each circular
arc defining a boundary piece of A(T,w) define a wedge using the disc which has
that circular arc on its boundary and the halfspaces with boundaries that go through
the boundary of the circular arc and q. The VC-dimension of (R2,Wf ) is at most 9
because it is described by the intersection of three shapes from families that would
each have VC-dimension 3 in a range space with the same ground set. Thus an
(ε/2n)-sample of (µpi

,Wf ) is an ε-sample of (µpi
,Af,n), and it can be constructed of

size O((n2/ε2) log(n/ε)) in time O((n2/ε2) log2(n/ε)) for each µpi
.

We generalize this machinery to other summarizing shapes and in higher dimen-
sions in Appendix 3.A. There are illustrations akin to Figure 3.7(a) for each family
of shapes.

3.5.2 Evaluating f̃(QP , r).

Evaluating f̃(QP , r) in time polynomial in n and |Qpi
|, for any i, is not completely

trivial since there are n|Qpi
| possible sets in QP . Let a panchromatic set be a set of

n points, G ∈ Q1 × . . . × Qn. For each panchromatic set G there exists a unique
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basis BG ⊆ G of at most σS points3 which define the summarizing shape of G, i.e.,
S(G) = S(BG) (remember σS is the shatter dimension of (Rd, S) and σS < νS, the
VC-dimension). Define a valid basis to be a set of at most σS points in QP such that
each point is from a different Qpi

and if any point is removed the summarizing shape
changes. Each valid basis may form a basis for several panchromatic sets.

We now construct (R,w), a weighted ε-quantization of FµP
. This approximation

is created by calculating the summarizing shape for all panchromatic sets. Even
though there are an exponential number of panchromatic sets, there are only a poly-
nomial number of valid bases. Thus for each valid basis, we count the number of
panchromatic sets it represents. And we let each valid basis B contribute to the
ε-quantization; its position is determined by f(B) and its weight by the number of
panchromatic sets it represents. We initially store the ε-quantization as a sorted list
of tuples (r, ξ) where r = f({q1, q2, . . . , qσS

}) for some valid basis {q1, q2, . . . , qσS
},

and ξ is the fraction of the panchromatic sets which are represented by this valid
basis. The details are outlined in Algorithm 3.5.1.

Algorithm 3.5.1 Construct ε-Quantization from QP

1: for all valid bases q1, q2, . . . , qσS
∈ QP do

2: for i = 1 to n do

3: if q1 ∈ Qi or q2 ∈ Qi or . . . or qσS
∈ Qi then

4: Set wi = 1/|Qi|.
5: else

6: Set wi = (1/|Qi|)
∑

qj∈Qi
1(qj ∈ S({q1, q2, . . . , qσS

}))
7: Insert (f(q1, q2, . . . , qσS

),
∏

iwi) into R.

We now summarize the full deterministic algorithm. For 1 ≤ i ≤ n for (µpi
,Af.n)

we create an (ε/n)-sample Qpi
of size λf (n, ε). This makes the set QP have η =∑n

i=1 |Qpi
| = nλf (n, ε) points in its sets. We examine O((λf (n, ε))

σS) valid bases.
For each valid basis we evaluate f(G) and then we compute ξ in RSf (n, ε) time using
a range searching data structure, after preprocessing or with a naive search. Thus
the deterministic running time for constructing an ε-quantization is O((λf (n, ε))

νS ·
RSf (n, ε)) which is presented for various summarizing shapes in Table 3.4. For
instance, for the aabbv case this takes O(n4d+1/ε4d log3d−1(n/ε)) time and for the
seb2 case this takes O(n15/ε7 log3.5(n/ε)) time. The total construction time for the
ε-quantizations is the sum of this time and the time to construct n (ε/n)-samples of
(Rd,Af,n); for both the aabbv case and the seb2 case it is the former.

A univariate ε-quantization can be reduced to size O(1/ε). We can create k-
variate ε-quantizations using the same procedure (such as the width in the k di-
mensions of an axis-aligned bounding box). Thus the same argument applies when
f : Rdn → Rk, and we can create k-variate ε-quantizations of size (k2/ε) logO(k)(k/ε)
in the same deterministic times as long as νS = O(k).

3 This uniqueness requires careful construction of the ε-samples Qpi
, as described in Section 1.3.1.
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Theorem 3.8. Consider a family of shapes S, where for a point set P the statis-
tic f(P ) optimizes a quantity of S(P ). Let (Rd, S) have VC-dimension νS. Let
µP = µp1 × . . . × µpn

describe the distribution of n points. For 1 ≤ i ≤ n, let
Qpi

be an (ε/n)-sample for (µpi
,Af,n) of size λf (n, ε). Given a set of m points, let

RS(m, S) describe the time required to count the number of points in a shape from
the family S using near-linear in m space and preprocessing time. We can construct
a k-variate ε-quantization of FµP

of size (k2/ε) logO(k)(k/ε) in time O((λf (n, ε))
νS ·

nRS(λf (n, ε), S)).
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Appendix to Chapter 3

3.A Shapes of Af,n for Various Summarizing Shapes

Recall that we are considering a family of shapes S (Lebesgue-measureable subsets
of Rd) where for a point set P , S(P ) is a summarizing shape of P and f(P ) is a
function on S(P ). We let (Rd, S) have VC-dimension νS. Recall that Af,n is the
family of shapes defined with respect to a point set T of size n − 1 and a value w
such that A(T,w) ∈ Af,n is defined {p ∈ Rd | f(T ∪ p) ≤ w}. Since (Rd, S) has VC-
dimension νS, then any shape S(P ) is completely determined by a subset BP ⊂ P of
at most νS points. In some cases (e.g., aabbv), we will be able to show (Rd,Af,n) has
constant VC-dimension. In other cases (e.g., seb2) we will not, and then will need to
show that we can decompose any shape A ∈ Af,n into a disjoint set of wedges from
some family of shapes Wf .

Lemma 3.3. If the disjoint union of m shapes from Wf can form any shape from
Af,n, then an (ε/m)-sample of (µp,Wf ) is an ε-sample of (µp,Af,n).

Proof. For any shape A ∈ Af,n we can create a set of m shapes {W1, . . . ,Wn} ⊂ Wf

whose disjoint union is A. Since each range of Wf may have error ε/m, their union
has error at most ε.

The VC-dimension for (R2,Wf ) is shown for several functions in Table 3.3.

Table 3.2: Runtimes for ε-Quantizations of Various Summarizing Shape Families.

case randomized∗ determ. R2 determ. Rd

dwid O(n/ε2) Õ(n3/ε2) Õ(n3/ε2)

aabbp O(n/ε2) Õ(n5/ε4) Õ(n4d+1/ε4d)

aabbv O(n/ε2) Õ(n9/ε8) Õ(n4d+1/ε4d)

seb∞ O(n/ε2) Õ(n4/ε3) Õ(nd+2/εd+1)

seb1 O(n/ε2) Õ(n4/ε3) Õ(nd+2/εd+1)

seb2 O(n/ε2) Õ(n15/ε7)

diam O(n2/ε2) Õ(n(n4/ε2)n+1)
∗ all randomized results are correct with constant probability.

Õ(f(n, ε)) ignores poly-logarithmic factors (log n
ε )O(poly(d)) , for any τ > 0.

3.A.1 Examples

We study several example cases for which we can deterministically compute ε-
quantizations. For each case we show an example element of Af,n on an example of
7 points.
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Table 3.3: VC-dimension for Various Shape Families.

case (R2,Af,n) (Rd,Af,n) (R2, Wf )

dwid 2 2

aabbp O(1) (σ = 4) O(d log d) (σ = 2d)

aabbv 8 O(d log d) (σ = 2d)

seb∞ 4 2d

seb1 4 2d

seb2 ∞ ∞ 9

diam ∞ ∞ 9

Directional Width. We first consider a family of shapes S which describe all slabs,
the intersection of two parallel halfspaces, for a given normal direction u. Given a
point set P , S(P ) ∈ S is the minimum width slab containing P and f(P ) is the width
of that slab (the dwid case). This can be thought of as a one-dimensional problem
by projecting all points P using the operation 〈·, u〉. The directional width is then
just the difference between the largest point and the smallest point. As such, the
VC-dimension of (Rd, S) is 2. Furthermore, Af,n = S in the dwid case, so (Rd,Af,n)
also has VC-dimension 2. For 1 ≤ i ≤ n, we can then create an (ε/n)-sample Qi of
(µpi

,Af,n) of size λf (n, ε) = O(n/ε) in O((n/ε) log(n/ε)) time given basic knowledge
of the distribution µpi

. Range searching over each Qi can be done in O(log(n/ε))
time, so invoking Theorem 3.8, it takes O((n3/ε2) log(n/ε)) time to construct an
ε-sample of FµP

in the dwid case.
A separate manuscript addresses the specific dwid case in more detail [97]. The

runtime can be improved to O(n3+τ/ε) for any τ > 0. Or in the case where each
µpi

is either a Guassian, or they are all identical and single-peaked (with different
means) then the runtime can be improved to O((n1+τ/ε2) log(1/ε)) for any τ > 0.

Axis-aligned bounding box. We now consider the family of shapes S describing axis-
aligned bounding boxes in Rd. For a point set P , we let the summarizing shape
S(P ) ∈ S minimize f(P ), which either represents the d-dimensional volume of S(P )
(the aabbv case — minimizes the area in R2) or the (d − 1)-dimensional volume of
the boundary of S(P ) (the aabbp case — minimizes the perimeter in R2). Figure 3.8
shows two examples of elements of Af,n for the aabbp case and the aabbv case in R2.
For both (R2,Af,n) has a shatter dimension of 4 because the shape is determined
by the x-coordinates of 2 points and the y-coordinates of 2 points. This generalizes
to a shatter dimension of 2d for (Rd,Af,n). We can also show the VC-dimension of
(R2,Af,n) is 8 for aabbp because its shape is defined by the intersection of halfspaces
with 4 predefined normal directions at 0◦, 45◦, 90◦, and 135◦. This can be generalized
to higher dimensions.

Hence, for 1 ≤ i ≤ n, for both cases we can create an (ε/n)-sample of (µpi
,Af,n),

each of size λf (n, ε) = O((n2/ε2) log(n/ε)) in total time O((n3/ε2) log2(n/ε)). For
the aabbp case in R2, an (ε/n)-sample of each (µpi

,Af,n) of can be reduced further to
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(a) (b)

Figure 3.8: (a) Axis-aligned bounding box, measured by perimeter. (b) Axis-
aligned bounding box, measured by area. The curves are hyperbola parts.

size O((n/ε) log16(n/ε)) in total time O((n5/ε4) log40(n/ε)). In Rd, we can construct
the ε-quantization in (n6d/ε4d)(log(n/ε))O(d) time, using orthogonal range searching.
For the aabbp case in R2, the runtime improves to O(n8/ε4 log65(n/ε)).

Smallest enclosing ball. Figure 3.9 shows example elements of Af,n for smallest
enclosing ball, for metrics L∞ (the seb∞ case) and L1 (the seb1 case) in R2. An
example element of Af,n for smallest enclosing ball for the L2 metric (the seb2 case)
is shown in Figure 3.7. For seb∞ and seb1, (Rd,Af,n) has VC-dimension 2d because
the shapes are defined by the intersection of halfspaces from d predefined normal
directions. For seb1 and seb∞, we can create n (ε/n)-samples of each (µpi

,Af,n) of
size λf (n, ε) = O((n2/ε2) log(n/ε)) in total time O((n3/ε2) log2(n/ε)). The size for
each can be reduced to O((n/ε) log2d(n/ε)) in O((n5/ε4) log8d(n/ε)) total time. Using
an orthogonal range searching data structure we can calculate the ε-quantization in
O(nd+2/εd+1 log7d−1(n/ε)) time.

For the seb2 case in R2, (R2,Af,n) has infinite VC-dimension, but (R2,Wf ) has
VC-dimension at most 9 because it is the intersection of 2 halfspaces and one disc, as
discussed in Section 3.5.1. Any shape A(T,w) ∈ Af,n can be formed from the disjoint
union of 2n wedges. Choosing a point in the convex hull of T as the vertex of the
wedges will ensure that each wedge is completely inside the ball that defines part of
its boundary. Thus, in R2 the n (ε/n)-samples of each (µpi

,Af,n) are of size λf (n, ε) =
O(n4/ε2 log(n/ε)) and can all be calculated in total time O(n5/ε2 log2(n/ε)). And
then the ε-quantization can be calculated in O(n15/ε7 log3.5(n/ε)) time, using range
searching data structures. We believe this technique can be extended to Rd, but do
not present a proof in this thesis.
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(a) (b)

Figure 3.9: (a) Smallest enclosing ball, L∞ metric. (b) Smallest enclosing ball, L1

metric.

Table 3.4: ε-Samples for Summarizing Shape Family Af,n.

case λf (n, ε) νS (λf (n, ε))νS RS(λf (n, ε), S) runtime

dwid O(n/ε) 2 O(n2/ε2) Õ(1) Õ(n3/ε2)

aabbp Õ(n2/ε2) 2d Õ(n4d/ε4d) Õ(1) Õ(n4d+1/ε4d)

aabbv Õ(n2/ε2) 2d Õ(n4d/ε4d) Õ(1) Õ(n4d+1/ε4d)

seb∞ Õ(n/ε) d + 1 Õ(nd+1/εd+1) Õ(1) Õ(nd+2/εd+1)

seb1 Õ(n/ε) d + 1 Õ(nd+1/εd+1) Õ(1) Õ(nd+2/εd+1)

seb2 ∈ R2 Õ(n4/ε2) 3 Õ(n12/ε6) Õ(n2/ε) Õ(n15/ε7))

diam ∈ R2 Õ(n4/ε2) n Õ(n4/ε2)n Õ(n4/ε2) Õ(n · (n4/ε2)n+1)

Õ(f(n, ε)) ignores poly-logarithmic factors (log(n/ε))O(poly(d)).

Diameter. Given a distribution of an n point set µP , we consider computing an
ε-quantization of FµP

where f measures the diameter of a point set (the diam case).
Figure 3.10 shows an example element of Af,n in R2. There is not a convenient
family of shapes S so that for a point set P ⊂ Rd, S(P ) is the summarizing shape
which optimizes the diameter, and where (Rd, S) has bounded VC-dimension. We can
however define S as the intersections of n balls of a fixed common radius, so (Rd, S)
has VC-dimension Ω(n). In this definition of S, given a point set P , the summarizing
shape S(P ) is the intersection of balls centered at each point in P and the radius is
the diameter of P—the smallest radius so P ⊂ S(P ). An element A(T,w) ∈ Af,n

describes the intersection of n−1 balls of radius w, each centered at a point in T , such
that T ⊂ A(T,w); thus A(T,w) must be convex. Hence S = Af,n+1 and (Rd,Af,n)
does not have constant VC-dimension. We can, however, describe a family of wedges
Wf such that (R2,Wf ) has constant VC-dimension and for any A ∈ Af,n we can
describe A as the disjoint union of n shapes from the family Wf . We use a similar
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construction as with the seb2 case where an element W ∈ Wf is the intersection of a
ball and two halfspaces. Thus, in R2 for 1 ≤ i ≤ n we can create an (ε/n)-sample for
each (µpi

,Af,n) of size O(n4/ε2 log(n/ε)) in time O(n4/ε2 log2(n/ε)) by creating an
(ε/n2)-sample for (µpi

,Wf ). This takes total time O(n5/ε2 log2(n/ε)). We believe
there is an analogous construction in Rd, but do not present a proof in this thesis.

This allows us to create a set QP such that for all r ∈ R that |f̃(QP , r)−FµP
(r)| ≤

ε. However, because (Rd, S) has σS = n shatter dimension, Theorem 3.8 does not
provide a method to create a point set to concisely describe an ε-quantization in
time polynomial in n. The runtime is O(n(n4/ε2 log(n/ε))n+1). We have learned
through personal communication [48] that a polynomial time algorithm for evaluating
f̃(QP , r) does exist.

Figure 3.10: Diameter. The curves are circular arcs all of the same radius.
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4

Computing Spatial Scan Statistics

4.1 Motivation and Problem Statement

Outlier detection is a common problem in data mining. Unlike in robust clustering
settings, where the goal is to detect outliers in order to remove them, outliers are
viewed as anomalous events to be studied further. In the area of biosurveillance for
example, an outlier would consist of an area that had an unusually high disease rate
(disease occurrence per unit population) of a particular ailment. In environmental
monitoring scenarios, one might monitor the rainfall over an area and wish to deter-
mine whether any region had unusually high rainfall in a year, or over the past few
years.

A formal statistical treatment of these problems allows us to abstract them into
a common framework. Let P be a point set describing the geometric position of
the data. It may be discrete, each point p ∈ P may have a weight µ(p), or more
generally, P may be Lebesgue measurable describing a distribution. Let b0 and m0

describe two functions on P . Specifically, let b0 : P → R+ represent the baseline
data and let m0 : P → R+ represent the measured data. Examples of this sort of
data include:

• Biosurveillance: P being the households of a set of people. The function b0
could describe the number of people in each household. And the function m0

could be the number of times someone in a household is treated for a disease.

• Envioronmental Monitoring: P could represent a region of land. The function
b0 may describe the expected rainfall everywhere from some existing model.
And the function m0 may describe the rainfall recorded over one season, either
interpolated over the entire region, or at a discrete set of measurements.

• National Security: P may represent a distribution of peoples’ locations, and
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they may not be known exactly because of collection errors or perturbation
to preserve anonymity. The function b0 could represent the number of search
engine searches of each individual. This raw data may be augmented using
spatial models of variation. Finally, m0 may be the number of a specific type
of search (i.e. those that may be the searches of terrorist).

Next, we may want to determine if there is a subset of P which somehow is
anomalous. To prevent frivolous subsets which gerrymander just the data with large
values of m0 even if they have no spatial similarity, we need to consider a family
A of subsets of P . Many families of A have been used, often those determined by
inclusion in certain shapes: circles and ellipses [70, 72], axis-aligned rectangles [90,
40], connected components [94]. We call the subsets R ⊂ P where R ∈ A a range.
And the set (P,A) is indeed a range space in the sense defined for ε-samples. For
much of the computational aspects of this chapter we focus on the family A = R2,
defined by axis-aligned rectangles.

Finally, we need to consider a measure on a range R using P , m0, and b0, de-
termining how anomalous R is. Specifically, for any range R ⊂ P let m(R) =∑

p∈Rm0(p) and b(R) =
∑

p∈R b0(p) (sometimes this technically needs to be written
with an integral instead of a sum), and let M = m(P ) and B = b(P ). Now we
can introduce a discrepancy function d′(m(R), b(R),M,B)1. We will discuss several
variants of discrepancy functions, with a particular interest in those defined to mea-
sure statistics-based properties. In general, the goal of a discrepancy function is to
determine how different the functions b and m are in the range R versus their values
on P \ R. For instance, the disease rate m(R)/b(R) may be much larger in R than
in P \R. And the problem of statistical discrepancy is to determine the range which
maximizes a discrepancy function (i.e. it is the most anomalous range with respect
to m and b) and to estimate how unlikely the discrepancy of this range is. We derive
several specific discrepancy functions based on the notion of a likelihood ratio test.

The statistical discrepancy value of the range that maximizes the chosen statisti-
cal discrepancy function is called a spatial scan statistic because it can be computed
by “scanning” over all of the data with a shape defining the ranges and evaluating
the discrepancy on each to determine the maximum. Let this value be v for discus-
sion. Furthermore, to attempt to measure how unlikely this discrepancy measure v
is, a p-value is often computed. This process involves, under a null model of what
we expect the data to look like (i.e. we let m′

0(p) = b0(p)M/B), we generate a large
number N of random samples from the null model [41, 47] (i.e. according to m′

0,
fixing b0 and P ) and compute the maximum discrepancy range for each. The set of
these values can be used to calculate an ε-quantization of the spatial scan statistic
under the null model. So if N = O((1/ε2) log(1/δ)), then, with probability 1− δ, we
can predict the probability within ε that a value as large as v occurs under the null

1 This is indeed related to the concepts of combinatorial and Lebesgue discrepancy discussed in
Chapter 1, although we will not directly discuss these versions in this chapter.
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model. This probability is known as the p-value2. Because N is often quite large
(e.g. N = 10, 000), evaluating the statistical discrepancy is reduced to computing the
spatial scan statistic many times over, and the optimization of this core operation is
amplified. Thus this chapter focuses on computing the spatial scan statistic quickly
and accurately.

4.1.1 Problem Statement

We now narrow the problem to the case where P ⊂ R2 is a set of n points in the
plane and the ranges R2 are the points defined by containment in an axis-aligned
rectangles. In general all algorithms can be extended to Rd and axis-aligned boxes,
Rd, by multiplying the runtime by O(n2(d−2)). Also, if P is Lebesgue-measurable, we
can first take an ε′-sample using the results of Chapter 1, for an appropriate value
of ε′ as discussed in Section 4.5. Alternatively if P is piecewise-linear, the we could
try computing directly on P , but this is difficult as described in Section 4.C.

For a range R ∈ R2, let mR = m(R)/M and bR = b(R)/B. Most discrepancy
functions we will consider can be written just in terms of mR and bR in which case
we write

d′(m(R), b(R),M,B) = d(mR, bR)

for notational convenience. For instance we can write the Poisson discrepancy as

dP (mR, bR) = mR log
mR

bR
+ (1 −mR) log

1 −mR

1 − bR

up to a fixed constant. For any parameters α, β, γ a linear discrepancy function is
written the

dl(mR, bR) = αmR + βbR + γ.

dP and dl are graphed in Figure 4.1. Furthermore, bichromatic discrepancy is written

d′χ(m(R), b(R),M,B) = m(R) − b(R) = dχ(mR, bR) = M ·mR −B · bRB
which counts the total difference between m(R) and b(R). Bichromatic discrepancy
dχ(mR, bR) is basically the same as the combinatorial discrepancy function discχ(P ∩
R) where χ(p) = +1 if p ∈ M and χ(p) = −1 if p ∈ B. This is most interesting
when M = B, and the name comes from when m0(p) = 1 if p is red and b0(p) = 1
if p is blue. Also note that dχ is a variant of linear discrepancy. Every discrepancy
function d : [0, 1]2 → R+ we consider will be convex in mR and bR.

The key problem we study in this chapter is:

Problem 4.1 (Maximizing Discrepancy). Given a point set P with measured and base-
line functions m and b, a family of ranges R2, and a convex discrepancy function d,
find the range R ∈ R2 that maximizes d(mR, bR).

2 We acknowledge that the usefulness of the p-value is debatable; however, this chapter only
focuses on the computational issues of this process, and leaves the debate of usefulness to another
time.
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An equivalent formulation, replacing the range R by the point r = (mR, bR) is:

Problem 4.2. Maximize convex discrepancy function d over all points r = (mR, bR)
such that R ∈ R2 for a range space (P,R2).

Assume that points p ∈ P now arrive with a timestamp t(p), along with the
measurement m(p) and baseline b(p). In prospective discrepancy problems, the goal
is to maximize discrepancy in a range Rt ∈ T2 where T2 is all subsets defined by
containment in a rectangle and such that all time stamps t(p) ∈ [t,∞) for some
t ∈ R. In other words, the region includes all points with a timestamp between
the present time and some time t in the past. Such regions are interesting when
attempting to detect recent anomalous events.

Problem 4.3 (Prospective discrepancy). Given a point set P with measure and baseline
functions m and b, timestamps t, a family of ranges T2, and a convex discrepancy
function d, find the range Rt ∈ T2 that maximizes d.

Figure 4.1: Graph of dP (solid and gridded) and dl (transparent) with α = 1,
β = −1, and γ = 0, plotted over Sn ⊂ [0, 1]2.

Boundary conditions. The statistical discrepancy functions we consider can be ex-
pressed as log-likelihood ratios. As a consequence, they tend to ∞ when either
argument tends to zero (while the other remains fixed). Another way of looking at
this issue is that regions with very low support often correspond to overfitting and
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thus are not interesting. Therefore, this problem is typically addressed by requiring
a minimum level of support in each argument. Specifically, we will only consider
maximizing discrepancy over ranges R ∈ R2 such that mR > C/n, bR > C/n, for
some constant C (for cleaner exposition, we usually set C to 1). In mapping shapes
to points as described above, this means that the maximization is restricted to points
in the square [C/n, 1−C/n]2. Furthermore, we generally are looking for regions with
more measured points than baseline points, otherwise, we would switch the roles of
the measured and baseline points. Thus we restrict that mR > bR as well. We refer to
this remaining domain as Sn = [C/n, 1−C/n]2 \ {mR ≤ bR}. For technical reasons,
we will also assume that for all p, m(p), b(p) = Θ(1). Intuitively this reflects the fact
that measurement values are independent of the number of observations made.

Grid algorithms For some algorithms, the data is assumed to lie on a grid, or is
accumulated onto a set of grid cells. For such algorithms, we will assume a grid of
size g × g, with measurement and baseline values associated with each grid point
as before. Note that in such a grid, the effective number of points is g2, and the
number of distinct axis-parallel rectangles is O((g2)2) = O(g4), which differs from the
corresponding numbers n and O(n4) for points and axis-parallel rectangles in general
position. It will be important to keep this distinction in mind when comparing grid
algorithms with those taking inputs in general position.

We could also treat this data as each data point at a grid point actually has a
probability distribution of being anywhere in that grid cell with equal probability.
We can then use the techniques of Chapter 3 to create an ε-quantization over the
values of statistical discrepancy.

4.1.2 Contributions

We consider four statistical discrepancy functions dP , dB, dG, dγ based on when the
data is modeled as coming from a Poisson, Bernoulli, Gaussian, or gamma distribu-
tion, respectively. We derive these functions and properties of them in Section 4.B.
We also describe how to derive the associated discrepancy function for data modeled
by any one-parameter exponential family in Section 4.A. These two sections are put
in the appendix of this chapter so as to not interrupt the important algorithmic
ideas.

In Section 4.2 we develop a technique to approximate a convex function d : Sn →
R+ with a family of linear functions. This has application in approximating dP , dB,
dQ, and dγ with families of simpler linear discrepancy functions. For instance we can
create an additive ε-approximation of dP by the upper envelope of O((1/ε) log2 n)
linear discrepancy functions.

We then describe several algorithms for computing the maximum discrepancy
range R ∈ R2 for a set P of n points.

• The first, described in Section 4.3, is exact and runs in O(n4) time, and works
for any discrepancy function d(mR, bR).
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• Next, in Section 4.4 we describe an O(n2 log n) time algorithm for any linear
discrepancy function, which can then be combined with the function approxi-
mation techniques to solve the statistical discrepancy functions approximately.

• In Section 4.5 we consider algorithms that first create an ε-sample of the data,
and then perform the above algorithms on the ε-sample. It turns out this is
efficient for many linear discrepancy functions and dB, but not for the other
statistical discrepancy functions. A variant of this approach can be used as a
streaming algorithm. We also prove streaming lower bounds in this section.

• Finally, in Section 4.6 we develop algorithms for data that lie on an axis-
aligned grid. We present exact and approximation grid algorithms based on
the linearization theorem from Section 4.2.

In published work on this topic [2], we showed that these algorithms are com-
parable or better than existing algorithms in terms of the running time versus the
discrepancy value returned and its variance. However, since we have made numerous
subtle improvements to the algorithms since those simulations, we have not added
the outdated experiments in this thesis. Further experiments are planned.

Furthermore, these results generalize to higher dimensional data points, as well
as prospective discrepancy where we detect the maximum discrepancy region over
all intervals starting from the present and going backwards in time.

4.1.3 Related Work

Detecting clustering effects in spatial data is a well-studied problem in statistics3.
Much of the early focus has been on devising efficient statistical tests to detect
presence of clustering at a global level without emphasis on identifying the actual
clusters (see [37, Chapter 8]). The spatial scan statistic, introduced by Kulldorff [70]
provides an elegant solution for detection and evaluation of spatial clusters. The
technique has found wide applicability in areas like public health, biosurveillance,
environmental monitoring. See the webpage http://www.SatScan.org [72] for his
software, SatScan, and links to many variants and references. Generalization of the
spatial scan statistic to a space-time scan statistic for the purpose of prospective
surveillance has been proposed by Kulldorff [71], and Iyengar [64] suggested the use
of “expanding-in-time” regions to detect space-time clusters. The regions Kulldorff
considers are circular but only centered at a limited set of fixed points, or cylindrical
in the case of prospective surveillance. Wang et al. [117] has generalized this frame-
work for graphs where the subsets with large discrepancy are considered clusters.

The spatial scan statistics work is based on the simpler ideas of scan statistics
which are strictly one-dimensional problems, and thus the ranges are always data

3 It goes without saying that there is a huge literature on clustering spatial data. Since our focus
is primarily on statistically sound measures, a survey of general clustering methods is beyond the
scope of this thesis.
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Figure 4.2: Example of maximal discrepancy range on a data set. Xs are measured
data and Os are baseline data.

contained in intervals, often of a fixed width. For interesting applications and detailed
description of scan statistics, we refer the reader to [65, 66]. Recently, the scan
statistic has also been used in other areas like bioinformatics [63, 77] and for detecting
chatter in massive social networks [104].

Dobkin and Eppstein [39] were the first to study efficient algorithms to compute
maximum discrepancy over a range space. Their algorithms compute Lebesgue dis-
crepancy in a region R as a difference between the fraction of points in R and the
fraction of the total area represented by R. This measure stems from evaluating
fundamental operations for computer graphics. Their ranges were defined by con-
tainment in half spaces and axis-oriented orthants centered at the origin, limited to
the unit cube. Their results extended to d-dimensional spaces. Subsequently Dobkin,
Gunopulous, and Maass [40] developed algorithms for computing maximum bichro-
matic discrepancy over axis-alligned rectangular regions. This solves the minimum
disagreement problem from machine learning, where an algorithm finds the region
with the most good points and the fewest bad points, a key subroutine in agnostic
PAC learning.
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Recently, Neill and Moore have developed a series of algorithms [90, 89, 88]
to maximize discrepancy for measures such as dP . Their approach works for axis
parallel squares [89] and rectangles [90]. Their algorithms are conservative, in that
they always find the region of maximum discrepancy. The worst-case running time
of their algorithms is O(g4) for rectangles and O(g2) for fixed-size squares since the
algorithms enumerate over all valid regions on a g×g grid. However, they use efficient
pruning heuristics that allow for significant speedup over the worst case on most data
sets. An alternative approach by Friedman and Fisher [44] greedily computes a high
discrepancy rectangle, but has no guarantees as to how it compares to the optimal.
Their approach is quite general, and works in arbitrary dimensional spaces, but is
not conservative: many regions will remain unexplored.

A related problem that has a similar flavor is the so-called Heavy Hitters prob-
lem [36, 35]. In this problem, one is given a multiset of elements from a universe,
and the goal is to find elements whose frequencies in the multiset are unusually high
(i.e much more than the average). In a certain sense, the heavy hitter problem fits in
our framework if we think of the baseline data as the uniform distribution, and the
counts as the measurements. However, the ranges are the trivial subsets formed by
one data point4 and the heavy hitter problem itself is interesting in a streaming set-
ting, where memory is limited; if linear memory is permitted, the problem is trivial
to solve, in contrast to the problems we consider.

4.2 A Convex Approximation Theorem

This section describes a general approximation theorem for maximizing a convex
discrepancy function d. Let ℓ(x, y) = ax + by + c denote a linear function in x and
y, where a, b, c are constant. Define an ε-approximate family of d to be a collection
of linear functions L = {ℓ1, ℓ2, . . . , ℓt} such that lU(x, y) = maxi≤t ℓi(x, y), the upper
envelope of the ℓi, has the property that lU(x, y) ≤ d(x, y) ≤ lU(x, y) + ε. Say a set
of points Q in Sn, describes an ε-approximation family LQ of linear functions for a
smooth convex function f , where each ℓq ∈ LQ for q ∈ Q is defined as the linear
function equal and tangent to f at f(q). Let

H(f) =

(
d2f
dx2

d2f
dxdy

d2f
dydx

d2f
dy2

)

be the Hessian of f . Define λpq = maxr∈pq u
⊤
pqH(f(r))upq where upq = (p− q)/(||p−

q||) and where pq is the segment from p to q. In other words, λpq is the largest
eigenvalue of the Hessian H(f) along the segment pq. We simplify some notation by
writing

fxx =
d2f

dx2
and fyy =

d2f

dy2
.

4 Hierarchical heavy hitters defines a more interesting range space.
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Lemma 4.1. For a point set Q to describe an ε-approximation family of f it is
sufficient that for any point p ∈ Sn there exists a point q ∈ Q such that ||p − q|| ≤√
ε/λpq.

Proof. Let f̃q(p) = f(q) + (p − q)⊤∇f(q). The inequality f̃q(p) ≤ f(p) follows
from the convexity of f . By Taylor’s theorem for multivariate functions, the error
f(p) − f̃q(p) =

∫
r∈pq

(q − p)⊤H(f(r))(q − p), where H(f) is the Hessian of f , and
pq is the segment joining p and q. Taking the maximum value r upper bounds the
integral and implies ε ≥ λpq||p− q||2.

Lemma 4.2. For a convex function f , then for any vector u = (ux, uy), u
⊤H(f)u <

2(fxxu
2
x + fyyu

2
y).

Proof. H(f) is a symmetric positive definite matrix. Any symmetric positive definite
matrix

M =

(
a b
b c

)
satisfies au2

x − 2buxuy + cu2
y > 0

for any vector (ux, uy). Restating this as au2
x+cu2

y > 2buxuy implies the upper bound
for the cross term. The stated inequality follows.

Using Lemma 4.2 we can upper bound the value λpq by λpq ≤ 2(maxr∈pq fxx(r) +
maxr∈pq fyy(r)), thus allowing us to greedily place points of Q in the x- and y-
directions independently with respect to fxx and fyy, respectively.

Lemma 4.3. Consider the region Hx,y = [x− dx, x] × [y, y + dy] ∈ Sn where λx
x,y =

maxr∈Hx,y
fxx(r) and λy

x,y = maxr∈Hx,y
fyy(r) and where dx ≤

√
ε/λx

x,y and dy ≤
√
ε/λy

x,y. Then a single point at (x − dx/2, y + dy/2) describes an ε-approximation
family for the underlying convex function f in the domain Hx,y.

Proof. Any points p ∈ Hx,y has distance less than (1/2)dx in the x-direction and
(1/2)dy in the y-direction from the point q = (x − dx/2, y + dy/2). By Lemma 4.1
for all points p ∈ Hx,y, as long as f(p) − f̄q(p) ≤ (p− q)Tλpq(p− q) then q describes
an ε-approximation. Thus we can also enforce

(p− q)Tλpq(p− q) ≤
(
dx

2
,
dy

2

)T

λpq

(
dx

2
,
dy

2

)

< 2

(
λx

x,y

(
dx

2

)2

+ λy
x,y

(
dy

2

)2
)

=
1

2

(
λx

x,y(dx)
2 + λy

x,y(dy)
2
)

using Lemma 4.2. Therefore, as long as we bound λx
x,y(dx)

2 ≤ ε and λy
x,y(dy)

2 ≤ ε,
q describes and ε-approximation for Hx,y.
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This implies that if Sn is covered by regions Hx,y as described in Lemma 4.3, then
if a point q ∈ Q is at the center of each region, then Q describes an ε-approximation
for Sn.

Figure 4.3: Region Sn in white. Points in point set Q represent the point of
tangency of linear functions forming ε-approximation family with a function f :
Sn → R.

We determine this covering with a greedy approach. Let xmax = maxx{(x, y) ∈
Sn} and let ymin = miny{(xmax, y) ∈ Sn}. We start with Hxmax,ymin

and then place
another box at Hxmax,ymin+dy where dy is chosen to satisfy Lemma 4.3. We repeat this
process until the y-coordinate is outside of Sn. Then we take the smallest dx for all
boxes in that column and reset xmax to xmax − dx and repeat until the x-coordinate
is outside of Sn.

Choosing the largest possible dx and dy at each step is easy if fxx is increasing
in x and fyy is decreasing in y. Then λx

x,y = fxx(x, y) and λy
x,y = fyy(x, y). If this is

not the case, then λx
x,y and λy

x,y can be estimated to within a factor of 2 quite easily
by using fxx(x, y) and fyy(x, y) as estimates and bounding the estimates using third
derivatives of f .

Remark. In the Binomial case the lower boundary of Sn is y = Gx + 1/n, not
y = 1/n. The above argument can be modified to handle this case by placing each
ymin on y = Gx+ 1/n and using this to determine dx.

Theorem 4.1. The algorithm presented above constructs a point set that describes an
ε-approximation family for a convex function f of size O((1/ε)kx(f) · ky(f)), where
for i = {x, y} and for any constant η = {x, y} \ i which is ignored in fii(·).

ki(f) =





O(log n) minSn
fii(j) = Ω(1/j2)

O(
√
n log log log n) minSn

fii(j) = Ω(1/j3)

O(
√
n) minSn

fii(j) = Ω(1/n)

Proof. The size of Q can be written as a recurrence function Cε : Sn → R, which
represents the number of points needed to describe an ε-approximation for the part
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of Sn with smaller x-coordinates and larger y-coordinates than the point given (i.e.,
|Q| = Cε(1 − 1/n, 1/n)). We can write

Cε(x, y) = Yε(x, y) + Cε

(
x−

√
ε/fxx(x, y), y

)
,

where Yε(x, y) is the number of points needed to describe an ε-approximation in Sn

with an x-value x and a y-value greater than y. We can write

Yε(x, y) = 1 + Yε

(
x, y +

√
ε/fyy(x, y)

)
.

We solve the recurrences for Yε(x, 1/n) setting fyy(x, 1/j) = {Ω(1/j2), Ω(1/j3),
Ω(1/n)}. The same analysis will apply for Cε(1/j, y) to yield the desired bound.
Let yi be the value of y in the ith recursive call of Yε(x, y), and for Yε(x, 1/n), let
y0 = 1/n.

When fyy(j) = Ω(1/j2), we can state yi = y0(1 +
√
ε)i. Thus yi ≥ 1 if i ≥

log1+
√

ε n = O((1/
√
ε) log n).

When fyy(j) = Ω(1/n), then yi+1 ≥ yi +
√
ε/
√
n, then yi ≥ 1 when i = O(

√
n/ε).

When fyy(j) = Ω(1/j3) we first argue that if yi = t/n then yi+s ≥ t/n +
(
√
εt3/2/n3/2)s. Thus if we set s = O((1/

√
ε)n1/2) then yi+s ≥ 2yi or even bet-

ter if yi = t/n, then yi+s = (t+ t3/2)/n. By repeating this log3/2 log2 n times we can

show Yε(x, 1/n) = O((1/
√
ε)n1/2 log log n). We now improve this.

If yi = t/n and t ≥ 4 (i.e., t3/2/2 ≥ t) and t/2 ≥ log n, then after s =
O((1/

√
ε)n1/2/ log n) steps, yi+s = 2t/n. Thus after t = 2 log n, then it takes only

O((1/
√
ε)n1/2) more steps to get yi ≥ 1. Applying the first argument lets us reach

yi = (2 log n)/n in O((1/
√
ε)n1/2 log log log n) steps.

4.2.1 Bounds for Specific Distributions

For Poisson, Bernoulli, and gamma we have Yε(x, 1/n) = O((1/
√
ε) log n), for all

x ∈ Sn. For Gaussian we have Yε(x, 1/n) = O(
√
n/ε), for all x ∈ Sn. For Poisson

and gamma we have Cε(1− 1/n, y) requiring O((1/
√
ε) log n) steps, for any value of

y. For Bernoulli we have Cε(1−1/n, y) requiring O(
√
n/ε) steps, for y = 1/n. (This

approach is not as straightforward because of the strange shape of its boundary
— the lower y boundary follows y = Gx + 1/n, and each point along here has
fxx(x,Gx+1/n) = O(1/n).) For Gaussian we have Cε(1−1/n, y) requiring O(

√
n/ε)

steps, for y = 1/n.

Theorem 4.2. We can construct a point set describing an ε-approximation for fP and
fγ of size O((1/ε) log2 n). We can construct a point set describing an ε-approximation
for fB of size O((1/ε)n1/2 log n log log log n). We can construct a point set describing
an ε-approximation for fG of size O((1/ε)n).
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pr
pl

pb

Figure 4.4: Sweep Line in Algorithm Exact.

4.3 A Simple Exact Algorithm

In this section we present a simple algorithm running in time O(n4) that computes
the maximum discrepancy rectangle exactly. Even though there are O(n4) rectangles
to be considered, a naive search strategy might end up taking linear time for each
rectangle (to estimate mR, bR) yielding a net running time of O(n5). We use a simple
sweep line technique and incremental updates to avoid this problem.

Any set of four points defines a unique bounding rectangle, with one point defining
each side. See Figure 4.4. Fix a pair of points pr, pl ∈ P , and consider the set of
all rectangles whose left and right extremes are defined by this pair. Choose a
third point pb ∈ P in between these two; this point defines the bottom edge of the
rectangle if it is below otherwise one of pr, pl does. Now let a horizontal line segment
spanning the rectangle sweep the plane upwards starting from pb. Every time the
sweep line encounters a point, we update mR, bR in constant time and recompute the
discrepancy, maintaining the largest value. Each sweep takes linear time, and there
are O(n3) choices of triples (pl, pr, pb). Thus, the algorithm runs in time O(n4). We
can make a qualified improvement of this runtime with the following lemma. Let
G = M/B.

Lemma 4.4. Each point p ∈ R = r∩P in the maximum discrepancy rectangle r with
the maximum or minimum x- or y-coordinate must satisfy m(p)/b(p) ≥ G.

Proof. If a single point p is inserted or deleted into R, then either the boundary must
be extended so one of these points is no longer extremal, or the boundary must be
retracted so one of these points is excluded, and another point is extremal. Then if

m(p)/M

b(p)/B
<
mR

bR
=
m(R)/M

b(R)/B
,

then removing p from R shifts (mR, bR) towards the line x = y in Sn where the
discrepancy functions is 0, and because the discrepancy function is convex the new
value must not increase. Likewise, because adding that point would not increase
the discrepancy value, removing it would also not decrease the discrepancy. Finally
we note that for the maximal discrepancy rectangular range R, m(R)/b(R) > G,
implying that m(p)/b(p) > G for any p defining a boundary of r.
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Let PG be the set of points such that p ∈ PG satisfies m(p)/b(p) ≥ G. Let
nG = |PG|. Using Lemma 4.4 we can now restrict out search to O(n4

G) rectangles.
Thus we have only O(n3

G) choices of (pl, pr, pb) such that pl, pr, pb ∈ PG. The inner
sweep line still requires O(n) time to count the number the baseline and measured
values of all points in R, so the algorithm runs in O(n3

Gn) time. The details are
presented in Algorithm 4.3.

Algorithm 4.3.1 Algorithm Exact

maxd = -1
Sort all points by y-coordinate.
for all pairs of points (pl, pr) in PG do

for i = 1 to nG do

Let pb ∈ PG be the point with ith smallest y-coordinate and the point in P
with the kth smallest y-coordinate.
m = 0, b = 0
for j = k + 1 to n do {This is the sweep line}

Let p be point with jth smallest y-coordinate
m = m+m(p), b = b+ b(p)
d = d(m/M, b/B).
if (d > maxd) then

maxd = d

4.4 Algorithms for Linear Discrepancy

We begin by summarizing results from Dobkin et al. [40]. A discrepancy maximizing
rectangle has minimal and maximal points in the x and y dimensions. These four
points fully describe the rectangle. If we specify the minimizing and maximizing
x coordinates, the problem is reduced to a one-dimensional problem of all points
within the slab this defines, as in Exact. By maintaining the maximal discrepancy
interval in the one-dimensional problem under point insertion, only O(n2) insertions
are necessary to check the maximum discrepancy interval over all possible slabs, and
thus over all possible rectangles.

The one-dimensional problem is solved by building a binary tree of intervals.
A node corresponding to interval I = (i, l, r) stores the subinterval i of maximal
discrepancy, the interval l of maximal discrepancy that includes the left boundary of
I, and the interval r of maximal discrepancy that includes the right boundary of I.
Two adjacent nodes, Ileft : (ileft, lleft, rleft) and Iright : (iright, lright, rright), can be merged
to form a single nodes I : (i, l, r) in constant time. i is assigned the interval with the
maximum discrepancy out of the set {ileft, iright, lright ∪ rleft}. l is assigned the interval
with the maximum discrepancy out of the set {lleft, Ileft ∪ lright}, and r is assigned
symmetrically to l. The entire interval, [0, 1] = I : (i, l, r), is at the root of the tree,
and the interval which maximizes the discrepancy is i.
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Lemma 4.5 (Dobkin et al. [40]). Bichromatic discrepancy for a set of red and blue
points in the plane can be computed in time O(n2 log n).

Proof. We refer the reader to [40] for full details, but summarize their proof below
for completeness.

By maintaining the maximal discrepancy interval in the one-dimensional problem
under point insertion, only O(n2) insertions are necessary to check the maximum
discrepancy interval over all possible slabs, and thus over all possible rectangles.
Fix the left boundary O(n) times, and for each increase the right boundary by one
insertion O(n) times.

Adding a point to the binary tree of intervals requires traversing and then merging
O(log n) intervals if the tree is balanced. The tree can be kept balanced through
rotations which only require a constant number of merge operations each.

Alternatively, we can use a heap instead of a binary tree if the number of points
is known in advance. Now instead of inserting points and rebalancing the tree, the
points can be presorted and just be marked as active or inactive in the intervals.

4.4.1 Extending to Linear Discrepancy over Sn

We now describe how to extend Dobkin et al.’s algorithm [40] to handle any linear
discrepancy function and also to only consider regions with at least a constant C
amount of data from functions m and b. We only need to modify the algorithm for
handling intervals.

Define IC to be the set of all intervals such that the sums
∑

p∈I m0(p) ≥ C

and
∑

p∈I b0(p) ≥ C. For each interval I : (i, l̄, r̄), i must be in IC and l̄ and r̄
must represent sets of intervals {l1 . . . lk} and {r1 . . . rh}, respectively. lk (resp. rh)
is the interval in IC which contains the left (resp. right) boundary that has the
maximum discrepancy. l1 (resp. r1) is the interval which contains the left (resp.
right) boundary that has the maximum discrepancy. For all γ lγ includes the left
boundary and |lγ| < |lj| for all γ < j. Also

∑
p∈lγ

m0(p) < C or
∑

p∈lγ
b0(p) < C for

all γ < k. Finally, the set l̄ must contain all local maximum; if lγ were to gain on
lose one point, the discrepancy would decrease. The restrictions are the same for all
rγ, except these intervals must contain the right boundary.

With this more complicated data structure we can now perform a merge between
two adjacent intervals Ileft : (ileft, l̄left, r̄left) and Iright : (iright, l̄right, r̄right). Computing
the maximum discrepancy interval in IC can be done by checking ileft and iright

versus all pairs from l̄right × r̄left such that
∑
m(p) ≥ C and

∑
b(p) ≥ C. By the

local optimality restriction, the optimal interval in IC spanning the boundary must
have one endpoint in each set. Updating l̄ and r̄ can be done by just pruning from
l̄left and Īleft × r̄left according to the restrictions for l̄, and similarly for r̄.
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Theorem 4.3. Let R′ be the set of all rectangular ranges R ∈ R′ such that both∑
p∈Rm(p) and

∑
p∈R b(p) are greater than the constant C. Then any linear discrep-

ancy function of the form a1

∑
m(p)+ a2

∑
b(p)+ a3 can be maximized over this set

in O(n2 log n) time.

Proof. Because a3 is constant for all intervals, it can be ignored. Thus the linear
function has the form of d(mR, bR) =

∑
p∈R χ(p). The algorithm of [40] relies only

on the fact that the discrepancy function is additive, and hence can be extended to
the above discrepancy function by only modifying the intervals and merge operation
in the one-dimensional case.

The local optimality restriction on the sets of intervals ensures
∑

p∈li
m0(p) <∑

p∈li+1
m0(p) and

∑
p∈li

b0(p) <
∑

p∈li+1
b0(p). If either sum (

∑
m0(p) or

∑
b0(p))

increases then the other must also increase or this would violate the local optimality
condition. An increase of just a measure that increases discrepancy will cause the
previous interval not to be optimal and an increase in just a measure that causes
the discrepancy to decrease will cause the latter interval not to be optimal. Thus
k and h are constants bounded by the number of p required for

∑
m0(p) ≥ C and∑

b0(p) ≥ C. Thus each interval in the tree structure stores a constant amount of
information.

Finally, a merge between two adjacent intervals Ileft : (ileft, lleft, rleft) and Iright :
(iright, lright, rright) also can be done in constant time. There are a constant number
of intervals to check in computing the maximum discrepancy interval and the new
interval is also a constant size after the pruning step. Thus a point can be added
to the balanced tree in O(log n) time. Hence, the maximum discrepancy rectangular
range R such that m(R) > C and b(R) > C for any linear discrepancy function can
be found in O(n2 log n) time.

A similar argument applies if we consider prospective discrepancy, or higher di-
mensions.

Lemma 4.6. A linear discrepancy function can be maximized over prospective rect-
angles in O(n3 log n) time, or it can be maximized over axis-parallel hyper-rectangles
in d-dimensions in time O(n2d−2 log n).

Using Lemma 4.4 (since linear functions are convex) these bounds can be im-
proved in practice. We only need to consider slabs which are bounded with points
from PG; however, we still need to run the final sweep line in full to maintain the
interval data structure. Thus linear functions can be maximized over axis-parallel
rectanges in d-dimensions in time O(n2d−3

G n log n), and with an extra O(nG) factor
for prospective rectangles.

4.4.2 Bounds for Specific Discrepancy Functions

Invoking Theorem 4.1 and Theorem 4.3 and we can state the following theorems.
We refer to the associated algorithm as Approx-Linear.
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Theorem 4.4. An additive ε-approximation to the maximum discrepancy d over all
axis-aligned rectangles containing at least a constant measure can be computed in
time O((1/ε)kx(d)ky(d)n

2 log n). With respect to prospective time windows, the cor-
responding maximization takes time O((1/ε)kx(d)ky(d)n

3 log n).

We get the following corollaries:

Corollary 4.1. An additive ε-approximation to the maximum discrepancy dP or dγ

over all axis-aligned rectangles containing at least a constant measure can be computed
in time O((1/ε)n2 log3 n). With respect to prospective time windows, the correspond-
ing maximization takes time O((1/ε)n3 log3 n).

Corollary 4.2. An additive ε-approximation to the maximum discrepancy dB over
all axis-aligned rectangles containing at least a constant measure can be computed in
time O((1/ε)n2.5 log2 n log log log n). With respect to prospective time windows, the
corresponding maximization takes time O((1/ε)n3.5 log2 n log log log n).

Corollary 4.3. An additive ε-approximation to the maximum discrepancy dG over
all axis-aligned rectangles containing at least a constant measure can be computed in
time O((1/ε)n3 log n). With respect to prospective time windows, the corresponding
maximization takes time O((1/ε)n4 log n).

4.5 Sampling Algorithms

We now present another algorithm that finds an additive ε-approximation to the
maximum linear discrepancy. It is based upon first appropriately constructing ε-
samples.

Theorem 4.5. For a linear discrepancy function dl(mR, bR) = αmR + βbR + γ let
τ = max{α, |β|}. There exists an algorithm running in time O(nτ 3/ε3 log12(τ/ε))
that returns an estimate E such that |E − maxR∈R dl(mR, bR)| ≤ ε.

Proof. We construct a weighted (ε/2τ)-sample Q ⊂ P of (P,R2), using Corollary
1.3, of size O((τ/ε) log4(τ/ε)), such that for all R ∈ R2

∣∣∣∣mR − |Q ∩R|
|Q|

∣∣∣∣ ≤
ε

2α
and

∣∣∣∣bR − |Q ∩R|
|Q|

∣∣∣∣ ≤
ε

2|β| .

This takes O(nτ 3/ε3 log12(τ/ε)) time. We can now estimate dl for any α, β, γ with

d̃l(mR, bR) = α
|Q ∩R|
|Q| + β

|Q ∩R|
|Q| + γ

such that for any R ∈ R2 we have |dl(mR, bR) − d̃l(mR, bR)| ≤ ε.
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A related algorithm can be used when the data is known to lie on a grid.
To approximate a function d = {dP , dG, dB, dγ} using Lemma 4.3 we need to

bound τ = max(α, |β|) = maxx,y∈Sn
max{fx(x, y), |fy(x, y)|} where fx = df/dx and

fy = df/dy. These quantities are defined in Section 4.B. For dP and dγ τ = O(n)
so the ε-approximation maximum discrepancy can be solved in O(n2/ε3 log11(n/ε))
time by Corollary 4.1 and using O(n4/ε3 log12(n/ε)) time for Theorem 4.5. This does
not improve on the standard application of Corollary 4.1. For dG τ = O(n2) so the
ε-approximation of maximum discrepancy can be solved in O(n6/ε4 log13(n/ε)) time
by Corollary 4.3 and using O(n7/ε3 log12(n/ε)) time for Theorem 4.5. This also does
not improve on the standard application of Corollary 4.3. For dB τ = O(log n) so
the ε-approximation of maximum discrepancy can be solved in O((1/ε3.5) log2.5 n ·
log3.5((1/ε) log n) log log log((1/ε) log n)) time by Corollary 4.2 and using O(n/ε3 ·
log3 n log12((1/ε) log n)) for Theorem 4.5. This is a large improvement over the stan-
dard application of Corollary 4.2.

Theorem 4.6. An additive ε-approximation to the maximum discrepancy dB over
all axis-aligned rectangles containing at least a constant measure can be computed in
time O(n/ε3 log3 n log12((1/ε) log n)).

We can choose O((τ/ε2) log(1/δ)) points at random in O(n) time using, for in-
stance, an algorithm of Knuth [68]. Thus Theorem 4.6 can be improved to run in
O(n+ poly(1/ε, log n, log 1/δ)) if we accept δ probability of failure.

Theorem 4.7. An additive ε-approximation to the maximum discrepancy dB over
all axis-aligned rectangles containing at least a constant measure can be computed in
O(n+(1/ε6) log2.5 n log2.5(1/δ) · log2((1/ε) log(n/δ)) log log log((1/ε) log(n/δ))) time,
with probability 1 − δ.

4.5.1 Streaming Algorithms

In this section we consider algorithms for the data stream model [60, 43, 14]. Here
the data points arrive in some, possibly adversarial, order. An algorithm in the
streaming model has limited space, S, to catalog all the points in the stream.

We can use Suri et al. [112]’s streaming algorithm for ε-samples, which if the
total size of the stream is n and known in advance, are of size O((1/ε) log2(εn) ·
log2d((1/ε) log(εn)). If the size of the stream is now known in advance, then a
randomized algorithm exists that requires O((1/ε) log5(1/ε)) space and is correct
with probability 1/2. We summarize the application of these results for dB.

Theorem 4.8. For a stream with n elements, there exists a deterministic streaming
algorithm for maintaining an ε-additive approximation to dB using O((1/ε) log n ·
log2(εn/ log n) log4((1/ε) log n log(εn/ log n)) space when the size of the stream is
known in advance, and a randomized streaming algorithm that requires O((1/ε) log n·
log5((1/ε) log n)) space and is correct with probability 1/2.

Similar results for dl require O((τ/ε) log2(εn/τ) log4((τ/ε) log(εn/τ)) space for a
deterministic algorithm and O((τ/ε) log5(τ/ε)) space for a randomized algorithm.

82



Lower bounds. As is typical for lower bounds in the stream model, our lower bounds
are proved using reductions from communication complexity problems [73]. We de-
note Cδ(f) as the δ-error randomized communication complexity of function f . Also,
let C1-way

δ (f) be the one-way δ-error randomized communication complexity of func-
tion f .

Definition 1 (Indexing). There are two player Y1 and Y2. Y1 has an n bit string x
and Y2 has an index j ∈ [n]. The indexing function returns index(x, j) = xj.

Definition 2 (Multi-Party Set Disjointness). There are t players Y1, . . . , Yt. Yi has an
n bit string xi. The t-party set disjointness [17] function returns disjn,t(x

1, . . . , xt) =∨n
j=1

∧t
i=1 x

i
j.

Lemma 4.7. For any 0 < δ < 1/4, C1-way

δ (indexn) = Ω(n). The result remains true
for instances (x, j) where x has exactly n/2 entries which are 1.

Lemma 4.8 (Chakrabarti et al. [27]). For any 0 < δ < 1/4,

Cδ(disjn,t) = Ω

(
n

t log t

)
.

This result remains true for the following family F of instances (x1, . . . xt) satisfying

|{j : xi
j = 1}| = n/2t ∀i ∈ [t] (4.1)

|{i : xi
j = 1}| ∈ {0, 1, t} ∀j ∈ [n] (4.2)

|{j : |{i : xi
j = 1}| = t}| ≤ 1 . (4.3)

For a linear discrepancy function,

dl(mR, bR) = α ·mR + β · bR + γ (α > 0, β < 0)

we make the assumptions that m0 : P → N, b0 : P → N, that m∗ = maxp∈P m0(p)
is constant and ∀p∈P b0(p) = c, for some constant c. As a preprocessing step to any
algorithm, we construct two point sets Pm and Pb: for each p ∈ P place m0(p) copies
of the point in Pm and b0(p) copies of the point in Pb. For each p ∈ Pm let m0(p) = 1
and b0(p) = 0. Similarly, for each p ∈ Pb let m0(p) = 0 and b0(p) = 1. Henceforth
we will refer to a point p being colored red if p ∈ Pm, or blue if p ∈ Pb. Note that
|Pm ∪ Pb| = O(n) and that this construction can be achieved in O(n) time. Finally
note that discrepancy for any R ∈ A is the same with respect to P as it is to Pm∪Pb.

We will also consider the problem of maximizing numerical discrepancy d# defined
for a range R ⊆ P as

d#(R) = mR − bR ,

which basically measures the percentage of red points in a range versus the percentage
of total points in the range. Note that d# is a form of linear discrepancy.
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Theorem 4.9. Any P pass streaming algorithm returning a t relative approximation
to the numerical discrepency with probability at least 3/4 requires Ω(n/(t6P log t))
space. Alternatively, any P pass streaming algorithm returning an ε additive approx-
imation with probability at least 3/4 requires Ω(1/(εP)) space.

Proof. Let (x1, . . . , xt′) ∈ F be an instance of disjn′,t′ where n′ = n/(3t2) and t′ =
3t2. We will show how to transform (x1, . . . , xt′) into a size n′t′ = n instance of the
numerical discrepancy problem such that t-approximating the maximum numerical
discrepancy problem determines the value of disjn′,t′ .

We only need to consider a set of points P ∈ R1, thus the ranges are defined by
intervals. Also, we can then order all the points we will see in P along R1 and for
simplicity, place them on a grid so every pair of consecutive points in R1 are a unit
distance apart. Assume that we begin the stream with all points in Pb, then since
each p ∈ P has b0(p) = 1, all grid points have b0 = 1. We then just need to find
intervals where many points from Pm concentrate.

The rest of the stream we define consists of n′t′ elements E = Pm where elements
will come from a universe [n′(t′ + 1)] = Pb. We partition the universe into intervals
I1, . . . , In′ where Ii = [(i− 1)(t′ + 1) + 1, i(t′ + 1)]. Each player Yi determines a size
n′ subset of the elements,

Ei = {(i− 1)(t′ + 1) + j + 1 : xi
j = 0, j ∈ [n′]}

∪{(i− 1)(t′ + 1) + 1 : xi
j = 1, j ∈ [n′]} .

Note that every region contains t′ elements from E. We next show how the maximum
discrepancy of the set depends on the value of disjn′,t′ .

1. If disjn′,t′ = 1 then the maximum numerical discrepancy is at least

t′

n′t′
− 1

n′(t′ + 1)
=

t′

n′(t′ + 1))
,

since there exists an element with multiplicity t′.

2. If disjn′,t′ = 0 then each element occurs at most once. Consider any interval
I ⊆ [n′(t′ +1)]. The numerical discrepancy in any Ii is exactly 0. Furthermore,
the numerical discrepancy in any subinterval of I whose length l ≤ t′ is at most

l

n′t′
− l

n′(t′ + 1)
=

l

n′t′(t′ + 1)
.

Hence the numerical discrepancy in interval I is at most 2/(n′(t′ + 1)).

Hence, if an algorithm disambiguates between the maximum numerical discrep-
ancy being greater than t′/(n′(t′ + 1)) or less than 2/(n′(t′ + 1)) then the value
of disjn′,t′ is also determined. Therefore, a relative approximation better than√
t′/2 > t determines disjn′,t′ .
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Assume that there exists a P pass algorithm M that returns a t relative approxi-
mation to the maximum numerical discrepancy of n points (with probability at least
3/4) and uses at most S(n, t) bits of memory. This algorithm gives rise to a commu-
nication protocol for disjn′,t′ as follows. Let the stream be ordered as E1, E2, . . . , Et′ .
Let mi,j be the memory state of M after the last elements from Ei has gone past in
the j pass. Each player Yi constructs Ei from xi. Y1 runs M on E1 and sends the
memory state m1,1 to Y2. Y2 initializes M with memory state m1,1, runs M on E2

and sends the memory state, m1,2, to Y3. They continue in this way where mi,j is the
(i+ t′(j− 1))th message sent. The memory state mt′,P determines a t approximation
to the maximum discrepancy and, therefore, the value of disjn′,t′ . Each message
is at most S(n, t) bits long and there are at most t′P messages. Hence the total
communication is O(t′S(n, t)P) bits. By appealing to Theorem 4.8, we deduce that,

S(n, t) = Ω

(
n′

t′2P log t′

)
= Ω

(
n

t6P log t

)
.

The second lower bound uses a similar reduction to the first except that t′ = 3, n′ =
1/(8ε) and every point in the above construction is replaced by 8εn/3 identical
points.

Note that the above result also applies to approximating the maximum linear
discrepancy where α = −β = 1. Although the data in this lower bound lies on the
grid, it applies when the data need not lie on a grid; shifting each point slightly gives
the same discrepancy values.

Corollary 4.4. Any P pass streaming algorithm returning a t relative approximation to
the maximum linear discrepency with probability at least 3/4 requires Ω(n/(t6P log t))
space. Alternatively, any P pass streaming algorithm returning an ε additive approx-
imation with probability at least 3/4 requires Ω(1/(εP)) space.

The next lower bound gives a dependence on β when approximating the maximum
linear discrepancy.

Theorem 4.10. Any one pass streaming algorithm that ε additively approximates the
maximum linear discrepancy with probability at least 3/4 requires Ω(|β|/ε) space.

Proof. Consider an instance (x, j) of index|β|/ε. Let w = |β|/(2ε) be the number of
1’s in x. We will show how to transform (x, j) into a size n+ 1 instance of the linear
discrepancy problem such that an additive ε-approximation of the maximum linear
discrepancy problem determines the value of index|β|/ε(x, j).

The stream starts with elements determined by Y1: for each i ∈ [|β|/ε] such that
xi = 1 there are two blue points with value i. The stream ends with one red point
j. Note that the maximum value of αmR + βbR + γ is α + γ if index|β|/ε(x, j) = 0
and is α− 2ε+ γ if index|β|/ε(x, j) = 1.

Then, by appealing to Theorem 4.7, we deduce that the space required is Ω(|β|/ε).
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Note that these lower bounds hold even if we restrict that every range contains
at least a constant C number of points.

4.6 Grid Algorithms

As we mentioned earlier, algorithms like those presented in [90, 89] aggregate data
to a regular g × g grid. Since such a grid contains g2 points, one can run any of the
above mentioned algorithms, setting n = g2. However, this is very inefficient, and
ignores the special structure of the grid. For example, algorithm Exact would then
run in time O((g2)4) = O(g8). In this section, we present two algorithms that take
advantage of grid structured data.

4.6.1 Exact-Grid Algorithm

The first algorithm returns the maximum discrepancy rectangle in time O(g4). It
is quite similar to the algorithm of Section 4.3, using a sweep line to explore the
space of rectangles. The basic idea is as follows. We maintain four sweep lines, two
horizontal and two vertical. The two vertical sweep lines move from left to right. At
any moment, one of them is at x position i, and the other at x position j > i. As
the second sweep line moves from i to the right most position, we maintain a count,
for each row, of the total measured and baseline mass in this row between i and j.
This can be done in time O(g) for each move of the second sweep line. Once the two
vertical sweep lines are fixed, two horizontal sweep lines move from bottom to top.

Algorithm 4.6.1 Algorithm Exact-Grid: Input is g × g grid with values
m(i, j), b(i, j)

for i = 1 to g do {Left sweep line}
Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
for y = 2 to g do

m[y]+= m[y − 1], b[y]+= b[y − 1]
for j = i+ 1 to g do {Right sweep line}
m = 0, b = 0
for y = 1 to g do

m+= m(j, y), b+= b(j, y),m[y]+= m, b[y]+= b
for k = 1 to g do {Bottom sweep line}

for l = k to g do {Top sweep line}
if k = 1 then

m = m[k], b = b[k]
else

m = m[l] −m[k − 1], b = b[l] − b[k − 1]
if (d(m/M, b/B) > max) then

max = d(m/M, b/B)
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Since we maintain counts of the total mass in each row, the discrepancy function for
the range bounded by the four sweep lines can be computed in constant time every
time the higher horizontal sweep line is moved. A detailed description is presented
in Algorithm 4.6.1.

Using Lemma 4.4, this algorithm can be sped up in practice by only running the
top sweep line if the cells in the bottom one satisfy mk/bk ≥ G where mk is the sum
of the measured data in those cells and bk is the sum of the baseline data in those
cells.

4.6.2 Approx-Grid Algorithm

Our second algorithm is approximate, and builds upon the approximate schemes of
Theorem 4.4. In all our approximate schemes, the main subroutine is an O(n2 log n)
time algorithm for maximizing a linear discrepancy function over the space of all
axis-parallel rectangles. It is easy to extract from this algorithm an O(n) algorithm
Linear1D-Grid for finding the interval in one dimension that maximizes any linear
discrepancy function. Naively transferring the algorithm over rectangles to the grid
would yield an algorithm running in time O(g4 log g). We improve this to O(g3).
In brief, the O(n2 log n) procedure in Section 4.4 uses two horizontal sweep lines
going from bottom to top. For any position of the two sweep lines, the maximum
discrepancy rectangle among rectangles bounded by these lines can be found by
projecting all points onto the lower sweep line and solving a one-dimensional problem
(the resulting interval defines the x-extents of the optimal rectangle). In the modified
grid variant, we maintain two arrays m[], b[], each of size g, such that m[i] stores
the sum of all values m(i, j) between the lower and upper sweep lines. Note that
this can be maintained in constant time per entry as the upper sweep line moves.
For each such movement, we run Linear1D-Grid on the values of m[] and b[]. The
total running time is therefore g positions of the bottom sweep line × g positions of
the top sweep line × O(g) for updating counts and running Linear1D-Grid, for a

Algorithm 4.6.2 Algorithm Linear-Grid: Input is g × g grid with values
m(i, j), b(i, j), and linear function ℓ

maxd = −1
for i = 1 to g do {Left sweep line}

Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
for j = i+ 1 to g do {Right sweep line}

for y = 1 to g do

m[y]+= m(j, y), b[y]+= b(j, y)
(d, yb, yt) = Linear1D(ℓ,m[], b[]).
if (d > maxd) then

maxd = d; r = [i, j] × [yb, yt]
return (maxd, r)
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net running time of O(g3).
We describe the algorithm in detail in two parts. First we give the O(g3) gridded

algorithm for linear discrepancy functions on a grid: Algorithm 4.6.2. This algorithm
is then used as the core subroutine in Algorithm 4.6.3.

Algorithm 4.6.3 Algorithm Approx-Grid

maxd = −1
Use Theorem 4.1 to construct a family L = {ℓ1, . . . , ℓt} of t linear functions.
for i = 1 to t do

(d, ri) = Linear-Grid (m[], b[], ℓi).
di = d(ri)
if (di > maxd) then

maxd = di; r
′ = ri

The runtime of Approx-Grid is O((1/ε)g3 log2 g) for dP and dγ, since there are
t = O((1/ε) log2 g) calls of Linear-Grid which runs in O(g3).
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Appendix to Chapter 4

4.A One-parameter Exponential Families

In this section we derive a general expression for a likelihood-based discrepancy
measure for the one-parameter exponential family. Many common distributions like
the Poisson, Bernoulli, Gaussian and gamma distributions are members of this family.
Subsequently we will derive specific expressions for the above mentioned distribution
families.

Definition 4.1 (One-parameter exponential family). The distribution of a random
variable y belongs to a one-parameter exponential family (which we denote by y ∼
1EXP(η, φ, T,Be, a)) if it has probability density given by

f(y; η) = C(y, φ)e
ηT (y)−Be(η)

a(φ)

where T (·) is some measurable function, a(φ) is a function of some known scale
parameter φ > 0, η is an unknown parameter (called the natural parameter), and
Be(·) is a strictly convex function. The support {y : f(y; η) > 0} is independent of
η.

It can be shown that the expected value Eη(T (Y )) = B
′

e(η) and the variance
Varη(T (Y )) = a(φ)B

′′

e (η). In general, a(φ) ∝ φ.
Let ȳ = {yi : i ∈ R} denote a set of |R| variables that are independently dis-

tributed with yi ∼ 1EXP(η, φi, T, b, a), (i ∈ R). The joint distribution of ȳ is given
by

f(ȳ; η) =
∏

i∈R

C(yi, φi)e
ηT∗(ȳ)−Be(η)

φ∗

where 1/φ∗ =
∑

i∈R(1/a(φi)), vi = φ∗/a(φi), and T ∗(ȳ) =
∑

i∈R(viT (yi)).
Given data ȳ, the likelihood of parameter η is the probability of seeing ȳ if drawn

from a distrbution with parameter η. This function is commonly expressed in terms
of its logarithm, the log-likelihood l(η; ȳ), which is given by (ignoring constants that
do not depend on η)

l(η; ȳ) = (ηT ∗(ȳ) −Be(η))/φ
∗ (4.4)

and depends on data only through T ∗ and φ∗.

Lemma 4.9. Let ȳ = (yi : i ∈ R) be independently distributed according to yi ∼
1EXP(η, φi, T, b, a). Then, the maximum likelihood estimate (MLE) of η is η̂ =
ge(T

∗(ȳ)), where ge = (B
′

e)
−1. The maximized log-likelihood (ignoring additive con-

stants) is l(η̂; ȳ) = (T ∗(ȳ)ge(T
∗(ȳ)) −Be(ge(T

∗(ȳ))))/φ∗.

Proof. The MLE is obtained by maximizing (4.4) as a function of η. Since Be

is strictly convex, B
′

e is strictly monotone and hence invertible. Thus, the MLE
obtained as a solution of l(η; ȳ)

′
= 0 is η̂ = (B

′

e)
−1(T ∗(ȳ)) = ge(T

∗(ȳ)). The second
part is obtained by substituting η̂ in (4.4).
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The likelihood ratio test for outlier detection is based on the following premise.
Assume that data is drawn from a one-parameter exponential family. For a given
region R1 and its complement R2, let ηR1 and ηR2 be the MLE parameters for the
data in the regions. Consider the two hypothesis H0 : ηR1 = ηR2 and H1 : ηR1 6= ηR2 .
The test then measures the ratio of the likelihood of H1 versus the likelihood of H0.
The resulting quantity is a measure of the strength of H1; the larger this number is,
the more likely it is that H1 is true and that the region represents a true outlier. The
likelihood ratio test is individually the test with most statistical power to detect the
region of maximum discrepancy and hence is optimal for the problems we consider. A
proof of this fact for Poisson and Bernoulli distributions is provided by Kulldorff [70]
and extends to 1EXP without modification.

We are now ready to state the main theorem of this section.

Theorem 4.11. Let ŷRj
= (yRji : i ∈ Rj) be independently distributed with yRji ∼

1EXP(ηRj
,φRji,T,Be, a), for j = 1, 2. The log-likelihood ratio test statistic for testing

H0 : ηR1 = ηR2 versus H1 : ηR1 6= ηR2 is given by

∆ = κ(GR1 ,ΦR1) + κ(GR2 ,ΦR2) − κ(G,Φ) (4.5)

where κ(x, y) = (xge(x) − Be(ge(x)))/y, GRj
= T ∗(ŷRj

), 1/ΦRj
=
∑

i∈Rj
(1/a(φRji)),

1/Φ = 1/ΦR1 + 1/ΦR2, bR1 =
1/ΦR1

(1/ΦR1
+1/ΦR2

)
and G = bR1GR1 + (1 − bR1)GR2.

Proof. The likelihood ratio is given by

supηR1
6=ηR2

L(ηR1 , ηR2 ; ŷR1 , ŷR2)

supη L(η; ŷR1 , ŷR2)
.

Substituting the MLE expressions η̂R1 and η̂R2 from Lemma 4.9, and setting

G = T ∗(ŷR1 , ŷR2) =

∑
j=1,2

∑
i∈Rj

T (yRji)/a(φRji)∑
j=1,2

∑
i∈Rj

1/a(φRji)

=
1/ΦR1

(1/ΦR1 + 1/ΦR2)
GR1 +

1/ΦR2

(1/ΦR1 + 1/ΦR2)
GR2

= bR1GR1 + (1 − bR1)GR2 ,

the result follows by computing logarithms.

Fact 4.1. To test H0 : ηR1 = ηR2 versus H1 : ηR1 > ηR2, the log-likelihood ratio test
statistic is given by

∆ = 1( ˆηR1 > ˆηR2)(κ(GR1 ,ΦR1) + κ(GR2 ,ΦR2) − κ(G,Φ)) (4.6)

Similar result holds for the alternative H1 : ηR1 < ηR2 with the inequalities reversed.
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In the above expression for ∆ (with R1 = R,R2 = R \ P ), the key terms are the
values bR and GR. GR = T ∗(ŷR) is a function of the data (T ∗ is a sufficient statistic
for the distribution), and thus is the equivalent of a measurement. In fact, GR is a
weighted average of T (yi)s in R. Thus, GR/ΦR =

∑
i∈R T (yi)/a(φi) represents the

total in R. Similarly, G/Φ = M gives the aggregate for the region and hence mR =
(Φ/ΦR)(GR/G) is the fraction of total measurements contained in R. Also, 1/ΦR

gives the total baseline value of R which is independent of the actual measurements
and only depends on some baseline measure, i.e., 1/ΦR = B. Hence, bR = Φ/ΦR

gives the fraction of total baseline measure in R. The next theorem provides an
expression for ∆ in terms of mR and bR.

Theorem 4.12. Let R1 = R and R2 = R \ P . To obtain R ∈ A that maximizes dis-
crepancy, assume G = M/B and Φ = B to be fixed and consider the parametrization
of ∆ in terms of bR and mR = bRGR/G.

The discrepancy measure (ignoring additive constants) d(., .) is given by

d(mR, bR)
Φ

G
= mRge(G

mR

bR
) − bR

G
Be(ge(G

mR

bR
)) +

(1 −mR)ge(G
1 −mR

1 − bR
) − (4.7)

(1 − bR)

G
Be(ge(G

1 −mR

1 − bR
))

Proof. Follows by substituting GR = GmR/bR, GR\P = G(1−mR)/(1− bR) in (4.5),
simplifying and ignoring additive constants.

4.B Discrepancy Measures For Specific Distributions

We can now derive discrepancy functions for specific distribution families and some
properties that will be used to analyze algorithms for maximizing them.

4.B.1 Poisson Scan Statistic

The Poisson scan statistic was designed for measured data generated by an underlying
Poisson distribution. We reproduce Kulldorff’s derivation of the likelihood ratio test,
starting from our general discrepancy function ∆.

In a Poisson distribution, underlying points are measured in the presence of
some rare event (e.g. presence of some rare disease in an individual) and hence
the measurement attached to each point is binary with a 1 indicating presence
of the event. The number of points that get marked on a subset R ⊂ P fol-
lows a Poisson process with base measure b and intensity λ if (i) N(∅) = 0, (ii)
N(A) ∼ Poisson(λb(A)), A ⊂ R, b(·) is a baseline measure defined on R and λ is
a fixed intensity parameter (examples of b(A) include the area of A, total number
of points in A, etc.), and (iii) the number of marked points in disjoint subsets are
independently distributed.
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Derivation of the Discrepancy Function. A random variable y ∼ Poisson(λξ) is
a member of 1EXP with T (y) = y/ξ, φ = 1/ξ, a(φ) = φ, η = log(λ), Be(η) =
exp(η), ge(x) = log(x). For a set of n independent measurements with mean λξi, i =
1, · · · , n, T ∗(ȳ) =

∑n
i=1 yi/

∑n
i=1 ξi, φ

∗ = (
∑n

i=1 ξi)
−1. For a subset R, assume the

number of marked points follows a Poisson process with base measure b(·) and log-
intensity ηR while that in R \ P has the same base measure but log-intensity ηR\P .
For any partition {Ai}i of R and {Bj}j of R\P , {N(Ai)}i and {N(Bj)}j are indepen-
dently distributed Poisson variables with mean {exp(ηR)b(Ai)} and {exp(ηR\P )b(Bj)}
respectively. Then, 1/ΦR =

∑
Ai
b(Ai)) = b(R), 1/ΦR\P = b(R \ P ),

GR =

∑
Ai
N(Ai)∑

Ai
b(Ai)

=
N(R)

b(R)
, GR\P =

N(R \ P )

b(R \ P )
, and G =

N(R) +N(R \ P )

b(R) + b(R \ P )
.

Hence,

bR =
b(R)

b(R) + b(R \ P )
and mR =

N(R)

N(R) +N(R \ P )
.

d̃P (mR, bR)
Φ

G
= mR

(
log(G) + log

(
mR

bR

))
− bR

mR

bR
+

(1 −mR)

(
log(G) + log

(
1 −mR

1 − bR

))
− 1 −mR

1 − bR
(1 − bR)

= mR log

(
mR

bR

)
+ (1 −mR) log

(
1 −mR

1 − bR

)
+ c1,

for a constant c1, and hence

d̃P (mR, bR) = M

(
mR log

(
mR

bR

)
+ (1 −mR) log

(
1 −mR

1 − bR

)
+ c1

)
.

Note that the discrepancy is independent of the partition used and hence is well
defined. To normalize d̃P so that it is not dependent on the size of the data we set

dP (mR, bR) = mR log

(
mR

bR

)
+ (1 −mR) log

(
1 −mR

1 − bR

)
.

Properties of the Poisson Scan Statistic. It is easy to see that dP is a convex function
of mR and bR, is always positive, and grows without bound as either of mR and bR
tends to zero. It is zero when mR = bR. The Poisson scan statistic can also be
viewed as the Kullback-Leibler distance between the two two-point distributions
[mR, 1−mR] and [bR, 1− bR]. We will consider maximizing the Poisson scan statistic
over the region Sn = [1/n, 1−1/n]2. To estimate the size of an ε-approximate family
for dP , we will compute λ∗ over Sn.

Let

fP (x, y) = x log
x

y
+ (1 − x) log

1 − x

1 − y
.
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∇fP = i

(
log

x

1 − x
− log

y

1 − y

)
+ j

(
−x
y

+
1 − x

1 − y

)

H(fP ) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
1

x(1−x)
−1

y(1−y)
−1

y(1−y)
x
y2 + 1−x

(1−y)2

)

Note that fxx(1 − 1/i, y) = O(i) and fxx(1/i, y) = O(i) in Sn for all y and also
that fyy(x, 1/i) = O(i2) for x > C/n and fyy(x, 1 − 1

i
) = O(i2) for x small enough.

Also fx(1 − 1/i, y) = O(log i) and |fy(x, 1/i)| = O(i).
The Jensen-Shannon divergence is a symmetrized variant of the Kullback-Leibler

distance. We mentioned earlier that dP can be expressed as a Kullback-Leibler
distance. Replacing this by the Jensen-Shannon distance, we get a symmetric version
of the Poisson scan statistic, for which all the bounds above hold.

4.B.2 Gaussian Scan Statistic

It is more natural to use an underlying Gaussian process when measurements are real
numbers, instead of binary events. In this section, we derive a discrepancy function
for an underlying Gaussian process. To the best of our knowledge, at the time of
original publication this derivation is novel.

Derivation of the Discrepancy Function. A random variable y that follows a Gaussian
distribution with mean ξ and variance 1/τ 2 (denoted as y ∼ N(ξ, 1/τ 2) is a member of
1EXP with T (y) = y, η = ξ, Be(η) = η2/2, φ = 1/τ 2, a(φ) = φ, ge(x) = x. For a set of
n independent measurements with mean ξ and variances 1/τ 2

i , i = 1, · · · , n(known),
φ∗ = (

∑n
i=1 τ

2
i )−1 and T ∗(ȳ) =

∑n
i=1 yiτ

2
i /
∑n

i=1 τ
2
i . Assume measurements in i ∈ R

are independent N(ξR, 1/τ
2
i ) while those i ∈ R \ P are independent N(ξR\P , 1/τ

2
i ).

Then, ΦR = (
∑

i∈R τ
2
i )−1, ΦR\P = (

∑
i∈R\P τ

2
i )−1,

GR =

∑
i∈R τ

2
i yi∑

i∈R τ
2
i

, GR\P =

∑
i∈R\P τ

2
i yi∑

i∈R\P τ
2
i

, and G =

∑
i∈R∪R\P τ

2
i yi∑

i∈R∪R\P τ
2
i

.

Hence,

bR =
1/ΦR

(1/ΦR + 1/ΦR\P )
=

∑
i∈R τ

2
i∑

i∈R∪R\P τ
2
i

and mR =

∑
i∈R τ

2
i yi∑

i∈R∪R\P τ
2
i

.

Thus,

d̃G(mR, bR)
Φ

G
= mRG

mR

bR
− bR
G
G
mR

bR
+ (1 −mR)G

1 −mR

1 − bR
− 1 − bR

G
G

1 −mR

1 − bR

= G

(
m2

R

bR
+

(1 −mR)2

1 − bR

)
− 1

= G
(mR − bR)2

bR(1 − bR)
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and hence

d̃G(mR, bR) =
M2

B

(mR − bR)2

bR(1 − bR)
.

An important special case occurs when the variance is constant (i.e. τ 2
i = τ 2 for each

i). Then,

bR =
|R|

|R| + |R \ P | and mR =

∑
i∈R yi∑

i∈R∪R\P yi

with the discrepancy being maximized if a small fraction of points account for a large
fraction of the total or vice-versa. Note that the underlying baseline b is a weighted
counting measure which aggregate weights τ 2

i attached to points in a region.
To normalize d̃G so it is not dependent on the size of the data (note M2/B =

O(M) because M = O(B) in this setting) we set

dG(mR, bR) =
(mR − bR)2

bR(1 − bR)
.

Properties of the Gaussian Scan Statistic. Again, it can be shown that dG is a convex
function of both parameters, and grows without bound as bR tends to zero or one.
Note that this expression can be viewed as the χ2-distance between the two two-point
distributions [mR, 1 −mR], [bR, 1 − bR]. Let

fG(x, y) =
(x− y)2

y(1 − y)
.

∇fG = i

(
2x− 2y

y(1 − y)

)
+ j

(
2y − 2x

y(1 − y)
− (x− y)2(1 − 2y)

y2(1 − y)2

)

H(fG) =

(
2

y(1−y)
−2

y(1−y)
− 2(x−y)(1−2y)

y2(1−y)2

−2
y(1−y)

− 2(x−y)(1−2y)
y2(1−y)2

2
y(1−y)

+ 4(x−y)(1−2y)+2(x−y)2

y2(1−y)2
+ (x−y)2(1−2y)2

y3(1−y)3

)

Note that fxx(x, 1/i) = O(i) and that fyy(x, 1/i) = O(i3). Also not that fx(x, 1/i)
= O(i) and |fy(x, 1/i)| = O(i2).

4.B.3 Bernoulli Scan Statistic

Modeling a system with an underlying Bernoulli distribution is appropriate when
the events are binary and each measured event corresponds to a particular baseline
event. G is the percentage of baseline points associated with a measured point. For
instance, a baseball player’s batting average describes the fraction of at bats that
the player gets a hit. We could say the location of the final pitch of an at bat is a
baseline point and it is also a measured point if the batter gets a hit. This requires
a further restriction on Sn that bR > G ·mR, more specifically bR ≥ G ·mR + 1/n.
When referring to Sn for the Bernoulii distribution we include this extra condition
unless otherwise stated.
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Derivation of the Discrepancy Function. A binary measurment y at a point has a
Bernoulli distribution with parameter θ if P (y = 1) = θy(1−θ)1−y. This is a member
of 1EXP with T (y) = y, η = log(θ/(1 − θ)), Be(η) = log(1 + exp(η)), φ = 1, a(φ) =
1, ge(x) = log(x) − log(1 − x).

For a set of n independent measurements with parameter η, φ∗ = 1/n, T ∗(ȳ) =∑n
i=1 yi/n. Assuming measurements in R and R \ P are independent Bernoulli with

parameters ηR and ηR\P respectively, ΦR = 1/|R|,ΦR\P = 1/|R \ P |,

GR =
y(R)

|R| , GR\P =
y(R \ P )

|R \ P | , G =
y(R) + y(R \ P )

|R| + |R \ P | ,

bR =
|R|

|R| + |R \ P | , and mR =
y(R)

y(R) + y(R \ P )
.

Note that y(A) denotes the number of 1’s in a subset A. Thus,

d̃B(mR, bR)
Φ

G
= mR log

(
mR

bR

)
+ (1 −mR) log

(
1 −mR

1 − bR

)

+

(
bR
G

−mR

)
log

(
1 −G

mR

bR

)

+

(
1 − bR
G

− 1 +mR

)
log

(
1 −G

1 −mR

1 − bR

)
.

To normalize d̃B so it is not dependent on the size of the data set set

dB(mR, bR) = mR log

(
mR

bR

)
+ (1 −mR) log

(
1 −mR

1 − bR

)

+

(
bR
G

−mR

)
log

(
1 −G

mR

bR

)

+

(
1 − bR
G

− 1 +mR

)
log

(
1 −G

1 −mR

1 − bR

)
.

Properties of the Bernoulli Scan Statistic. Much like dP , it is easy to see that dB

is a convex function of mR and bR, is always positive, and grows without bound as
either bR or mR tend to zero or one. The complexity of an ε-approximate family for
dB, the Bernoulli scan statistic, can be analyzed by letting

fB(x, y) = x log
x

y
+ (1 − x) log

1 − x

1 − y
+
( y
G

− x
)

log

(
1 −G

x

y

)
+

(
1 − y

G
− 1 + x

)
log

(
1 −G

1 − x

1 − y

)
,
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where G is a constant.

∇fB =i

(
log

x

y
− log

1 − x

1 − y
+ log

(
1 −G

1 − x

1 − y

)
− log

(
1 −G

x

y

))
+

j

(
1

G
log

(
1 −G

x

y

)
− 1

G
log

(
1 −G

1 − x

1 − y

)
+ 1 +

1

G

)

H(fB) =

(
1
x

+ 1
1−x

+ G
(1−y)−G(1−x)

+ G
y−Gx

−1
y−Gx

− 1
(1−y)−G(1−x)

−1
y−Gx

− 1
(1−y)−G(1−x)

x
(y−Gx)y

+ 1−x
((1−y)−G(1−x))(1−y)

)

Note that fxx((x,Gx + 1/n)) = O(n) for any x in Sn. Also, fyy((x,Gx + 1/i) =
O(i) for x large enough in Sn. Also note that fx(x,Gx + 1/i) = O(log i) and
|fy(x,Gx+ 1/i)| = O(log i).

4.B.4 Gamma Scan Statistic

When events arrive one after another, where a Poisson variable describes the interval
between events, then a gamma distribution describes the count of events after a set
time.

Derivation of the Discrepancy Function. A positive measurement y has a gamma
distribution with mean ξ > 0 and shape ν > 0 if it has density

νν

ξνΓ(ν)
· e(− ν

ξ
y) · xν−1

and is a member of 1EXP with T (y) = y, η = −1
ξ
(< 0), Be(η) = − log(−η), φ =

1/ν, a(φ) = φ, ge(x) = − 1
x
. Following arguments similar to the Gaussian case, ΦR =

(
∑

i∈R νi)
−1,ΦR\P = (

∑
i∈R\P νi)

−1,

GR =

∑
i∈R νiyi∑
i∈R νi

, GR\P =

∑
i∈R\P νiyi∑
i∈R\P νi

, and G =

∑
i∈R∪R\P νiyi∑
i∈R∪R\P νi

.

Hence,

bR =
1/ΦR

(1/ΦR + 1/ΦR\P )
=

∑
i∈R νi∑

i∈R∪R\P νi

and mR =

∑
i∈R νiyi∑

i∈R∪R\P νiyi

.
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Thus,

d̃γ(mR, bR)
Φ

G
= mR

(
− bR
GmR

)
− bR
G

log

(
G
mR

bR

)
+

(1 −mR)

(
− 1 − bR
G(1 −mR)

)
− 1 − bR

G
log

(
G

1 −mR

1 − bR

)

=
bR
G

log

(
bR(1 −mR)

mR(1 − bR)

)
− 1

G
log

(
1 −mR

1 − bR

)
+ c3

=
bR
G

log

(
bR
mR

)
+

1 − bR
G

log

(
1 − bR
1 −mR

)
+ c3

for constant c3 > 0 and hence ignoring additive constants,

d̃γ(mR, bR) = B

(
bR log

(
bR
mR

)
+ (1 − bR) log

(
1 − bR
1 −mR

))
.

For a fixed shape parameter (i.e. νi = ν for each i),

bR =
|R|

|R| + |R \ P | and mR =

∑
i∈R yi∑

i∈R∪R\P yi

.

To normalize d̃γ so it is not dependent on the size of the data we set

dγ(mR, bR) = bR log

(
bR
mR

)
+ (1 − bR) log

(
1 − bR
1 −mR

)
= dP (bR,mR).

Properties of the Gamma Scan Statistic. Because dγ(mR, bR) = dP (bR,mR) up to a
relative and additive constant, fγ(x, y) = fP (y, x) and properties of fxx and fyy of
fP apply.

4.C Combinatorial Algorithms on Terrains

4.C.1 Half spaces, intervals, and slabs

Let h : R → R be a piecewise-linear height function over a one-dimensional domain
with a possibly negative range. Each range in H|| is defined by a single point in the
domain.

Lemma 4.10. For continuous h : R → R the range

arg max
R∈H||

∫

R

h(p) dp

is defined by an endpoint r such that h(r) = 0.
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Proof. If the end point r moved so the size of R is increased and h(r) > 0 then the
integral would increase, so h(r) must be non positive. If the end point r is moved
so the size of R is decreased and h(r) < 0 then integral would also increase, so h(r)
must be non negative.

This proof extends trivially to axis-parallel slabs S|| (which can be thought of as
intervals) as well.

Lemma 4.11. For continuous h : R → R, the range

arg max
R∈S||

∫

R

h(p) dp

is defined by two endpoints rl and rr such that h(rl) = 0 and h(rr) = 0.

Let h have n vertices. For both H|| and S||, the optimal range can be found in
O(n) time. For H||, simply sweep the space from left to right keeping track of the
integral of the height function. When the height function has a point r such that
h(r) = 0, compare the integral versus the maximum so far.

For S||, we reduce this to a one-dimensional point set problem. First sweep the
space and calculate the integral in between every consecutive pair of points r1 and
r2 such that h(r1) = 0 = h(r2) and there is no point r3 such that h(r3) = 0 and
r1 < r3 < r2. Treat each of these intervals as a point with weight set according to its
value. Now run the one-dimensional algorithm from Section 4.4 for linear discrepancy
of red and blue points where the positive intervals have a red weight equal to the
integral and the negative intervals have a blue weight equal to the negative of the
integral.

Theorem 4.13. For continuous, piecewise-linear h : R → R with n vertices

arg max
R∈H||

∫

R

h(p) dp and arg max
R∈S||

∫

R

h(p) dp

can be calculated in O(n) time.

This result extends trivially to a higher dimensional domains as long as the fam-
ilies of ranges are no more complicated.

Theorem 4.14. For continuous, peicewise-linear h : Rd → R with n vertices,

arg max
R∈H||

∫

R

h(p) dp and arg max
R∈S||

∫

R

h(p) dp

can be calculated in O(n) time.

Proof. The sweep step of the algorithms described above are performed in the same
way, only now the integral of up toO(n) cubic functions must be calculated. However,
this integral can be stored implicitly as a single linear function and can be updated
in constant time every time a new vertex is reached.
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Finally, we now present a slightly surprising theorem about the difference between
two terrains.

Theorem 4.15. Let M : Rd → R and B : Rd → R be piecewise-linear functions with
n and m vertices respectively.

arg max
R∈H||

∫

R

M(p) −B(p) dp and arg max
R∈S||

∫

R

M(p) −B(p) dp

can be calculated in O(n+m) time.

Naively, this could be calculated in O(nm) time by counting the vertices on the
terrain h(p) = M(p) −B(p). But we can do better.

Proof. Although there are more than n + m vertices in h(p) = M(p) − B(p), the
equations describing the height functions only change when a vertex of one of the
original functions is encountered. Thus there are only O(n + m) linear functions
which might cross 0. These can be calculated by projecting M and B independently
to the axis of H|| or S|| and then taking their sum between each consecutive vertex
of either function.

4.C.2 Rectangles

Although Theorem 4.3 extends the 1-dimensional case for point sets to a O(n2 log n)
algorithm for rectangles, when the data is given as picewise-linear terrains the direct
extension does not go through. However, a simple O(n4) time algorithm, under a
certain model, does work. Following algorithm Exact, we make four nested sweeps
over the data. The first two bound the x coordinates and the second two bound the
y coordinates. The inner most sweep keeps a running total of the integral in the
range. However, unlike Exact each sweep does not give an exact bound for each
coordinate, rather it just restricts its position between two vertices. The optimal
position is dependent on all four positions, and needs to be determined by solving a
system of four quadratic equations. This system seems to, in general, have no closed
form solution (see the next subsection) and needs to be done via a numerical solver.
However, these equations can be updated in constant time in between states of each
sweep, so under the model that the numerical solver takes O(1) time, this algorithm
runs in O(n4) time.

For the full correctness of the algorithm, there is actually one more step required.
Given that each side of the rectangle is bounded between two vertices, the set of four
equations is dependent on which face of the terrain that the corner of the rectangle
lies in. It turns out that each possible corner placement can be handled individually
without affecting the asymptotics. The n vertices impose an n × n grid on the
domain, yielding O(n2) grid cells in which a corner may lie. Because the terrain is
a planar map, there are O(n) edges as well, and each edge can cross at most O(n)
grid cells. Since no two edges can cross, this generates at most O(n2) new regions
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inside of all O(n2) grid cells. Since each rectangle is determined by the placement
of two opposite corners the total complexity is not affected and is still O(n4). We
summarize in the following lemma.

Lemma 4.12. Consider a model where a system of 4 quadratic equations can be solved
in O(1) time. Then let h : R2 → R be a piecewise-linear function with n vertices.

arg max
R∈R2

∫

R

h(p) dp

can be solved in O(n4) time.

4.C.3 Algebra for Finding Optimal Rectangle on a P-L Terrain

For a piecewise-linear terrain h : R2 → R we wish to evaluate D̄(h,R) =
∫

R
h(p) dp

where R is some rectangle over the ground set of h. Within R, the value of h is
described by a set of triangles TR = {t1, . . . , tk}. Let R be described by its four
boundaries. Let x1 and x2 describe the left and right boundaries, respectively, and
let y1 and y2 describe the top and bottom boundaries, respectively. Now

D̄(h,R) =

∫ x2

x1

∫ y2

y1

h(x, y) dydx.

Assume that we have computed the integral from x1 up to x(v) the x-coordinate
of a vertex v in the piecewise-linear terrain. To extend the integral up to the x(u)
where u is the next vertex to the right. We need to consider all of the triangles that
exist between x(v) and x(u). Label this set {t1, . . . , tk} where ti is below tj in the
y-coordinate sense for i < j. Note that no triangle can begin or end in this range and
this order must be preserved. We also consider the intersection between the edge of
the triangulation and the rectangle with describes R a vertex. Let the slope within
a triangle ti be described

hi(x, y) = αix+ βiy + γi (4.8)

and describe the edge of the triangulation that divides ti and ti+1 as

li = ωix+ κi. (4.9)

Now we want to solve the integral from x(v) to x(u)
∫ x(u)

x(v)

∫ y2

y1

h(x, y) dydx.

But this is difficult, as hinted at by the following lemma.

Lemma 4.13. The function

D̄(h, [x1, x2] × [y1, y2]) =

∫ x2

x1

∫ y2

y1

h(x, y) dydx

is a third order polynomial in x2, the x-position of the right endpoint.
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Proof. The integral from x(v) to x(u) is described

∫ x(u)

x(v)

∫ y2

y1

h(x, y)dydx

=

∫ x(u)

x(v)

[∫ l1(x)

y1

h1(x, y)dy +
k−1∑

i=2

∫ li(x)

li−1(x)

hi(x, y)dy +

∫ y2

lk−1(x)

hk(x, y)dy

]
dx

=

∫ x(u)

x(v)




∫ ω1x+κ1

y1
(α1x+ β1y + γ1)dy+∑k−1

i=2

∫ ωix+κi

ωi−1x+κi−1
(αix+ βiy + γi)dy+∫ y2

ωk−1x+κk−1
(αkx+ βky + γk)dy


 dx

=

∫ x(u)

x(v)



α1xy + 1

2
β1y

2 + γ1y |ω1x+κ1
y=y1

+∑k−1
i=2 αixy + 1

2
β1y

2 + γiy |ω1x+κ1
y=ωi−1x+κi−1

+
αk−1xy + 1

2
βk−1y

2 + γk−1y |y2
y=ωk−1x+κk−1


 dx

=

∫ x(u)

x(v)




(α1xy1 + 1
2
β1(y1)

2 + γ1y1) − (α1x(ω1x+ κ1)−
1
2
β1(ω1x+ κ1)

2 − γ1(ω1x+ κ1))+

∑k−1
i=2




αix(ωi−1x+ κi−1) + 1
2
βi(ωi−1x+ κi−1)

2+
γi(ωi−1x+ κi−1) − αix(ωix+ κi)−
1
2
βi(ωix+ κi)

2 − γi(ωix+ κi)


+

(αkx(ωk−1x+ κk−1) + 1
2
βk(ωk−1x+ κk−1)

2+
γk(ωk−1x+ κk−1)) − (αkxy2 + 1

2
βk(y2)

2γky2)




dx

=

∫ x(u)

x(v)




(α1xy1 + 1
2
β1y

2
1 + γ1y1)+

1
2

∑k−1
i=1

(
(αi+1 − αi)x+ (βi+1 − βi)(ω

2
i x

2 + 2κiωix+ κ2
i )+

(γi+1 − γi)

)
−

(αkxy2 + 1
2
βky

2
2 + γky2)


 dx

=




1
2
α1y1x

2 + (1
2
β1y

2
1 + γ1y1)x+

1
2

∑k−1
i=1




1
2
(αi−1 − αi + 2κiωi(βi+1 − βi))x

2+
1
3
(ω2

i (βi+1 − βi))x
3+

(γi+1 − γi + κi(βi+1 − βi))x


−

1
2
αky2x

2 − (1
2
βky

2
2 + γky2)x




x(u)

x(v)

=

1
2
(α1y1 − αky2)(x(u)

2 − x(v)2)+
(1

2
β1y

2
1 − 1

2
βky

2
2 + γ1y1 − γky2)(x(u) − x(v))+

1
2

∑k−1
i=1

1
2
(αi−1 − αi + 2κiωi(βi+1 − βi))(x(u)

2 − x(v)2)+
1
3
(ω2

i (βi+1 − βi))(x(u)
3 − x(v)3)+

(γi+1 − γi + κi(βi+1 − βi))(x(u) − x(v))

Thus to solve
arg min

x2

D̄(h, [x1, x2] × [y1, y2])
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requires finding where

∂

∂x2

D̄(h, [x1, x2] × [y1, y2]) = 0.

If it is outside the range [x(v), x(u)], the two vertices bounding x2, then it is min-
imized at one of the two end points. It should be noted that by symmetry, the
minimum of x1 and x2 are independent, given y1 and y2, but that both are depen-
dent on y1 and y2. Also, by symmetry, the previous statements can swap every x1

and x2 with y1 and y2, respectively.

Lemma 4.14. Solving for

arg min
[x1,x2]×[y1,y2]

D̄(h, [x1, x2] × [y1, y2])

requires solving 4 quadratic equations of 4 variables, which in general has no closed-
form solution.

Proof. This system is of the form




0
0
0
0


 =




0 0 αy1 αy2

0 0 βy1 βy2

αx1 αx2 0 0
βx1 βx2 0 0







x1

x2

y1

y2


+




0 0 ωy1 ωy2

0 0 κy1 κy2

ωx1 ωx2 0 0
κx1 κx2 0 0







x2
1

x2
2

y2
1

y2
2


+




γx1

γx2

γy1

γy2




which in general has no closed-form solution.
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Conclusion

As larger and larger data sets are being collected, the advancement of science not only
becomes dependent on understanding these data sets, but also the process by which
they are collected. The enormity of the data size precludes brute force approaches
of analyzing it. Yet, the more we understand the collection process, the better
we can create more data with less error, thus getting more accurate information.
Both of these components of the modern scientific process indicates the need for
efficient algorithms for processing this data. Or, to put it another way, algorithms
are becoming the language to describe scientific hypothesis.

Statistics were created as a way of drawing conclusions about scientific hypothesis.
That is, given a set of data collected in regards to a hypothesis, the statistical analysis
of the data provides estimates of the validity of the hypothesis. Hence, statistics have
formed the language used to understand science.

Combining these conclusions leads to the statement, understanding algorithms
for computing statistics is necessary for interpreting scientific hypothesis. This thesis
takes several important steps in this direction.

Coresets have shown to be a quite useful tool for understanding large data sets,
particularly because they have guarantees in the error caused by approximation.
Summarizing data sets to a manageable size is bound to introduce some error; hence
methods which provide precise understanding of where this error occurs are inher-
ently superior to those which do not. In the same vein, statistics is the process of
reducing a data set to a small number of useful values that are hopefully invariant
over the uncertainty in the data. Much of the field of statistics studies this rela-
tionship between data uncertainty and robustness of the statistics measured. But,
when data sets are too large to directly compute statistics on the original data, the
process is to first summarize the data (such as using a coreset) and then compute the
statistic on the summary. In this process, it is important to analyze the final error of
the statistics with respect to the original data, not just the error of the coreset with
respect to the original data or the error of the statistic with respect to the coreset.

This thesis addresses this particular task for several problems. In particular, when
the data set is not precise, but each point is modeled by a probability distribution,
Chapter 3 creates coresets, both randomized and deterministic, for many shape fit-
ting problems. Also, for the problem of computing spatial scan statistics we address
in Chapter 4.5 the algorithm of computing an ε-sample of the data before running
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another approximation algorithm for a statistic. We distinguish between specific
problem formulations where this is helpful and where it is not. The fact that it is
not effective for certain problem formulations may indicate that these formulations
are not robust, since the original data can be interpreted of an ε-sample of reality.

More work should be done on this problem in particular to investigate the power
of our algorithms versus those proposed by others such as Kulldorff [72] or Neill
and Moore [90], as opposed to just their efficiency and values returned on different
problems. We should create spatial anomalies and determine which algorithms detect
them with more accuracy, and possibly with respect to the efficiency. We suspect
that there is a strong dependency on the shape of the anomaly and the family of
shapes inducing the range space. Clearly, if they are from the same family, then
we should be able to find a planted cluster, but if they are not, then the question
becomes how closely can we approximate a shape from a different family of ranges.

There are numerous other challenges in the form of, given a large data set and a
characteristic we want to measure, can we formulate a statistic that represents this
characteristic and can be calculated efficiently, or an approximation of the statistic
where the approximation does not distort the understanding of the characteristic.
In particular, can this be done using coresets as an intermediary in some of these
problems? For instance, can we capture the stability of persistence diagrams when
the original data is uncertain by taking ε-samples of the available data? In robotic
localization and learning using a process like particle filtering, what approximation
guarantees can be make on the position of the robot or on its observations? When
we model GIS data as having uncertainty described by probability distributions,
what conclusions can be draw about the stability of predictions about the watershed
hierarchies, or other complex geospatial properties?

Another challenge is in monitoring data from massive data sets. When we only
care about extent measures, we can maintain stable ε-kernels as described in Chapter
2. But does this approach work in combination with the technique for handling
outliers [6] in ε-kernels? Does it work for uncertain data where the uncertainty is
described by a probability distribution? What other coresets can be maintained
stably?

In summary, this thesis provides a contribution to the problem of creating algo-
rithms for statistical problems with approximation guarantees. There is still plenty
of work left to be done in this area in order to be able to create the most useful data
given our resources and to be able to use that data at its potential. This is becoming
a problem central to the dialogue of science, and the techniques presented herein will
hopefully be used as building blocks for future progress in this direction.
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