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Abstract 

Survey data often contain measurements for variables that are semicontinuous in nature, 

i.e. they either take a single fixed value (we assume this is zero) or they have a 

continuous, often skewed, distribution on the positive real line. Standard methods for 

small area estimation (SAE) based on the use of linear mixed models can be inefficient 

for such variables. We discuss SAE techniques for semicontinuous variables under a two 

part random effects model that allows for the presence of excess zeros as well as the 

skewed nature of the non-zero values of the response variable. In particular, we first 

model the excess zeros via a generalized linear mixed model fitted to the probability of a 

non-zero, i.e. strictly positive, value being observed, and then model the response, given 

that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. 

Empirical results suggest that the proposed method leads to efficient small area estimates 

for semicontinuous data of this type. We also propose a parametric bootstrap method to 

estimate the MSE of the proposed small area estimator. These bootstrap estimates of the 

MSE are compared to the true MSE in a simulation study. 

 

Key words: Mean squared error; Parametric bootstrap; Skewed data; Small area 

estimation; Zero-inflated. 

 

1. Introduction 

Many variables of interest in business, agricultural, environmental, ecological and 

epidemiological surveys are semicontinuous in nature, i.e. they either take a single fixed 

value (typically zero) or they have a continuous, often skewed, distribution on the 

positive real line. This article focuses on a particular type of semicontinuous variable 

frequently encountered in practice, a mixture of zeros and continuous strictly positive 
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values that are generally skewed. Such a semicontinuous variable is quite different from 

one that has been left-censored or truncated, because the zeros are valid self-representing 

data values, not proxies for negative or missing responses. It is therefore natural to view 

a semicontinuous response of this type as the result of two processes, one determining 

whether the response is zero and the other determining the actual level if it is non-zero 

(Olsen and Schafer, 2001). Measurements of indebtedness, investment, production or 

amount of stock on hand all represent situations where semicontinuous data are typically 

collected in household and business surveys. For example, Amount of Loan Outstanding 

(collected in the 59th Round of the National Sample Survey, or NSS, in India), and 

Closing Beef Cattle, or BEEFCL (collected in the Australian Agricultural Grazing 

Industries Survey, or AAGIS) are just two cases of important survey output variables 

that are, by their definition, semicontinuous. In both, the target variable is either zero or 

some positive value, with these positive values then having a skewed distribution. 

Unlike the NSS data, an anonymised version of the AAGIS data is available, and so 

these data are used in the empirical evaluations presented in Section 5, which focus on 

regional estimation for BEEFCL. See Figure 1 and Table 4 for the distributions of 

regional  sample sizes and proportions of zero values in the AAGIS sample data, while 

the sample distribution of BEEFCL in these data is shown in Figure 2. It is clear from 

Figures 1 and 2 that BEEFCL is zero-inflated with highly skewed non-zero values. 

 

Since a linear model is not appropriate for a  semicontinuous variable, commonly used 

methods for small area estimation based on the use of linear mixed models (e.g. the 

empirical best linear unbiased predictor or EBLUP) can be inefficient for such variables 

(see Rao, 2003). Chandra and Chambers (2011a) and Berg and Chandra (2012) 

investigate small area estimation methods for skewed variables, focussing on the case 

where a linear mixed model is appropriate after a logarithmic (log) transformation. 

Chandra and Chambers (2011a) describe two methods of small area estimation for such 

positively skewed variables. The first, a model-based direct estimator  or MBDE, is 

defined as a weighted sum of the sampled units in the small area, with weights 

constructed so as to lead to the minimum mean squared error linear predictor of the 

overall population mean if the parameters of the log scale linear mixed model were 

known. The second, based on the approach of Karlberg (2000), uses an empirical 
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predictor based on a log scale linear mixed model that is analogous to the synthetic 

estimator under a linear mixed model. The MBDE is a direct estimator and unbiased in 

the presence of between area heterogeneity, but can yield unstable estimates if sample 

sizes are too small. On the other hand, the synthetic type empirical predictor only 

accounts for between area variability through between area variation in the model 

covariates, and can therefore lead to biased estimators when there is significant residual 

between area heterogeneity. Berg and Chandra (2012) also describe an empirical best 

predictor that has minimum mean squared error in the class of unbiased predictors when 

a log scale linear mixed model is appropriate. This predictor allows for between area 

variation and is indirect, i.e. it uses information from all the small areas. However, all 

these approaches are restricted to a strictly positive variable, and so cannot be directly 

applied to a semicontinuous variable. 

 

The presence of excess zeros in survey data is a well known problem, and a variety of 

approaches have been suggested for addressing it. However, much less is known when 

the focus is on small area estimation using these data, even though presence of excess 

zeros within a small area are clearly much more influential than they are in the larger 

overall sample. A two part random effects model (Olsen and Schafer, 2001), also 

referred as a mixture model (Fletcher et al., 2005), is widely used for small area 

estimation with zero-inflated variables, see for example, Pfeffermann et al. (2008) and 

Chandra and Sud (2012). In what follows we therefore develop a small area estimation 

method for semicontinuous variables under a two part random effects model. Here we 

first model the excess zeros via a generalized linear mixed model fitted to the probability 

of a non-zero, i.e. strictly positive, value being observed, and then model the response, 

given that it is strictly positive, using a log scale linear mixed model. These two model 

components are combined in estimation. We also propose a parametric bootstrap method 

that can be used estimate the mean squared error (MSE) of our proposed two part 

estimator.  

 

The structure of the paper is as follows. In Section 2 we develop a number of predictors 

for a small area mean based on a log scale linear mixed model. In Section 3 we then 

introduce the two part random effects model (or mixture model) and discuss different 
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approaches to small area estimation under this model. Section 4 then focuses on MSE 

estimation via a parametric bootstrap approach. In Section 5 we present results from 

both model-based as well as design-based simulations which are used illustrate the 

performances of the different methods of small area estimation discussed in Section 3, 

with the design-based simulations based on survey data from the AAGIS. Finally, in 

Section 6 we summarize our main findings and discuss avenues for future research.  

 

2. Small area estimation under transformation to linearity 

We assume that a non-informative sampling method is used to draw a sample of size n 

from a finite population U  of size N which consists of D non-overlapping domains 

Ui (i 1,...., D). Following standard practice, we refer to these domains as small areas or 

just areas. We further assume that there is a known number iN  of population units in 

small area i, with ni  of these sampled. The total number of units in the population is 

1

D

ii
N N


  , with corresponding total sample size 

1

D

ii
n n


  . We use s to denote the 

collection of units in sample, with si  the subset drawn from small area i (i.e. i is n ), 

and use expressions like j i  and j s  to refer to the units making up small area i and 

sample s respectively. Similarly, r
i
 denotes the set of units in small area i that are not in 

sample, with i i ir N n   and i i iU s r  . Let ijy  denote the value of the variable of 

interest Y for unit j in area i and ijx  denote the vector of length 1m   containing the 

known values of the auxiliary variables for unit j in area i. Throughout we assume that 

the quantity of interest is the small area mean of Y, 1

1

iN

i i ijj
m N y


  .  

 

We consider a situation where the variable of interest follows a log scale linear mixed 

model. That is, y
ij

 satisfies 

log( ) T
ij ij ij i ijy  l   u  e   z  , (1) 

where  1 ,g( )ij i ijz x  is the 1m  vector of covariates defined by appropriate 

transformation of the auxiliary variables,  is a 1m  vector of fixed effects, u
i
 is a 

random effect associated with area i and e
ij
 is an individual level random effect for unit j 
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in small area i. Following standard practice, we assume that the area and individual 

effects are mutually independent, with the area effects independently and identically 

distributed as 2(0, )i uu N �  and the individual effects independently and identically 

distributed as 2(0, )ij ee N � . The sample observations  ; 1,.... ;ij iy i D j s   are 

assumed to be available. We further assume that the population values of z
ij
 are 

available, and that they can be linked to the sample. Consequently, the available data for 

area i are     , ; 1,.... ; ; 1,.... ;ij ij i ij iy i D j s i D j r    z z . Let 2 2( , )T
u e    be the 

vector of model parameters, and let 2 2ˆˆ ˆ ˆ( , )T
u e    be the Maximum Likelihood (ML) 

or the Restricted Maximum Likelihood (REML) estimator of . In particular, 

2 2 2( , )T
u e   is usually referred to as the vector of variance components of the model 

with estimator 2 2 2ˆ ˆ ˆ( , )T
u e  . Note that since we have assumed a non-informative 

sampling method, the sample and population distributions of the data are the same, and 

are given by (1). 

 

Given the sample data, we can estimate the unknown parameters (including the area 

effect) of model (1) and hence define the log-scale predictions as ˆ ˆ ˆT
ij ij il u z  ,  where  

is the estimator of , and ˆˆˆ ( )T
i i is isu l  z   is the empirical best linear unbiased predictor 

(EBLUP) of the random area effect. Here 2 2 1 2 1ˆ ˆ ˆ ˆ( )i u u i en       is the plug-in estimator 

of the shrinkage effect 2 2 1 2 1( )i u u i en      , and 1 log( )
i

is i ijj s
l n y


   and 

1

i
is i ijj s

n


 z z  are the sample means of l
ij
 and z

ij
 respectively in area i. Using a 

prediction-based approach similar to that described in Karlberg (2000), Chandra and 

Chambers (2011a) then propose a synthetic type predictor for the area mean m
i
 under 

model (1) of the form  

 1ˆ ˆ
i i

SYN EP SYN EP
i i ij ijs r

m N y y     , (2) 

where   

     1 2 2ˆˆ ˆ ˆ ˆexp 0.5SYN EP SYN EP T
ij ij ij u ey c  

   z    

and 
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  2 2ˆˆ ˆˆ ˆ ˆexp 0.5 ( ) 0.25 ( )SYN EP T
ij ij ij u ec V V     z z   

is a Taylor series linearization-based correction for back transformation bias. Note that 

(2) is not an Empirical Best Predictor since it does not allow for between unit correlation 

within a small area when it predicts the value of a non-sample yij  given the 

corresponding sample values for this variable in area i. It is therefore a synthetic 

predictor of the small area mean.  

 

Chandra and Chambers (2011a) also propose a model-based direct estimator (MBDE) of 

m
i
 of the form 

i
ij ijj s

w y
 , where w

ij
 is an estimator of the weight that leads to the best 

linear unbiased predictor (BLUP) of the population mean if the parameters of the model 

(1) are known. To derive this estimator, Chandra and Chambers (2011a) use the 

approximations, 

0 1 ˆ( ) SYN EP
ij ijE y y    , (3) 

and  

  2 2 2ˆ ˆ ˆ ˆ ˆ( , ) exp( ) 1 exp( ) exp( ) 1 [ ]SYN EP SYN EP
ij ik ij ik u u eCov y y y y I j k        , (4) 

where ˆ SYN EP
ijy   is given in (2). The approximations (3) and (4) follow from the moment 

generating function of a normal distribution, and the fact that the covariance between 

two units from different areas is zero. Put ( , )T T T
U s ry y y , where y

s
 and y

r
 are the 

vectors of sampled and non-sampled units of Y respectively. Similarly, let ˆ SYN EP
s

y  and 

ˆ SYN EP
r

y  denote the vectors containing the values ˆ SYN EP
ijy   for the sampled and non-

sampled units and define  ˆ ˆ( , ) ( , ) , (( ) , ( ) )T T T T T T SYN EP T SYN EP T T
U s r s r s r

  J J J 1 1 y y . We can 

then express (3) and (4) in matrix form as   

( )

  
( )

  

U U

ss sr
U U

rs rr

E

V



 
   

 

y J

V V
y V

V V



, (5) 

where  and the elements of variance-covariance matrix V
U

 are given by 

(4). For known parameters, the model specified in (3) and (4) is referred to as a 'fitted 
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value' model and corresponds to a linear model for y
ij

. The BLUP of the population 

mean 1

1 1

iD N

U iji j
m N y

 
    of Y under (5) is then 1 T

s sN  w y , where 

1( ; ) ( ) ( )T T T T T
s j s s U U s s s s s ss sr rw j s       w 1 H J 1 J 1 I H J V V 1 , (6) 

where 1 1 1( )T T
s s s ss s s ss

  H J V J J V . Note that the weights (6) satisfy 
1 i

D

iji j s
w N

 
   and 

1 1 1
ˆ ˆi

i

D D NSYN EP SYN EP
ij ij iji j s i j

w y y 
   

    . The MBDE of the small area mean m
i
 

(Chandra and Chambers, 2011a) is then 

1ˆ
i

CC
i i ij ijj s

m N w y


  , (7) 

where the w
ij
 are the weights (6) associated with the sample units in area i. We note that 

since (7) is a direct estimator, it can lead to unstable estimates when area sample sizes 

are too small. Balanced against this however is its inherent robustness to 

misspecification of the model for the y
ij

. 

 

Finally, Berg and Chandra (2012) use (1) to develop the empirical version of the 

minimum mean squared error (MMSE) predictor for m
i
. This is 

 1ˆ ˆ
i i

EBP EBP
i i ij ijs r

m N y y   , (8) 

where   2 1ˆ ˆˆ ˆˆ ˆexp 0.5 (1 )EBP T T
ij ij i is ij e i iy l n      z z  . We note that (8) allows for 

between unit correlations within a small area and is therefore an Empirical Best 

Predictor (EBP) under the normality assumptions of (1). To see this, observe that for 

non-sample unit ij r  the conditional distribution of lij  log(yij ) given the area i 

sample data  , , ;ij ik ik ix l x k s  is normal, with 

       , , ; , , T T
ij ij ik ik i ij ij is is ij i is isE l x l x k s E l z l z l    z z   

and 

    2 2 4 2 1 2 1 2 1, , ; ( ) (1 )ij ij ik ik i u e u u i e e i iVar l x l x k s n n                

so  

      2 1, , ; exp 0.5 (1 )T T
ij ij ik ik i ij i is is e i iE y x y x k s l n       z z  , 
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which immediately leads to the empirical version (8) of the MMSE predictor (8). 

Consequently, when (1) holds, i.e. the y
ij

 are lognormally distributed, we expect (8) to 

dominate (2). 

 

Note that  

 
  

  

2 1

2 1

ˆ ˆ ˆˆ ˆexp 0.5 (1 )

exp 0.5 (1 ) .

EBP T T
ij ij i is is e i i

T T
ij i is is e i i

E y E l n

l n

  

  





           

    

z z

z z

 

 
 

That is, the MMSE predictor (8) is biased. Berg and Chandra (2012) use Taylor series 

approximation to bias correct this predictor. Following their development, a bias 

corrected version of (8) is 

 1ˆ ˆ
i i

EBP BC EBP BC
i i ij ijs r

m N y y     , (9) 

where    1
ˆ ˆ ˆEBP BC EBP EBP

ij ij ijy c y
  , with  

   2 2 2 2
1 2 3

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆexp 0.5 ( ) ( ) 2 ( , )EBP
ij ij i e i u i e uc c V c V c Cov      a . 

Put  ˆ ˆT
i is isd l  z  . Then 

    ˆˆˆ ˆ( )
TT T T T

ij ij i is ij i isV   a z z z z , 

 

2
2 2 3 3

1 2 2 2 2 4

ˆ ˆˆ ˆ ˆ ˆ2
ˆ 0.5 0.5

ˆ ˆ ˆ
i i i i i i

i
i i u i u i u

d d
c

n n n n

   
  

             
      

, 

 
       

22 2 2

2 2 2 4

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 2 1 ˆˆ
ˆ ˆ ˆ2

i i i i i i i i
i i

u u u

d
c d

      
  

               
      

, 

 
       2 2 22 2

3 2 2 2 4

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 2ˆ ˆ1 ˆˆ
ˆ ˆ ˆ ˆ2 2 2

i i i i i i i ii i i
i i

i i u u i u i u

dd
c d

n n n n

       
   

                    
       

. 

 

3. Small area estimation under a mixture model 

We now consider the case where the response variable y
ij

 is semicontinuous. In 

particular, we shall assume that y
ij

 is either zero or has a skewed distribution over the 

strictly positive real line. We describe an approach based on modelling this variable via 
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a two part random effects model (also referred as a mixture model). That is, we shall 

assume that y
ij

 is drawn from a two-component mixture, where the first component 

corresponds to a fixed value (zero) and the second component corresponds to a strictly 

positive random variable with a skewed distribution. Following Olsen and Schafer 

(2001),  Pfeffermann et al. (2008), Chandra and Chambers (2011b) and Chandra and 

Sud (2012), we define I(A) as the indicator function for the event A and write 

   0 0 0ij ij ij ij ij ijy I y y I y y       , where ijy% is referred to as the log-linear 

component of y
ij

 and is assumed to follow the log scale linear mixed model (1). The 

second component  0ij ijI y    is assumed to follow a generalized linear mixed 

model (GLMM) with logit link function (Breslow and Clayton, 1993), and is referred as 

the logistic component of y
ij

. Note that values of ijy  are only observed when 1ij  , 

whereas values of ij  are always observed. 

 

Small area estimation under this mixture model is implemented in three steps. First, a 

logistic linear mixed model is fitted to the sample values of the indicator variable ij . 

Second, a log scale linear mixed model is fitted to the positive sample values of the 

response variable. Finally, predicted values generated under these two models are 

combined at the estimation stage. Chandra and Chambers (2011b) used a similar mixture 

model for small area estimation of zero-inflated skewed data. However, their approach 

focuses on the MBDE estimator for this case, and uses sample weights obtained via the 

'fitted value' linear model implied by the two part mixture model. They also develop a 

MSE estimator based on pseudo-linearization (Chambers et al., 2011). However, as 

noted earlier, the MBDE is a direct estimator and can be unstable when area specific 

sample sizes are too small. 

 

Fitting the logistic component of a two part random effects model poses computational 

challenges similar to those found when fitting generalized linear mixed models. 

Generally, an approximate Fisher scoring procedure based on higher order Laplace 

approximations is used to obtain maximum likelihood estimates for the fixed 

coefficients and variance components, see Olsen and Schafer (2001). Pfeffermann et al. 
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(2008) use a two part random effects model that allows for the random area effects in the 

two components of the model to be correlated. However, their simulation results show 

that this correlation does not significantly improve small area estimation. Furthermore, 

use of this correlation makes model fitting computationally intensive and sometimes 

numerically unstable. Consequently the area random effects in the two components of 

the two part random effects model are often assumed to be independent, see for example, 

Karlberg (2000) and references therein. We shall proceed similarly and assume that the 

two area random effects are uncorrelated. That is, following the Pfeffermann et al. 

(2008), Chandra and Chambers (2011b) and Chandra and Sud (2012) we assume that the 

correlation between the two random components ij  and ijy  of the assumed mixture 

model is negligible. Note that this implies that the mixture model is not appropriate if 

there is reason to believe that the distributions of these components are dependent, e.g. if 

the observed zeros in the data are due to censoring of ijy , as in a Tobit model. 

 

We assume that, given x
ij

, the ij  are independent Bernoulli random variables with 

P( 0) P( 1)ij ij ijy p    . The model linking the probability p
ij
 with the values of the 

covariates associated with unit j in area i is a logistic linear mixed model of the form 

  logit( ) ln / (1 ) T
ij ij ij ij ij ip p p  v    x   (10) 

so     11
exp( ) 1 exp( ) exp( ) 1 exp( )T T

ij ij ij ij i ij ip  v  v 


     x x  . Here  is a vector of 

unknown fixed effects parameters and v
i
 is the random effect associated with area i, 

assumed to have a normal distribution with zero mean and constant variance 2
 . We 

estimate the parameters of (10) using the procedure described in Saei and Chambers 

(2003) and Manteiga et al. (2007). This is an iterative procedure, implemented in the 

statistical software package R, that combines the Penalized Quasi-Likelihood (PQL) 

estimation of  and v
i
 with REML estimation of the variance component parameters. 

Using a 'hat' to denote these estimated values, the predicted probabilities of the logistic 

component of the two part random effects model are: 

   1ˆ ˆˆ ˆ ˆexp( ) 1 exp( )T T
ij ij i ij ip  v  v


   x x  . (11) 
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In order to estimate the parameters of the second log-linear component, of y
ij

, we 

denote by  , 0js j s y     the subset of the sample for which the response variable is 

non-zero, with jj s
n  

  denoting the number of non-zero sample units. In what 

follows, we will use a subscript of ‘+’ to denote a quantity associated with these non-

zero sample units. Using the data in s , we then fit the model (1) to obtain estimates of 

the fixed effect parameters and the predicted values of the random effects. In particular, 

the Empirical Best Linear Unbiased Estimator (EBLUE) of  is 

    -1
1 1

1 1
ˆ ˆ ˆ

D DT T
is iss is is iss si i     

  
 

   % x v x x v y . 

Here  2 2ˆ ˆ ˆT
iss u is is e isdiag  

   

  v 1 1 I , with 1
is

, I
is

 equal to the unit vector of length 

n
i
  and the identity matrix of dimension n

i
  respectively, where n

i
  denotes the number 

of area i units in s . The corresponding Empirical Best Linear Unbiased Predictors 

(EBLUPs) for the random area effects are given by  ˆˆˆ T
i i is isu l

 

    z   with 

2 2 1 2 1ˆ ˆ ˆ ˆ( )i u u i en        
  . The estimated values of y

ij
 can then be obtained using (2) or 

(9). The first option leads to a synthetic type predictor while the second, after correction 

for back transformation bias, leads to an empirical version of the minimum mean 

squared error predictor, i.e. an EBP, for y
ij

. The synthetic type predictor is 

 2 2 2 21 1 1ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆexp ( ) ( ) ( )
2 2 4

SYN EP T T
ij ij u e ij ij u ey  V V                       

    
z z z  , (12) 

while the EBP is 

    1 2 11ˆ ˆˆ ˆˆ ˆ ˆexp (1 )
2

EPB BC EPB T T
ij ij ij i is ij e i iy  c l n  

              
 

z z  ,  (13) 

with 

   2 2 2 2
1 2 3

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 0.5 ( ) ( ) 2 ( , )EBP
ij ij i e i u i e uc c V c V c Cov              a  

where 

    ˆˆˆ ˆ( )
TT T T T

ij ij i is ij i isV      a z z z z  
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 and ĉ
i1
 , ĉ

i2
  and ĉ

i3
  are obtained from ĉ

i1
, ĉ

i2
 and ĉ

i3
 by replacing the parameter 

estimates  2 2ˆ ˆ ˆ, ,e u   by  2 2ˆ ˆ ˆ, ,e u    . 

 

Let E1 denote expectation with respect to unit level (level 1) variability in yij . That is, 

this expectation conditions on the random area effects in the logistic and log-linear 

components of the two part model. Then, setting 1( )ij ijE y   , we see that under 

independence of these area effects, 

      1 1 1 1( ) = ij ij ij ij ij ij ijE y E y E E y p      (14) 

where pij  was defined following (10). Substituting predicted values for pij  and ij  in 

(14) leads to a plug-in predicted value for y
ij

, 

ˆ ˆ ˆ( )  ij ij ijE y p  , (15) 

where p̂
ij
 is given by (11), and  1

ˆˆij ijE y    can be calculated using either (12) or (13). 

That is, we have two different predicted values: 

ˆ ˆ ˆMixEP SYN EP
ij ij ijy p y    (16) 

and 

ˆ ˆ ˆMixEBP EPB BC
ij ij ijy p y   . (17) 

As usual. let a 'hat' denote an estimated value. Then, for non-sample unit j in area i, we 

see that we can write  ˆˆ MixEP
ij ij ijy E y x , while  ˆˆ , ,MixEBP

ij ij ij is isy E y x y x . 

  

The two predictors (16) and (17) allow us to define three different estimators for 

population mean of Y in small area i as follows: 

 

 (i)  Using (16) we can calculate a synthetic type estimator of the form 

   1ˆˆ ˆ, ,
i i

MixEP MixEP
i i is is ir i ij ijj s j r

m E m N y y
 

     y x x , (18) 

which we denote by MixEP in what follows; 
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(ii) The fitted values ˆ MixEP
ijy  that define the synthetic estimator (18) can also be used to 

define a 'fitted value' covariate in a linear model for yij . This model is then used to 

calculate sample weights MixEP
ijw  via (6), and an MBDE based on these weights 

computed as 

1ˆ
i

MixMBDE MixEP
i i ij ijj s

m N w y


  . (19) 

We denote this estimator by MixMBDE in what follows; 

 

(iii) Using (17) we can calculate an EBP type estimator of the form 

   1ˆˆ ˆ, ,
i i

MixEBP MixEBP
i i is is ir i ij ijj s j r

m E m N y y
 

     y x x , (20) 

which we denote by MixEBP in what follows. 

 

4. Mean squared error estimation 

Analytic estimators of the MSE of nonlinear small area estimators are technically 

complex to derive and typically involve a considerable degree of approximation. As a 

consequence, a number of numerically intensive, but computationally tractable, methods 

for MSE estimation have been proposed, e.g. the jackknife method of Jiang, Lahiri and 

Wan (2002) and the bootstrap methods described in Hall and Maiti (2006) and Manteiga 

et al. (2007, 2008) and references therein. By construction, the small area predictors (18) 

and (20) are non-linear with complex structure and so obtaining a closed form 

expression for their corresponding MSEs is not straightforward. We therefore adopt a 

bootstrap approach when estimating the MSE of (18) and (20). In particular, we use the 

parametric bootstrap method defined by the steps in the following algorithm. Note that 

we use an estimator m̂i  of the area i mean mi  to motivate the algorithm, but it is 

generally applicable to estimators of any set of finite population parameters defined on 

the survey population. 

 

Step 1. Fit the log scale linear mixed model (1) to the positive values yij  in the sample 

data to obtain the estimates . 
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Step 2. Given the estimates 2 2ˆˆ ˆ ˆ( , )T
u e   , generate area-specific random errors from 

a lognormal distribution  * 2ˆ0,i uu LN � , 1, ,i D   and individual level random errors 

from an independent lognormal distribution  * 2ˆ0,ij ee LN � , 1,....., ; 1, ,ij N i D   . 

Step 3. Similarly, fit the logistic linear mixed model (10) to the sample values of the 

binary variable ij  and compute  and îv . 

Step 4. Given  and îv , calculate probabilities   1
* ˆ ˆˆ ˆ ˆexp( ) 1 exp( )T T
ij ij i ij ip  v  v


   x x  ,  

and hence generate independent binary values *
ij , 1,....., ; 1, ,ij N i D    satisfying 

 * *ˆP 1ij ijp   . 

Step 5. Calculate bootstrap population data  * ,ij ijy  x  under the two part model using 

  1̂* * * *
0

ˆ
ij ij i ij ijy x u e  , 1,....., ; 1, ,ij N i D   , (21) 

and then calculate the corresponding value of the area i mean 1
i i ijj i

m N y  


  .  

Step 6. Let  * * ; ; 1, ,s ij iy j s i D   y  denote the vector of bootstrap sample values for 

this population. Using these values, calculate the estimate ˆ im  of the area i population 

mean. 

Step 7. Repeat steps 2 - 6 independently B times to generate the bootstrap distribution 

 ( ) ( )ˆ, ; 1, ,b b
i im m b B     of values for im  and ˆ im .  

Step 8. Calculate the bootstrap estimate of the MSE of the actual sample-based estimate 

ˆ im  of im  as 

 2( ) ( )

1

1
ˆ ˆmse ( )

B
boot b b

i i i
b

m m m
B

 



  . (22) 

 

5. Empirical evaluations 

In this Section we report the results from a limited set of empirical evaluations that 

illustrate the performance of the different estimators of small area means described in 

the preceding sections, and their corresponding MSE estimators. These estimators are set 

out in Table 1. Note that for the commonly used linear mixed model EBLUP, denoted by 

LinEBLUP and which served as the baseline estimator in our simulations, we used the 
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MSE estimator of Prasad and Rao (1990). For the mixture model based MBDE (19) 

(MixMBDE) we followed the Chambers et al. (2011) approach and used a pseudo-

linearization-based MSE estimator. Finally, for the mixture model based indirect 

estimators MixEP (18) and MixEBP (20) we used the parametric bootstrap procedure 

detailed in Section 4. 

 

We used two types of simulations in our empirical evaluations. The first used models to 

simulate population and sample data. In this case, at each simulation, population data 

were first generated under the model and a single sample was then taken from this 

simulated population by stratified simple random sampling without replacement, with 

the small areas defining the strata. The results from these simulations allow one to 

compare different estimators in terms of their sensitivity to model assumptions. The 

second type of simulation was design-based, using population data created by 

nonparametrically bootstrapping a real survey dataset. Here we evaluated estimators in 

the context of their performance under repeated sampling from this population under a 

pre-specified sample design. The results from these simulations allow one to assess the 

robustness of different estimators to the type of model misspecification seen in practice.  

 

We use two measures of the relative performance for the different small area estimation 

methods that were considered in our simulations. These are the average percent relative 

bias 

   1 1

1
ˆ( ) 100

K

i ik ikki
AvRB m mean m K m m 


    

and the average percent relative root mean squared error 

 
2

1

1

ˆ
( ) 100

K ik ik
ki

ik

m m
AvRRMSE m mean K

m




      
   

  

of the estimates m̂ik  generated by an estimation method. Here 1

1

K

i ikk
m K m


  , with 

the subscript i indexing the small areas and the subscript k indexing the K Monte Carlo 

simulations, and with mik  denoting the actual area i mean at simulation k, with predicted 

value m̂ik . Note that in the design-based simulations mik  mi , so i im m . 
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We also investigated the performance of the different MSE estimation methods 

considered in the simulations. Here we calculated the average relative bias of the MSE 

estimation method, defined by 

   1 1

1
ˆ( ) 100

K

i ik iki
AvRB M mean M K M M 


   . 

Here ˆ
ikM  denotes the simulation k value of the MSE estimator in area i, and Mi  denotes 

the actual (i.e. Monte Carlo) MSE in area i. We also consider a secondary performance 

indicator. This is based on the fact that in many applications of small area estimation, 

MSE estimators are used to calculate Gaussian type confidence intervals for the small 

area quantities of interest. Consequently it is interesting to evaluate the coverage 

properties of such intervals. In particular, we focussed on ‘two sigma’ (i.e. nominal 95 

percent) Gaussian intervals, and calculated the average percent coverage 

  1 1/2

1

ˆˆ( ) 2 100
K

ik ik ik
i

k

AvCR M mean K I m m M



     
 

 . 

 
 
Table 1. Definitions of small area predictors used in the simulation studies. 
 

Estimator Description Method of MSE estimation 
Mixture model based method 

MixEBP  Empirical best predictor (20) defined by 
the predicted values (17)  

Bootstrap MSE (22) 

MixEP  Empirical synthetic predictor (18) defined 
by the predicted values (16)  

Bootstrap MSE (22) 

MixMBDE  MBDE estimator (19) defined by a 'fitted 
values' linear model, with the predicted 
values (16) used as the model covariate 

Pseudo-linearization MSE 
estimator of Chambers et al. (2011)

Raw scale linear mixed model based method 
LinEBLUP Standard linear mixed model EBLUP Prasad and Rao (1990) MSE 

estimator 
 

5.1 Model-based simulations 

Model-based simulations are a standard way of illustrating the sensitivity of an estimation 

procedure to variation in assumptions about the structure of the population of interest. The 

model-based simulations reported in this paper are based on population data generated 

under model (1). We choose a population size N  15,000  with D  30 small areas and a 

sample size n  600 and then randomly generated small area population sizes 
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,  1,..., ;i ii
N i D N N   and sample sizes as ( / );i i ii

n N n N n n  . The average 

small area population and sample sizes were 500 and 20 respectively. These were fixed in 

all simulations. Population values of y
ij

  1,..., ; 1,...,ij N i D   were first generated via 

the model log( ) log(5) 0.5log( )ij ij i ijy x u e     with unit level random errors ije  

independently generated from the normal distribution N(0, 0.5e  ), and random area 

effects u
i
 independently generated from the normal distribution N(0, 0.3u  ). The 

covariate values log( )ijx  were generated from the normal distribution N(log(2), 3x  ). 

We generated zero values for ijy  using Poisson sampling, i.e. we set ijy  to zero if the 

realized value of an independently generated uniform variate 1(0, )ijU Uniform P�  was 

such that ij ijU p , where ijp  was computed using (10) with the same fixed effect 

coefficient values as (1) and with an independent area effect drawn from the normal 

distribution with zero mean and a standard deviation of 0.1. The value of P was chosen to 

generate differing numbers of zero values in the population. Thus with P = 0.9, 

approximately 10% of population values of Y are set to zero, while with P = 0.5, this 

increases to 50% and with P = 0.3 it becomes 70%. A random sample of (fixed) size 

20in   was drawn from each area i. We also repeated these simulations with a smaller 

sample of size n  300 and with area sample sizes of 10in  . All simulations consisted of 

K = 1000 independent replications, with the results from these simulations set out in Table 

2. 

 

The percentage average relative bias (AvRB) values in Table 2 indicate that LinEBLUP 

has a significantly larger bias than all three mixture model based small area estimation 

methods (MixEBP, MixEP and MixMBDE). This implies that LinEBLUP may not be 

suitable for semicontinuous data. Restricting ourselves to the mixture model based small 

area estimation methods, we see that the bias values reported for MixEBP are smaller 

than those reported for MixMBDE and MixEP. Further, the bias advantage of MixEBP 

appears larger for smaller sample sizes. For moderate sample sizes ( ni  20) the 

MixMBDE dominates the MixEP in term of bias, but this is not the case for small sample 

sizes ( 10in  ).  Average relative biases increase for all the methods as sample sizes 
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decrease or as the proportion of zero values in the population (i.e. the level of zero 

inflation in the data) increases. Turning now to the percentage average relative root 

mean square errors (AvRRMSE) values in Table 2, we see again that smaller area sample 

sizes or larger proportions of population zeros leads to an increase in the percentage 

average relative root mean square errors of all the methods. Also, LinEBLUP continues 

to record very large values of relative root mean square error as compared to the mixture 

model based methods, reinforcing our previous comment that this method of small area 

estimation appears best avoided when faced with zero inflated skewed data. Among the 

mixture model based methods, the MixEBP dominates the other methods. Overall, this 

predictor appears to offer substantial bias and efficiency gains over the other predictors 

that we considered in our simulations.  

 

Table 2. Percentage average relative bias (AvRB) and percentage average relative RMSE 

(AvRRMSE) of different estimators in model based simulations. 

P MixEBP MixEP MixMBDE LinEBLUP 
 ni  10  ni  20 ni  10 ni  20 ni  10  ni  20 ni  10  ni  20

AvRB 
0.90 0.61 0.50 1.04 1.11 0.94 0.68 27.52 13.06 
0.50 1.02 0.75 1.07 1.22 2.41 1.12 30.18 13.95 
0.30 2.06 1.84 2.29 2.37 2.59 3.09 94.44 21.97 

AvRRMSE 
0.90 20.25 15.07 33.42 31.03 27.11 18.98 243.74 77.88 
0.50 30.53 24.65 38.49 35.61 52.36 36.83 303.73 96.90 
0.30 39.53 34.23 44.68 41.67 62.32 53.92 386.60 112.46 

 

We now turn to an examination of the performance of the MSE estimators associated 

with the different predictors. In particular, we present results from a limited model-based 

simulation study that was carried out to illustrate the empirical performance of the 

different MSE estimators defined in Table 1. Here we only considered a sample size 

n  300 with area specific sample sizes of 10in  . We also only considered two zero 

inflation scenarios, corresponding to P = 0.50 and P = 0.90. These simulations were 

repeated K = 500 times. Note that bootstrap estimation of the MSE in each simulation 

was based on B = 500 bootstrap samples. The results for these simulations are set out in 

Table 3 and correspond to averages over the small areas of the true RMSEs (AvTRMSE) 
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and the estimated RMSEs (AvERMSE), the average percentage relative bias (AvRB), 

and the average percentage coverage rates of nominal 95 per cent Gaussian confidence 

intervals (AvCR) based on the various MSE estimators. 

 

Table 3.  Average true RMSEs (AvTRMSE), average estimated RMSEs (AvERMSE), 

average percentage relative bias (AvRB), and average percentage coverage rates of 

nominal 95 per cent Gaussian confidence intervals (AvCR) generated by MSE estimators 

of the different small area estimators defined in Table 1. Area sample sizes are 10in  . 

Averages are over the small areas.	

 

P MixEBP MixEP MixMBDE LinEBLUP 
AvCR 

0.90 95 95 95 96 
0.50 95 96 96 95 

AvERMSE (AvTRMSE) 
0.90 8.39 (8.67) 14.24 (14.50) 11.92 (11.92) 66.47 (57.20) 
0.50 7.10 (7.22) 9.22 (8.90) 12.50 (12.40) 29.72 (31.09) 

AvRB 
0.90 -2.84 -1.45 0.26 20.31 
0.50 -0.61 4.65 2.14 10.61 

 

From the results reported in Table 3, we see that all methods of MSE estimation lead to 

Gaussian confidence intervals with average actual coverage AvCR at or near nominal 

coverage. Furthermore, the MSE estimators (bootstrap and psuedo linearization) for the 

three mixture model based predictors (MixEBP, MixEP and MixMBDE) all report 

average estimated RMSE values that are close to the true average RMSE values. In three 

out of the four cases of the bootstrap MSE estimator for MixEBP and MixEP we see that 

on average the estimated RMSE values are a little less than the true RMSE values, 

indicating a small downward bias. This is reflected in the average percentage relative 

bias (AvRB) values recorded for these cases. In contrast, the pseudo-linearization MSE 

estimator used with MixMBDE has either virtually no bias or a very small upward bias 

(again reflected in its AvRB values), while the linear model based MSE estimator for 

LinEBLUP seems somewhat unstable, being conservative when the proportion of zeros 

in the population is relatively small, but optimistic when this proportion is high. Overall, 

we can see that the average percentage relative bias (AvRB) values recorded by the MSE 
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estimators for the three mixture model based predictors are all small, in contrast to the 

bias values recorded by the linear model based MSE estimator for LinEBLUP, which are 

much larger. 

 

5.2   Design-based simulation 

Our design-based simulations were based on actual survey data collected in the 1995-96 

Australian Agricultural Grazing Industry Survey (AAGIS) conducted by the Australian 

Bureau of Agricultural and Resource Economics. The survey collects detailed financial 

(e.g. farm business receipts, assets, debt), physical (e.g. farm area and location) and 

socioeconomic information (e.g. age and education of farm operator) from farm 

businesses across Australia. The target population for the survey is broadacre farms 

operating in 3 broad agro-ecological zones, the pastoral zone, the wheat-sheep zone and 

the high rainfall zone. In this study we use the wheat-sheep zone, which consists of 12 

regions (the small areas of interest). In the original sample there were 760 farms from 12 

regions in the wheat-sheep zone. The variable of interest for this study is number of beef 

cattle on hand at the end of the financial year (BEEFCL) and the covariate is land area 

(LAND). 

 

A linear model fit to the sample data was very poor (R2 = 0.18 for the linear regression 

of BEEFCL on LAND). This fit improved slightly (R2 = 0.25) when dummy variables 

corresponding to four out of the five broadacre industries: (i) specialist cropping farms, 

(ii) mixed livestock and cropping farms, (iii) sheep specialists, (iv) beef specialists and 

(v) mixed sheep and beef farms, were included as covariates of the linear model. It is 

noteworthy that the target variable BEEFCL is zero inflated with about 38 per cent of its 

values equal to zero. In particular, out of a total sample of 760 observations there are 286 

zero values. The distribution of region sample sizes and proportion of zeros is given in 

Table 4 and displayed in Figure 1. We used the 474 farms with BEEFCL > 0 and fitted a 

model for BEEFCL in terms of corresponding values of LAND for these farms. 

However, we did not observe any improvement in the model fit (R2 = 0.18) even after 

we included the dummy variables corresponding to industries (i), (iii), (iv) and (v) above 

(R2 = 0.23). 
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Table 4. Region specific sample sizes and population sizes 

Regions 
Population 

size (Ni) 
Sample size 

(ni) 
Sample size 

for y > 0 
Sample size 

for y = 0 
Proportion of 

zeros 
1 3726 85 72 13 0.15 
2 4770 73 57 16 0.22 
3 5918 88 69 19 0.22 
4 1776 44 21 23 0.52 
5 2335 58 30 28 0.48 
6 2929 54 38 16 0.30 
7 1901 47 39 8 0.17 
8 3731 87 79 8 0.09 
9 1450 42 16 26 0.62 
10 4090 63 26 37 0.59 
11 4960 76 21 55 0.72 
12 1983 43 6 37 0.86 

Total 39569 760 474 286 0.38 
 

 

A careful examination of the sample data indicates that the marginal distributions of 

both BEEFCL and LAND are highly skewed and there is clear evidence of non-linearity 

in their relationship (see the histograms displayed in Figure 2). When a linear model 

based on the logarithm of LAND and the four industry dummy variables referred to 

earlier was fitted to the logarithm of BEEFCL, the fit improved (R2 = 0.41). The usual 

linear model assumptions of normality, homoscedasticity, etc., were also satisfied. As a 

consequence it was decided that a log scale linear model was appropriate for positive 

values of BEEFCL, with the covariates for the fixed part of the model defined by the 

logarithm of LAND and these four industry dummy variables. Given that the residuals 

from this model also displayed significant between region variability, a region random 

effect was included in the model, i.e. we fitted model (1). This improved the R2 value to 

just under 50%, with all model coefficients highly significant. Furthermore, when we 

fitted the mixed logistic model (10) to the binary indicator for BEEFCL > 0 in these 

data, using the same covariates as in (1), the dummy variables corresponding to 

industries (i) and (v) and the logarithm of LAND were significant, with some evidence 

of overdispersion ( 2 0.8 69ˆ 72  , with a standard deviation of 0.93418). Finally, we 

carried out a crude check of whether the random effects in (1) and (10) might be 
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correlated by fitting a logistic model to the same binary indicator for BEEFCL > 0 but 

this time just using the EBLUPs from (1) as the model covariates. The fit of this 

diagnostic model was significant, with a Generalized R2 of 14%, indicating potential 

correlation between the random effects in (1) and the random effect in (10). However, in 

our simulations we ignored this and proceeded on the basis of a working model defined 

by a zero correlation between these two sources of variability. 

 

 

  
Figure 1. Distribution of regional sample sizes (left side) and regional proportions of 
zero observations (right side). 
 

  
Figure 2. Histogram of BEEFCL (> 0) on raw scale (left plot) and on log scale (right). 
 

We then used these AAGIS sample data to generate a synthetic population of 

N  39,569  farms by re-sampling the original AAGIS sample of n  760 farms with 

probability proportional to a farm’s sample weight. Once created, this fixed population 
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was repeatedly sampled using stratified random sampling with regions corresponding to 

strata and with stratum sample sizes the same as in the original sample. Table 5 shows 

the average over the 12 regions of the percentage relative bias and percentage relative 

root mean squared error values of the different small area estimation methods based on 

K = 1000 independent stratified samples taken from this synthetic population.  

 

Table 5. Region specific values of the percentage relative biases (RB) and percentage 

relative root mean squared errors (RRMSE) for different small area predictors. 

Regions 
MixEBP MixEP MixMBDE LinEBLUP MixEBP MixEP MixMBDE LinEBLUP

RB RRMSE 

1 4.23 47.87 93.87 6.68 11.52 48.07 294.67 16.50
2 17.71 12.24 4.02 33.74 24.39 14.23 31.51 53.07
3 9.31 27.50 25.30 0.64 17.95 27.99 56.46 15.45
4 4.65 103.76 73.10 15.91 21.46 106.19 93.72 36.24
5 31.94 24.69 9.75 8.86 37.56 29.38 68.47 37.32
6 26.64 13.86 1.90 15.18 31.10 15.87 42.77 22.54
7 2.27 52.82 33.43 5.90 15.08 53.12 165.65 23.14
8 33.86 61.03 158.48 153.60 35.87 61.32 200.18 193.61
9 24.05 494.56 74.46 2.46 41.10 497.60 249.22 9.20
10 8.50 123.55 14.82 2.03 21.86 124.83 245.83 21.04
11 12.99 30.87 0.98 16.22 26.76 32.36 45.52 35.46
12 88.13 212.22 68.27 557.25 114.47 229.63 159.76 672.70

Average 22.02 100.41 46.53 68.21 33.26 103.38 137.81 94.69
Median 15.35 50.34 29.37 12.02 25.58 50.59 126.74 29.30

 

From the results set out in Table 5 we see that the MixEBP predictor has generally 

smaller average bias and smaller average RRMSE than the other three predictors 

considered here, while the synthetic type predictor MixEP performs poorly, recording 

the worst values for RB in 7 out of the 12 regions. This is not unexpected since the log 

scale linear mixed model underpinning MixEP almost certainly does not hold exactly in 

the synthetic AAGIS population. Furthermore, since MixEP does not explicity allow for 

heterogeneity between regions, it is sensitive to bias induced by region to region 

variability in the relationship between BEEFCL and LAND. On the other hand, even 

though LinEBLUP is based on a clearly inappropriate model for BEEFCL, its 

performance as a predictor is reasonable in most cases, reflecting the fact that it includes 
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a between area adjustment (albeit on the raw scale rather than on the log scale). We also 

see that although the mixture model based direct estimator MixMBDE has better RB 

values than MixEP, its RRMSE tends to be large, reflecting the fact that it is a direct 

estimator. The large relative bias and relative RMSE of MixMBDE and LinEBLUP in 

region 8 is noteworthy. In this region the proportion of zero values is small, and the 

positive BEEFCL values highly skewed with many outliers. Here LinEBLUP performs 

badly because its assumed linear model is a poor fit to these skewed data, while 

MixMBDE fails because as a direct estimator it is sensitive to the presence of outliers. 

Overall, it is clear from the results in Table 5 that the mixture model based predictor 

MixEBP performed better in our design based simulations than its competitors, both in 

terms of relative bias and relative root mean squared error. 

 

We now consider the design-based performance of the parametric bootstrap procedure 

used to estimate the MSE of MixEBP in these simulations. Here, for each sample from 

the fixed synthetic population, the bootstrap MSE estimate was based on B = 100 

bootstrap samples. The average RMSE values generated by these region-specific 

bootstrap MSE estimates for MixEBP are shown in Figure 3, as is the corresponding 

average of the true design-based RMSE for this predictor. We see that the value of the 

true design-based RMSE for region 8 is very high, while the corresponding bootstrap-

based RMSE estimate tends to be low. As noted earlier, this region has highly skewed 

data, with extreme values persisting even after a logarithmic transformation. This 

generated large values for the true RMSE of MixEBP. This behaviour was not replicated 

by the parametric bootstrap, as its bootstrap population data were generated under a 

distributional assumption that did not allow for such outliers. This raises questions about 

outlier robust MSE estimation that are beyond the scope of this paper however. 

Generally, we see that in the remaining regions, where the log scale linear model 

assumptions for BEEFCL are more appropriate, the bootstrap MSE estimator tracks the 

actual MSE of MixEBP reasonably well and we are lead to the same conclusions about 

this MSE estimator as in the model based simulation study presented in Section 5.1. 
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Figure 3. Region-specific values of true design-based RMSE (solid line) and average 
estimated RMSE (dashed line) for the MixEBP obtained in the design-based simulations 
using the AAGIS data. 
 

6.  Conclusions 

In this paper we explore small area estimation for semicontinuous variables, where the 

data are skewed and contain a substantial proportion of zeros Our approach assumes a 

mixture or two part random effects model, and we propose an empirical best predictor 

estimator for small area means for this case. We also propose a parametric bootstrap 

estimator for its MSE. Empirical results reported in the paper support the conclusion that 

the proposed mixture model based empirical best predictor (MixEBP) is less biased and 

can be more efficient than both the corresponding synthetic type predictor (MixEBP) as 

well as the model based direct type estimator (MixMBDE) based on the 'fitted values' 

defined by the assumed mixture model. These results also suggest that ignoring the 

skewed and semicontinuous nature of the data and using a standard mixed linear model-

based EBLUP estimator (LinEBLUP) can lead to biased and unstable estimates. We note 

that, provided the mixture model assumptions are reasonable for the small area data, the 

proposed parametric bootstrap procedure seems to work well. An application to real 

agricultural survey data provides some empirical support for these observations. 

 

It should be noted that we assume a log scale linear mixed model for non-zero skewed 

data. Although the log transformation is widely used in practice for such data, it is not 
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the only appropriate transformation to linearity, and other transformations (e.g. square 

root) can be explored in this context. We also assume that zero inflation in the data can 

be adequately modelled via a mixture of two independent components, a Bernoulli 

variable and a Lognormal variable. As noted earlier, this is not appropriate if in fact the 

zero values are essentially due to truncation, and indeed in the AAGIS data that we used 

in our design-based simulations, there is some evidence that the random area effect in 

the linear mixed model (1) and the random area effect in the logistic mixed model (10) 

are correlated. Furthermore, other models for zero inflated skewed data, e.g. those based 

a generalized linear mixed model with underlying Gamma or Poisson distributions are 

also possible. We are currently working on these issues. 
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