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Summary 

The purpose of this paper is to provide a critical review of the main advances in small area 

estimation (SAE) methods in recent years. We also discuss some of the earlier developments, 

which serve as a necessary background for the new studies. The review focuses on model 

dependent methods with special emphasis on point prediction of the target area quantities, 

and mean square error assessments. The new models considered are models used for discrete 

measurements, time series models and models that arise under informative sampling. The 

possible gains from modeling the correlations among small area random effects used to 

represent the unexplained variation of the small area target quantities are examined. For 

review and appraisal of the earlier methods used for SAE, see Ghosh and Rao (1994). 
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1  Introduction 

     Small area estimation (SAE) is a topic of great importance due to the growing demand for 

reliable small area statistics even when only very small samples are available for these areas. 

Over the years, many statistical agencies have introduced vigorous programs to meet this 

demand. Extensive research on the theoretical and practical aspects of SAE is carried out and 

many international conferences and workshops are held in order to share the results of this 

research effort. Interest in small area estimation methods has further enhanced in recent years 

due to the tendency of many European countries to base future censuses on administrative 

record systems. Recognizing the inaccuracies of the administrative data and the fact that even 

the richest records cannot cover all the detailed information required for small census tracts, 

the idea is to test, correct and supplement the administrative information by sample data.  
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     The problem of SAE is twofold. First is the fundamental question of how to produce 

reliable estimates of characteristics of interest, (means, counts, quantiles, etc.) for small areas 

or domains, based on very small samples taken from these areas. The second related question 

is how to assess the estimation error. Note in this respect that except in rare cases, sampling 

designs and in particular sample sizes are chosen in practice so as to provide reliable 

estimates for aggregates of the small areas such as large geographical regions or broad 

demographic groups. Budget and other constraints usually prevent the allocation of 

sufficiently large samples to each of the small areas. Also, it is often the case that domains of 

interest are only specified after the survey has already been designed and carried out. Having 

only a small sample (and possibly an empty sample) in a given area, the only possible 

solution to the estimation problem is to borrow information from other related data sets. 

Potential data sources can be divided into two broad categories: 

� Data measured for the characteristics of interest in other ‘similar’ areas, 

� Data measured for the characteristics of interest on previous occasions. 

     The methods used for SAE can be divided accordingly by the related data sources that they 

employ, whether cross-sectional (from other areas), past data or both. A further division 

classifies the methods by the type of inference: ‘design based’, ‘model dependent’ (with sub-

division into the frequentist and Bayesian approaches), or the combination of the two. In what 

follows I describe briefly two real applications of SAE that illustrate what the areas or 

domains might be, the quantities of interest and the kind of concomitant variables that are 

used for estimation. Other examples are mentioned in subsequent sections. 
 

A- Estimation of illicit drug use- Over the last six years, the Research Triangle Institute 

(RTI) in the U.S.A. is engaged in producing small area estimates of drug use for all the 50 

states and the District of Columbia. Estimates of rates of use (prevalence), numbers of users 

and other measures related to the use of illicit drugs, alcohol and tobacco are derived for 32 

demographic cells defined by age, race and sex within 300 regions (sub-states), based on the 

National Household Survey on Drug Abuse (NHSDA). The total sample size of the 1999 

survey is about 67500 persons, with an average of 75 persons per age group. The estimates 

are derived by use of logistic models that contain 12-25 regressor variables with fixed 
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coefficients and state and sub-state random effects with age group specific elements as the 

independent variables (see Section 4.) The regressor variables comprise person and block 

group level demographic variables, census tract level demographic and socio-economic status 

variables and county level rates of drug-related arrests and deaths. The auxiliary information 

is available from various administrate records. For a detailed description of the NHSDA and 

the other data sources, the modeling process and estimates released, see the web site: 

http://www.samhsa.gov/oas/NHSDA/1999/Table%20of%20Contents.htm. The article by 

Folsom et al. (1999) expands on methodological issues. 
 

B- Estimation of Small Area Employment- The Bureau of Labor Statistics (BLS) in the 

U.S.A. is running a monthly survey of businesses within states, called the Current 

Employment Statistics (CES) survey (also known as the payroll survey). The survey is 

designed to produce monthly estimates of employment for major industry divisions within 

states and large metropolitan statistical areas. Monthly estimates for major industry divisions 

are, however, desired also for about 320 local labor market areas, defining a total of over than 

2500 nonempty small domains, with many of the domains having only 10 or fewer 

responding units. The direct estimates obtained from the CES are therefore very erratic. 

Administrative data of total employment within the same domains are obtained from state 

unemployment insurance reports, collected for virtually all the businesses, but these reports, 

known as the ES202 data become available only with a time lag of 6-12 months. Recent 

studies (Harter et al. 1999) suggest that the direct small domain CES estimates can be 

improved by estimates of the form,  

           employment in CES sample + non-sample predicted employment + “add-ons”.  

The first component of this estimate is the total measured employment for businesses in the 

CES sample in the month of investigation. The second component is a Ratio predictor of total 

employment in non-sample businesses of the form, � RXE ss
ˆˆ ~~   where sX ~  denotes the small 

domain ES202 benchmark employment for non-sample businesses and �R̂  is the ratio 

between the state-wide employment estimated from the CES sample and the state-wide 

employment obtained from the ES202 data in the corresponding industry. This predictor is an 

example of a ‘synthetic estimate’  (see Section 2) in that the ratio between the CES and ES202 

estimates at the state level is applied to the ES202 data locally. The supplemental “add-ons” 
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adjust for employment that cannot be assigned to the industry division through specific firms. 

Enhancements to the above small domain estimates are currently investigated. 

     The purpose of this paper is to discuss some of the recent developments in SAE. The main 

emphasis is on general methodological issues rather than on detailed technical solutions. For 

these, as well as some recent applications of SAE, the reader is referred to the new review 

article by Rao (1999), which is an update of the more extensive review of Ghosh and Rao 

(1994). Another recent review of SAE methods is the article by Marker (1999).  

     Section 2 illustrates the important role of administrative information for SAE and 

introduces the family of synthetic regression estimators. Section 3 reviews several cross-

sectional models in common use for continuous measurements. These models are extended to 

handle discrete measurements in Section 4 and to account for time series relationships in 

Section 5. The analysis in Sections 3-5 assumes implicitly that the sampling process can be 

ignored for inference. Section 6 considers the case of informative sampling under which the 

sample data no longer represent the population model. Section 7 examines the importance of 

modeling the correlations among the random area effects. I conclude with brief remarks in 

Section 8. 
 

2  The importance of concomitant administrative data, synthetic estimation 

     In this and the next three sections we assume for convenience that the sample is selected 

by simple random sampling without replacement. The possible implications of the use of 

complex sampling schemes with unequal selection probabilities are discussed in Section 6. 

Let y  define the characteristic of interest and denote by ijy  the outcome value for unit j 

belonging to area i , iNjmi ...1;...1   , where iN  is the area size. Let msss �� ...1  

signify the sample where is  of size in  defines the sample observed for area i . Notice that the 

sni ’  are random unless a separate sample with fixed sample size is taken in every area. 

Suppose that the objective is to estimate the true area mean ¦ � iN

j iiji NyY
1

/ . If no auxiliary 

information is available, the ordinary direct design unbiased estimator and its design variance 

over the randomization distribution (the distribution induced by the random selection of the 

sample with the population values held fixed), are given by 
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 where ¦ �� � i
i

N
j iiij NYyS 1

22 )1/()(
~ . Clearly, for small in  the variance will be large unless the 

variability of the y-values is sufficiently small. Suppose, however, that in addition to 

measuring y , values ijx  of p concomitant variables )()...1( pxx  are also known for each of 

the sample units and that the row area means 
1

/iN

i ij ij
X x N� ¦  are likewise known. Such 

information may be obtained from a recent census or some other administrative records, see 

the examples in the introduction. In this case, a more efficient design unbiased estimator is 

the regression estimator,  
 

                                  )1()|(  ;  )’( 22*
,, iiiiregDiiiiireg RSnyVxXyy � �� E                           (2.2) 

where i
n
j iji nxx i /1¦ � , and iE  and iR  are correspondingly the vector of regression 

coefficients and the multiple correlation coefficient between y  and )()...1( pxx  computed 

from all the iN  measurements in area i . Thus, by use of the concomitant variables, the 

variance is reduced by the factor )1( 2
iR� , illustrating very clearly the importance of using 

auxiliary information with good prediction power in SAE. Other well-known uses of auxiliary 

information for direct estimation are the Ratio estimator and Poststratification.  

     The problem with the use of iregy ,  is that in practice the coefficients iE  are seldom known. 

Replacing iE  by its ordinary least square estimator from the sample is  is not effective 

because of the small sample size. If, however, the si ’E  are known to be ‘similar’  across the 

small areas and likewise for the ‘intercepts’  )’( iii XY E� , a more stable estimator is the 

synthetic regression estimator bXbxyy i
syn

ireg ’)’(, �� , where 

¦¦ ¦ �� � m
i i

m
i

n
j ijij nxyxy i

11 1 /)’,()’,(  are the global sample means and 

¦ ¦ ��¦ ¦ �� � �
	

� � m
i

n
j iijiij

m
i

n
j iijiij

ii yyxxxxxxb 1 1
1

1 1 ))((])’)(([  is a pooled estimator computed 

likewise from all the samples is . In the special case of a single concomitant variable and 

‘zero intercepts’ , syn
iregy ,  is replaced by the synthetic Ratio estimator xyXy i

syn
iratio /,  . This is 

basically the ratio predictor sE~ˆ  used in Example B of the introduction. 
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     The term “synthetic” refers to the fact that an estimator computed from a large domain is 

used for each of the separate areas comprising that domain assuming that the areas are 

‘homogeneous’  with respect to the quantity that is estimated. Thus, synthetic estimators 

already borrow information from other ‘similar areas’ . Another, even simpler example is the 

use of the global mean y  for estimating each of the small area means when no auxiliary 

information is available. The article by Marker (1999) contains a thorough discussion of 

synthetic estimators with many examples. Ghosh and Rao (1994) provide model-based 

justifications for some of the synthetic estimators in common use. 

     The prominent advantage of synthetic estimation is the potential for substantial variance 

reduction but it can lead to severe biases if the assumption of homogeneity within the larger 

domain is violated. For example, the (unconditional) design bias of the synthetic regression 

estimator is approximately )’()( , BXYBXYyBias ii
syn

iregD ���# , where Y  and X  are the true 

large domain means of y  and x  and B  is the corresponding regression coefficient. The bias 

can be large unless the intercept and slope coefficients are similar across the areas. Note again 

that the design bias is computed with respect to the randomization distribution (repeated 

sampling). Bias reduction under this distribution (but at the expense of increased variance) 

can be achieved by the use of composite estimators. A composite estimator is a weighted sum 

of the area direct estimator (has small or no bias but large variance) and the synthetic 

estimator (has small variance but possibly large bias). Thus, denoting more generally by iT  

the small area characteristic of interest, a composite estimator has the general form, 

                                                     syn
iiiiicom ww TTT ˆ)1(

~ˆ
, ��                                                   (2.3) 

where iT~  is the direct estimator and syn
iT̂  is the synthetic estimator. The question underlying 

the use of composite estimators is the choice of the weights iw . Ideally, the weights should be 

selected so as to minimize the mean square error (MSE) but this is problematic since the 

MSE of the synthetic estimator is usually unknown because of its bias. One simple alternative 

therefore is to set )/( iiii Nnfw    so that more weight is given to the direct unbiased 

estimator as the sampling fraction if  increases. However, the sampling fractions are 

ordinarily very small and hence the use of this weight practically implies the use of the 

synthetic estimator, irrespective of the variability of the outcome variable. Other plausible 
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specifications of the weights are discussed in Ghosh and Rao (1994), Thomsen and Holmoy 

(1998) and Marker (1999). Optimal choices of the weights under mixed linear models are 

considered in Section 3. 

     A common feature of the estimators considered in this section is that they are ‘model free’  

in the sense that no explicit model assumptions are used for their derivation, and the variance 

and bias are computed with respect to the randomization distribution. The article by Marker 

(1999) contains a historical survey of design-based estimators with many references. In the 

rest of the paper I consider model dependent estimators. 
 

3  Cross-sectional models for continuous measurements 

     SAE is widely recognized as one of the few problems in survey sampling where the use of 

models is often inevitable. The specification of an appropriate working model permits the 

construction of correspondingly efficient estimators and the computation of variances and 

confidence intervals, which may not be feasible under the randomization distribution. (With 

the very small sample sizes often encountered in practice, large sample normal theory does 

not apply.) The models reviewed in this and the next sections are ‘mixed effects models’ , 

containing fixed and random effects. Some special features of the application of these models 

for SAE problems are summarized at the end of the section. 

     One of the simplest models in common use is the ‘nested error unit level regression 

model’ , employed originally by Battese et al. (1988) for predicting areas under corn and 

soybeans in 12 counties of the state of Iowa in the U.S. Suppose that the values of 

concomitant variables )()...1( pxx  are known for every unit in the sample and that the true area 

means of these variables are also known. Denoting by ijx  the concomitant values for unit j  

in area i , the model has the form, 

                                                         ijiijij uxy HE �� ’                                                      (3.1) 

where iu  and ijH  are mutually independent error terms with zero means and variances 2
uV  and 

2
V  respectively. The random term iu  represents the joint effect of area characteristics that 

are not accounted for by the concomitant variables. (In Battese et al. 1988 ijy  is the reported 

number of hectares of corn (or soybeans) in sample segment j  of county i  and 
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),(’ 21 ijijij xxx   denotes the numbers of pixels classified as corn and soybeans from satellite 

pictures. The satellite information is known for both the sample and nonsample segments.)      

Under the model the true small area means are iiii uXY HE �� ’  but since 

¦ # � iN
j iiji N1 0/HH  for large iN , the target parameters are ordinarily defined to be 

iii uX � ET ’ . For known variances ),( 22 �VV u , the Best Linear Unbiased Predictor (BLUP) 

of iT  under the model is,  

                                          GLSiiGLSiiiii XxXy EJEJT '̂)1(]ˆ)'([ˆ ����                                   (3.2) 

where GLSÊ  is the (optimal) Generalized Least Square (GLS) estimator of E  computed from 

all the observed data and )//( 222
iuui nVVVJ � . For areas k  with no samples, 

GLSkk X ET '̂ˆ  . The 

coefficient iJ  is a “shrinkage factor” providing a trade-off between the (usually large) 

variance of the regression predictor GLSiii xXy Ê)'( �� , and the bias of the synthetic estimator 

GLSiX Ê'  for given value iT . (The synthetic estimator and hence the BLUP are biased when 

conditioning on iT  or equivalently on iu . The two predictors are unbiased unconditionally 

under the model since E’)( ii XYE  . ) The predictor iT̂  has the structure of the composite 

estimator icom,T̂  defined by (2.3). However, the weight iJ  is chosen in an optimal way under 

the model so that it accounts for the magnitude of the differences between the area effects iu . 

Thomsen (in Ghosh and Rao, 1994), and Thomsen and Holmoy (1998) comment that 

predictors of the form (3.2) tend to over-estimate area means with small random effects and 

under-estimate area means with large effects such that the variation between the predictors is 

smaller than the variation between the true means. This is clear considering the structure of 

these predictors but it raises the question of the appropriate loss function in a particular 

application. 

     The BLUP iT̂  is also the Bayesian predictor (posterior mean) under normality of the error 

terms and diffuse prior for E . In practice, however, the variances 2
uV  and 2�V  are seldom 

known. A common procedure is to replace them in the BLUP formula by standard variance 

components estimates like Maximum Likelihood Estimators (MLE), Restricted MLE 

(REML) or Analysis of Variance (ANOVA) estimators. The resulting predictors are known as 
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the Empirical BLUP (EBLUP) or Empirical Bayes (EB) predictors, see, for example, Prasad 

and Rao (1990) for details. Alternatively, Hierarchical Bayes (HB) predictors can be 

developed by specifying prior distributions for E  and the two variances and computing the 

posterior distribution ),|( Xyf iT  given all the observations in all the areas, see, e.g., Datta 

and Ghosh (1991). The actual application of this approach can be quite complicated since the 

posterior mean, ),|( XyE iT  has generally no close form. Recent studies use the Gibbs sampler 

(Gelfand and Smith, 1990) or other Markov Chain Monte Carlo (MCMC) techniques for 

stochastic simulation. The HB approach is very general and also very appealing since it 

produces the posterior variances associated with the point predictors (see below), but it 

requires in addition to the specification of the prior distributions good computing skills and 

intensive computations.  

     A somewhat different model from (3.1) discussed extensively in the literature is the ‘area 

level random effects model’ , which is used when the concomitant information is only at the 

area level. Let ix  represent this information. The model, used originally by Fay and Herriot 

(1979) for the prediction of mean per capita income (PCI) in small geographical areas within 

counties (less than 500 persons) is defined as, 
 

                                                   iiiiii uxe � � ETTT ’;
~

                                          (3.3) 

where iT~  denotes the direct sample estimator (for example, the sample mean iy ), so that ie  

represents in this case the sampling error, assumed to have zero mean (see comment below) 

and known design variance 2)( DiiD eVar V , ( 2*
iS  if iT~ = iy , equation 2.1). The model (3.3)  

integrates therefore a model dependent random effect iu  and a sampling error ie  with the two 

errors being independent. (In Fay and Herriot iT~  is the direct sample estimate of mean PCI in 

‘local government unit’  i  and ix  contains data on average county PCI, tax returns and values 

of housing. All the variables are measured in the log scale.) The BLUP under this model is,  

                            )ˆ’
~

(ˆ’ˆ’)1(
~ˆ

GLSiiiGLSiGLSiiiii xxx ETJEEJTJT �� ��                                (3.4) 

which again is a composite estimator with weight )/( 222
uDiui VVVJ � . In practice, the 

variances 2
uV  and 2

DiV  are usually unknown and they are replaced by sample estimates, 
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yielding in turn the corresponding EBLUP predictors. Arora and Lahiri (1997) show that if 

the variances 2
DiV  are considered random with a non-degenerate prior, then for known E  and 

2
uV  the Bayesian predictor has a smaller MSE than the corresponding BLUP. 

 

Comment: The target area quantity iT  is often a nonlinear function of the area mean iY  so 

that the direct estimator iT~  is a nonlinear function of the sample mean iy . For example, Fay 

and Herriot (1979) use the log transformation for estimating area per capita incomes. The 

problem arising in the case of nonlinear transformations is that the assumption 0)(  iD eE  

(design unbiasedness of the direct estimator) may not hold even approximately if the sample 

sizes are too small, requiring instead the use of Generalized Linear Models (see Section 4).  
 

     As defined in Section 1, an important aspect of SAE is the assessment of the prediction 

errors. This problem does not exist in principle under the full Bayesian paradigm, which 

produces the posterior variances of the target quantities around the HB predictors (the 

posterior means). However, as already stated, the implementation of this approach requires 

the specification of prior distributions and the computations can become very intensive. 

Assessment of the prediction errors under the EBLUP and EB approaches is also complicated 

because of the added variability induced by the estimation of the model parameters. To 

illustrate the problem, consider the model defined by (3.3) and suppose that the design 

variances 2
DiV  are known. (Stable variance estimators are often calculated as iDDi n/ˆˆ 22 VV   

with 2
DV̂  computed from all the data or obtained from other sources. The estimators 2

DiV̂  are 

treated as the true variances.) If E  and 2
uV  were also known, the variance of the BLUP (or 

HB under normality assumptions) is, iDiiui gVar 1
22 )],(̂[   VJEVT . Under the EBLUP and EB 

approaches, E  and 2
uV  are replaced by sample estimates and a na ve variance estimator is 

obtained by replacing 2
uV  by 2

ûV  in ig1 . This estimator ignores the variability of 2
ûV  and 

hence underestimates the true variance. Prasad and Rao (1990), extending the work of Kackar 

and Harville (1984) approximate the true prediction MSE of the EBLUP under normality of 

the two error terms and for the case where 2
uV  is estimated by the ANOVA (fitting of 

constants) method as,  
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                      � 222 ])̂,ˆ(ˆ[)]ˆ,ˆ(ˆ[ iuiui EMSE TEVTEVT �ig1 ig2 + )ˆ( 2
3 ui Varg Vu                          (3.5) 

where  ig2  )ˆ(’)1( 2
iGLSii xVarx EJ� and  ])/([ 3224

3 uDiDiig VVV � . The term ig2  is the excess in 

MSE due to estimation of E  and )ˆ( 2
3 ui Varg Vu  is the excess in MSE due to estimation of 

2
uV . The neglected terms in the approximation are of order )/1( mo with m  denoting the 

number of sampled areas. Note that the leading term in (3.5) is 2
1 Diiig VJ  such that for large 

m  and small values iJ , )
~

()]ˆ,ˆ(̂[ 22
iDDiui VarMSE TVEVT  ��  illustrating the possible gains from 

using the model dependent predictor. Building on the approximation (3.5), Prasad and Rao 

(1990) develop a MSE estimator with bias of order )/1( mo  as, 
 

                           )]ˆ,ˆ(̂[ˆ 2 EVT uiESM �)ˆ( 2
1 uig V )ˆ( 2

2 uig V + )ˆ(ˆ)ˆ(2 22
3 uui raVg VV u                        (3.6) 

where )ˆ( 2
ukig V  is obtained from kig  by substituting 2

ûV  for 2
uV , k=1,2,3. A similar estimator 

is developed for the nested error regression model (3.1). Lahiri and Rao (1995) show that the 

estimator (3.6) is robust to departures from normality of the random area effects iu  (but not 

the sampling errors ie ).  

     Datta and Lahiri (2000) extend the results of Prasad and Rao to other variance components 

estimators and general linear mixed models of the form, 
 

                                            iiiiiii eeuZXY � �� [E ,    mi ...1 .                                     (3.7) 

In (3.7), iY  is a vector observation of order in , E  is a vector of fixed coefficients, iZ  is a 

fixed matrix of order dni u  and iu  and ie  are independent vector random effects and 

residual terms of orders d  and in  respectively. It is further assumed that 

),(~,),0(~ iniidi oNeGNu
i

6 , with iG  and i6  being functions of some vector parameter O . 

The model contains as special cases familiar models used for SAE like the models defined by 

(3.1) and (3.3), the model considered by Moura and Holt (1999) that permits the regression 

coefficients in (3.1) to depend stochastically on area level auxiliary variables, and the two-

folded nested error regression model studied by Stukel and Rao (1999). Explicit expressions 

of the BLUP (or posterior means) of linear combinations of the fixed and random effects and 

their variances (posterior variances) are derived for the case of known O using results from 
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Henderson’ s (1975). The authors develop MSE estimators with bias of order )/1( mo  for the 

EBLUP obtained when estimating O  by MLE or REML.  
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    The MSE approximations discussed so far are under the frequentist approach. The use of 

the EB approach again requires appropriate measures of errors. Kass and Steffey (1989) 

develop first and second order EB MSE estimators for a general two-stage hierarchical model 

by approximating the posterior distribution of the hyper-parameters indexing the second stage 

model ( E  and O  in the notation of 3.7) by the normal distribution. Singh et al. (1998) study 

modifications to the Kass-Steffey approximations and propose Monte Carlo alternatives to 

some of the frequentist and EB measures of error.  
 

Comment: The MSE approximations under both the frequentist and the EB approaches 

involve bias corrections of desired order and as a result, the use of these approximations 

improves the coverage properties of standard confidence intervals for the small area 

quantities. However, as found empirically by Singh et al. (1998), the addition of bias 

corrections can inflate the variance of the MSE approximations to a degree where it offsets 

the reduction in the bias. 
 

     We conclude this section by pointing out the special features of the use of mixed effects 

models for SAE. The most prominent feature is that in SAE the target parameters are the 

realized (actual) small area quantities, which renders the problem into a prediction problem. 

In other familiar applications of these models like in animal breeding or in education, the 

prime interest is in inference on the fixed regression coefficients and the variance 

components, which is only an intermediate step in SAE. The fact that the target quantities in 

SAE are the random area realizations complicates the evaluation of the prediction MSE very 

substantially since the unknown variance components are replaced by sample estimates. 

Indeed, the major developments in evaluation of prediction MSE for mixed effect models 

over the last decade have originated and evolved in the SAE context.  

     A second important feature of the application of mixed effects models for SAE is the kind 

of data available for analysis. On the one hand there often exists a large volume of 

administrative data at the unit and/or the area level. On the other hand, agencies collecting the 

data are often reluctant to release the micro data for secondary analysis so that the data 

available on the response variable consists of only the direct estimators that are subject to 

sampling errors that need to be modeled. The sampling designs used to select the sample may 
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dictate the use of weighted estimators, which further complicates the modeling process and 

the evaluation of the prediction errors. This issue is discussed in section 6.  

4  Models for discrete measurements 

     Recent research in SAE with some real breakthroughs focuses on situations where the 

measurements ijy  are categorical or discrete and the small area quantities of interest are 

proportions or counts. In such cases, the mixed linear models considered before are no longer 

applicable. MacGibbon and Tomberlin (1989) consider the following model for the case of 

binary measurements, 

                          
.),0(~;’)]1/(log[)(log

);1()|0Pr(;)|1Pr(
2
uiiijijijij

ijijijijijij

Nuuxpppit

ppyppy

VE � � 
�    

                    (4.1) 

The outcomes ijy  are assumed to be conditionally independent and likewise for the random 

effects iu . The purpose is to predict the true area proportions ¦ � iN

j iiji Nyp
1

/ . In an 

application considered by the authors ijy  defines labour force participation for sample 

individual j  in county i  and ijx  defines ‘sex’  and ‘age’ . Assuming a diffuse prior for E  and 

known variance )(2
iu uVar V , the authors approximate the joint posterior distribution of E  

and }...1,{ miui   given the data by the multivariate normal distribution with mean equal to 

the mode of the true posterior and covariance matrix equal to the inverse information matrix 

evaluated at the mode. Denoting by E~  and iu~  the respective modes, ijp  is estimated as 

1)}]~~
’(exp{1[~ ���� iijij uxp E  and for small sampling fractions ii Nn / , ¦ � iN

j iiji Npp 1 /~ˆ . 

The case of unknown 2
uV  is treated by repeating the same analysis with 2

uV  set to its MLE, 

thus yielding the corresponding EB predictor. A naive estimator for the variance of the 

empirical predictor is obtained by use of Taylor expansion but this estimator ignores the 

variance component resulting from the estimation of 2
uV . Farrell, MacGibbon and Tomberlin 

(1997) show that the naive variance estimator can be improved by use of a parametric 

Bootstrap procedure proposed by Laird and Louis (1987). 

     The model defined by (4.1) has been studied more recently by Jiang and Lahiri (1998). 

The authors derive the Best Predictor (BP) of )(log ijpit  for given values ( EV ,2
u ) as 
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¦ �� in

j ijiijij yuExpit
1

)|(’)(ĝlo E , with the conditional expectation obtained as a ratio of two one-

dimensional integrals. The estimator has generally no closed form because of the complex 

integration involved, but for the special case where iij xx   for all j  and fo2
uV , 

]’)([log)|( Eijiii xyityuE �# . Notice that in this case )(ĝlo ijpit  )yit( ilog . An Empirical 

BP (EBP) is obtained by replacing E  and 2
uV  by sample estimates obtained by the method of 

moments. An approximation to the MSE of the EBP with bias of order )/1( mo  is developed. 

     Malec et al. (1997) also consider Bernoulli outcomes imposing the same probabilities of 

‘ones’  for all individuals j  in area i  belonging to the same socio-economic/demographic 

class k  and the same ‘cluster’  c  (homogeneous geographic unit). Specifically, the model 

assumes, 

                          kcijkc py   )1Pr( ;  ckkc xpit E’)(log  ,  ),(~ *KE cc zN                             (4.2) 

where kx  is a vector of regressor values defining the thk �  class and cz  represents cluster 

level covariates. The random coefficients cE  are independent between the clusters. The 

authors compare several predictors of the totals ¦ ¦ ¦ � 
c k

N

j ijkci
ikc y
1

T  where ikcN  is the 

number of individuals in class k belonging to cluster c of area i . Model dependent predictors 

are derived by evaluation of the conditional expectations ),|( xypE kc . For application of the 

Hierarchical Bayes (HB) approach, the hyper-parameters ),( *K  are assigned the improper 

prior constant),(  *Kp . The computation of the HB predictors is carried out by use of the 

Gibbs sampler. The authors consider also several ‘time saving’  approximations to the HB 

predictors, obtained by replacing some of the conditional densities underlying the use of the 

Gibbs sampler by normal densities. Empirical Bayes (EB) predictors are obtained by 

computing (numerically) the expectations ),,|( *Kskc ypE  with ),( *K  assumed known (set at 

their MLE). Other estimators considered are “synthetic” estimators obtained by setting 

KE cc z{  ( )0 *  and constant)(  Kp  in the equation defining the HB point estimator, and 

direct design based estimators. Empirical results based on simulated and real data indicate 

that unless the sample sizes within the areas are sufficiently large, the exact HB predictors 

dominate the other estimators both with respect to point estimation and variance measures. It 

should be noted, however, that no bias corrections that account for parameter estimation have 
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been applied when estimating the variances of the EB estimators. As noted before, the HB 

approach ‘automatically’  accounts for all sources of error. 

     Ghosh et al. (1998) develop a general methodology for HB inference under the 

Generalized Linear Model (GLM) with random effects that includes the model (4.1) as a 

special case. The GLM (McCullagh and Nelder, 1989) is defined as, 
 

                              
)},()(]/))(exp{[(),|( ijijijijijijijijijij ycabyyf IIITTIT ���                      (4.3) 

where 0)( !�a , )(�b  and )(�c  are known functions. As easily verified, 

ijijijijijijij byVarbyE ITTTT }/)]([{)(;/)()( 22 ww ww . The scale parameters ijI  are assumed 

known. In order to borrow information across the areas, the ‘natural parameters’  ijT  are 

modeled as ijiijij uxh HET �� ’)(  where )(�h  is a strictly increasing link function with iu  and 

ijH  playing a similar role as in the mixed linear model. The class of HB models studied by 

Ghosh et al. (1998) consists of the following equations (see below for an application): 
 

                     ~,,,,| 22 GLMuy
ind

uiijij �VVET  

                    ),’(~,,,|)( 222 �VEVVET � iij

ind

uiij uxNuh �   ;     ),0(~,,| 222
u

ind

ui Nu VVVE �                       

(4.4) 

                   )(~ kRUniformE  ;   .d) ,(~)(;b),(~)( 1212 cGammaaGammau

��
�VV  

with 22 ,, �VVE u  mutually independent and (a, b, c, d) denoting fixed parameter values. 

The joint posterior distribution of the parameters ijT  or functions of them (like the 

means )|( ijijyE T ) is evaluated by the Gibbs sampler. It is essential, however, to 

ensure that the resulting posterior is proper and the authors establish sufficient 

conditions to this effect. In the special case of the model (4.1), the conditions reduce 

to the requirement that the measurements ijy  for a given area  i  are not all zeroes or 

ones. When the ijy  are Poisson (see below), the condition is ¦ ! �in
j iji yy 1 0 . 

     As an example, consider the model applied by Ghosh et al. (1998) for estimating 

lung cancer death counts in 115 counties of the State of Missouri in the U.S. for the 
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period 1972-1981. Let iasy  define the lung cancer death count in cell ),( sa of county 

i , where a  and s  define age/sex groups. The model assumes, 

                

                 )(~| ias

ind

iasias Poissony OO  

                      iasiasasiasias uxxxxrN HEEEO ����� 321)log()(log                                      (4.5) 

                      
)1,1(~)(;)01.,01(.~)(;)(~

),0(~;)/,(~},{|
12123

22

gammagammaRUniform

NmuNikuu

u

iasiuiki
��

�z
�

�

VVE
VHV

  

where iasN  is the mid-period population size in cell ias , r is the statewide lung cancer rate, 

sx  is a sex indicator variable and ax  defines three age groups taking the values (-1, 0, 1). The 

model for the area effects iu  accounts for spatial clustering by defining the means iu �  to be 

the average of the random effects },{ ikuk z  that are “neighbors” of iu , with im  denoting the 

number of these neighbors. (Two counties are defined as neighbors if and only if they are 

physically adjacent to each other.) The distribution postulated for the random effects has a 

‘Conditional Autoregressive structure’ ; see Clayton and Kaldor (1987) for discussion and 

uses of this kind of model. As implied by the second and third equations, the model 

dependent estimate of iasO  borrows strength from other area estimates and from estimates of 

other cells within the same area. Rao (1999) reviews several new studies with interesting 

variations of the model (4.4). 

  

5  Time series models 

     The models and estimators considered so far borrow strength from administrative data and 

neighboring areas. Another valuable source of information when available is data measured 

for the target characteristics on previous occasions. The (direct) estimators obtained from the 

different surveys are usually correlated even when independent samples are selected on 

different occasions because of the correlations among the true area characteristics over time, 

giving rise to time series modeling. A typical time series model fitted to survey data consists 

of two parts: 

� A model fitted to the population (area) quantity of interest, 

� A model fitted to the sampling errors. 
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     Consider the following general class of state-space models for a single area i  with the 

index t designating time. Below we consider time series models that borrow also strength 

across areas. 

                                     
),(~;

’

,1 baARMAeT

exey

titiittti

titititititi

KEE
ET

� 
� � 

�
                                        (5.1) 

where )1( uptiE  is a random state vector, )( ppTt u  is a fixed transition matrix and tie  and 

)’...( 1 tiptiti KKK   are independent random errors with 2)( V tieVar  and QV ti  )(K  respectively. 

It is assumed also that 0)’( ,   ijttiE KK  for 0!j . In (5.1), tiy  is the (direct) sample estimate for 

area i  at time t and tititi x ET ’  is the target quantity, modeled as a linear combination of 

known concomitant variables with random coefficients so that )( tititi ye T�  is the sampling 

error. The notation ),( baARMA  defines the Auto-Regressive Moving Average model of 

order ),( ba , (Box and Jenkins 1976). As can be seen, the model (5.1) accounts for the time 

series relationships between the true area quantities via the model postulated for the state 

vectors and for the autocorrelations between the sampling errors. Note in this regard that the 

sampling errors may be correlated even when there is no sample overlap. This is so because 

in repeated surveys it is often the case that units joining the sample are from the same small 

geographical areas (like census tracts) as units leaving the sample.  

   The following models can be represented in the form (5.1), see Pfeffermann and Burck 

(1990) for details.  
 

1- the area level random effects model (3.3); the model defined by (5.1) can easily be 

extended to the case where individual measurements tijy  with corresponding covariate values 

tijx  are available, in which case the model contains also the unit level regression model (3.1) 

as a special case. 
 

2- the random coefficient regression model, tikktik KEE � . This is one of the models for 

which Prasad and Rao (1990) developed the EBLUP MSE bias corrections. By imposing 

0)(  tijVar K  for some j , the corresponding regression coefficient is set fixed over time. 
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3- the first order autoregression model, tikkiktkktik KEEIEE �� � ! )()( ,1 . By setting 1 kI , 

the model simplifies to the random walk model. 
 

4- As last example consider the model used in the U.S. for the production of all the major 

state employment and unemployment statistics. The model is fitted separately for each of the 

50 states and the District of Columbia, see Tiller (1992) for details. In what follows tiy  is the 

direct estimate (say, the observed unemployment rate) in state i  at month t, tL  is a trend 

component with (random) slope tR  and tS  is a seasonal effect.  

Observation equation 
)15(~; AReeSLxy tititititititi ��� D                                                        (5.2a) 

Model for regression coefficients 
tiitti "KDD � # ,1                                                                                               (5.2b) 

Model for Trend component 
RtiittiLtiititti RRRLL KK � �� $$$ ,1,1,1 ;                                                      (5.2c) 

Model for Seasonal effects 

6,...,1,122 
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jj

SSS

SSS

j

Sjtiitjjitjjjti

Sjtiitjjitjjjti

SZ
KZZ

KZZ
 ¦ &

6

1j
jtiti SS                                          (5.2d) 

The error terms *,,,, SjtiSjtiRtiLtiti KKKKK '  are independent white noise. Note that the observed 

series consists of only the direct estimates tiy . The model postulated for the trend is a local 

approximation to a linear trend. The AR(15) model accounts for the short and long term 

autocorrelations between the sampling errors as implied by the particular rotating panel 

sampling scheme underlying the U.S. Labor Force Survey. The covariate tix  represents the 

‘number of unemployed workers claiming unemployment insurance’ . Pfeffermann et al. 

(1998a) fit a similar model for the production of labor force statistics and trend estimates in 

small regions of Australia. Binder and Dick (1989) and Bell and Hillmer (1990) fit 

Multiplicative Seasonal ARIMA models (Box and Jenkins 1976) to the “regression residuals” 

( JT ’titi x� ) where tiT  defines as before the true area quantity of interest and tix  represents 

area level covariate variables. The fitting of these models requires differencing of the 

observed series to guarantee stationarity. The area estimates are obtained by signal extraction.  
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     The model (5.1) contains in general as unknown hyper-parameters the variances and 

covariances in Q , the parameters of the ARMA model of the sampling error and possibly 

also some of the elements of the transition matrices tT . Because of possible identification 

problems and in order to simplify the maximization of the likelihood, it is customary to 

estimate the ARMA parameters based on external estimates of the variance and 

autocorrelations of the sampling error. Pfeffermann et al. (1998) develop a simple method of 

estimating the sampling error autocorrelations for rotating panel sampling designs. The other 

parameters are estimated by the values maximizing the likelihood when fixing the ARMA 

parameters at their estimated values. The likelihood function is conveniently obtained by use 

of the Kalman filter, which for known hyper-parameters yields the BLUP of the state vector 

and the corresponding prediction error variance-covariance matrix for every time t. See 

Harvey (1989) for details.  
 

     Like with cross-sectional models, an important issue when fitting time series models with 

estimated parameters is how to obtain reliable estimates for the MSE of the state vector 

predictors tiÊ , and hence for the MSE of the small area predictors tititi x ET ˆ’ˆ  . A “naive” 

MSE estimator is obtained by replacing the unknown parameters in the MSE expressions 

produced by the Kalman filter by the parameter estimates, but this again results in 

underestimation of the true MSE. Ansley and Kohn (1986) develop a bias correction to the 

naive MSE estimator by expanding the MLE around the true parameters. The bias correction 

is derived under the frequentist approach but it is shown to have also a Bayesian 

interpretation. Hamilton (1986) adopts the Bayesian perspective and proposes a Monte Carlo 

method that consists of generating samples from a normal approximation to the posterior 

distribution of the unknown parameters. The normal approximation is obtained by fixing the 

mean at the MLE (or REML) and the covariance matrix at the inverse information matrix 

evaluated at the MLE. Quenneville and Singh (2000) show that both approaches have a bias 

of order )/1( nO  where n is the length of the series. The authors propose a second order 

approximation that reduces the bias to the order of )/1( no . This approximation again 

assumes normality of the posterior distribution of the parameters and requires an evaluation 

of the information matrix. Pfeffermann and Tiller (2000) propose a simple parametric 

bootstrap method that yields frequentist MSE estimates with bias of order )/1( 2nO . The use of 
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this approach does not assume normality of the unknown parameters or their estimators and it 

does not require evaluation of the inverse information matrix. This matrix is often unstable, 

particularly when the number of unknown parameters is large.  

     Evaluation of the prediction MSE of the small area predictors tititi x ET ˆ’ˆ   creates no extra 

problem under the full HB modeling approach because the prediction MSE is defined by the 

posterior variance. The use of this approach requires however the specification of prior 

distributions for all the unknown hyper-parameters and as mentioned before, the 

computations can be very intensive; see, for example, Ghosh et al. (1996) and Datta et al. 

(1999). (The latter study also considers estimation of unemployment rates in states of the U.S. 

but uses a different model from the model defined by (5.2). In particular, this model permits 

cross-sectional correlations between the state unemployment rates tiT , see also below.) 
 

     The models considered so far pertain to time series observed in a single area. In practice, 

data are often available for many small areas simultaneously, although possibly for only few 

time points. In such cases it is desired to borrow information both cross-sectionally and over 

time. The combined modeling of cross-sectional and time series data is a classical problem in 

econometrics; see, e.g., Johnson (1977, 1980) for annotated bibliographies, but the 

econometric literature does not address SAE problems. One way of borrowing information 

cross-sectionally and over time within the framework of the model (5.1) is by including in the 

model both contemporary random effects and time varying effects. Rao and Yu (1994) 

consider the model 

                                              titiititititi evuxey ��� � ]’[ ET                                         (5.3) 

where, using previous notation, tiy  is the direct estimator for area i  at time t, tie  is the 

sampling error (assumed to be correlated over time with known variances and covariances), 

iu  is the contemporary random effect and tiv  is a time effect, assumed to evolve as in an 

AR(1) process. The random errors titii evu ,,  are independent within and between the areas for 

any given time point t. The authors derive the EBLUP and valid (correct order) MSE 

estimators. Datta et al. (1999) extend the model (5.3) by permitting random regression 

coefficients iE  instead of the fixed vector E  and adding extra random terms to account for 
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seasonal variations. The authors develop an appropriate HB methodology for point and MSE 

estimation using the Gibbs sampler.     

     An alternative way of accounting for cross-sectional relationships under the model (5.1) is 

by permitting corresponding components of the error terms tiK  pertaining to different areas i  

to be correlated. Pfeffermann and Burck (1990) derive the explicit expression of the small 

area predictor obtained this way for the case where the state vector is a random walk and the 

sampling errors are uncorrelated, illustrating how the time series and cross-sectional data 

combine to strengthen the direct estimator. The authors apply the model for predicting mean 

house sale prices in cells defined by size (number of rooms) and cities. Ghosh et al.(1996) 

consider a more extreme case by which the state vectors are the same across the areas 

( tti EE { ~ random walk), and apply the HB methodology with appropriate prior distributions 

using the Gibbs sampler. The specific problem considered is the prediction of median income 

of four person families in states of the U.S. An interesting feature of this study is that the 

direct estimators tiy  are multivariate, containing also the median income estimates of three 

and five person families (with the other model components modified accordingly). Since the 

three contemporary direct estimates are correlated, including all of them in the model 

potentially improves the prediction compared to modeling of only the univariate estimators. 

In this particular application the best predictors were actually obtained when using a bivariate 

model with the direct median estimates of four and five person families as the input data. 
 

6  Accounting for sampling effects 

     The models and inference procedures considered so far assume implicitly simple random 

sampling designs. In practice, the sample selection process often involves unequal selection 

probabilities at least at some stages of the selection process. When the selection probabilities 

are not related to the values of the response variable, the models holding for the population  

hold also for the sample data and the sample selection process can be ignored. If, however, 

the selection probabilities are related to the response variable values even after conditioning 

on the values of the explanatory variables included in the model, the sampling design 

becomes informative and the model holding for the sample data differs from the model 

holding in the population. Ignoring the sample selection in such cases may yield biased 

predictors for the target characteristics of interest.  
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      As a simple (but extreme) example of an informative sampling scheme suppose that the 

outcomes ijy  in a given area i  are binary with pyij   )1Pr( . Let the sample be selected with 

probabilities, 1,0,)|Pr(    � kkysj kiji S . Thence, by application of Bayes rule, 

siij ppppsjy  �� � )]1(/[)|1Pr( 211 SSS . Clearly, spp z  unless 21 SS   and inference on p 

that ignores the selection scheme actually means inference on sp . For recent discussion of 

informative probability sampling with key references, see Pfeffermann et al. (1998b).  

 

     A common approach to account for possible sampling effects is to weight the sample 

measurements by the sampling weights, defined here as the inverse of the sample inclusion 

probabilities. (In practice the weights are often modified to account for missing data and post-

stratification adjustments.) In the context of small area estimation, Kott (1989) and Prasad 

and Rao (1999) consider the simple ‘unit level random effect model’ , 

ijiijiij uy HTHP � �� , with the same assumptions on iu  and ijH  as in (3.1), and propose 

to replace the simple means iy  by the weighted means ¦¦ (( in
j ij

in
j ijijiw wywy 11 /  as the input 

direct estimators where )(;/1 iijijij sjPw �  SS . The estimator iwy  is approximately design 

unbiased (over repeated sampling) and consistent for the corresponding area mean iT . The 

predictor iT̂  in both articles has the form of a composite estimator, wiiwii y PDDT ˆ)ˆ1(ˆˆ �� , 

where wP̂  is a weighted average of the unweighted sample means iy  in Kott (1989), and a 

weighted average of the weighted means iwy  in Prasad and Rao (1999). The coefficients iD̂  

and the vector coefficients defining wP̂  are functions of the sampling weights and the 

unweighted ANOVA estimators of the model variances. Prasad and Rao (1999) derive MSE 

estimators of correct order under the assumption that the model holds for the sample data 

(implying de facto non-informative sampling). The authors extend the results to the unit level 

regression model defined by (3.1). Arora and Lahiri (1997) model the weighted area means in 

a HB analysis that uses the Gibbs sampler to obtain the posterior means and variances. The 

authors allow for different (unknown) variances )|(2
iiwii yVark TV   in different areas, 

postulating the general prior 2)
iV ~ gamma(a,b) (the ski ’  are known), but like in Prasad and 

Rao (1999) the variances are taken under the population model. An empirical investigation 
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with data collected in the U.S. family expenditure survey illustrates the better performance of 

the HB estimators compared to the EBLUP and the direct weighted means.  

     The use of the estimators iwy  protects against informative sampling within the areas. 

Furthermore, as in  increases, the weight iD̂  attached to the direct estimator increases so that 

the estimator iT̂  is design consistent for iT . Note also that by estimating P  as a weighted 

average of the weighted means iwy  like in Prasad and Rao (1999), the estimator iT̂  is 

approximately unbiased for iT  if the expectation is taken over both the randomization 

distribution and the model. The estimator is neither approximately design unbiased nor 

approximately model unbiased under informative sampling. Folsom et al. (1999) incorporate 

the sampling weights for defining the conditional posterior densities of the fixed and random 

effects in a logistic mixed model (extension of the model 4.1). The resulting densities are 

employed for a survey weighted full HB analysis using the Gibbs sampler. The model is used 

for estimating illicit drug use in the U.S. (first example in Section 1).  

     Weighting the sample measurements by the sampling weights does not protect against 

informative selection of the areas when only some of the areas are selected to the sample. 

Note in this regard that under the models (3.1) and (3.3) considered in section 3, the EBLUP 

or EB predictors for areas not included in the sample are the synthetic estimators GLSiX Ê'  and 

GLSix Ê’  respectively. These estimators may be severely biased if the selection of the areas is 

informative, since it is no longer necessarily true that 0)|(  � siuE i , a condition validating 

the use of the synthetic estimators under noninformative sampling. For the model (3.1) (with 

possibly more than one random effect), Pfeffermann et al. (1998c) propose a weighting 

system that yields consistent estimators for all the model parameters, but that article does not 

address the prediction of small area means.  
 

     A different way of protecting against informative sampling is to base the inference on the 

sample probability density function (pdf), defined for single stage sampling as, 
 

               )|Pr(/)|(),|Pr(),|()|( kkkpkkkkkks xskxyfxyskskxyfxyf �� �        (6.1)                

where )|( kkp xyf  defines the population pdf (Pfeffermann et al. 1998b). Denote the sample 

inclusion probabilities by )Pr( skk � S . These probabilities depend in general on the all the 
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population values of y and x, and possibly also on the population values of design variables 

used for the sample selection but not included in the model. By viewing the population 

measurements as random realizations under the model, the probabilities kS  are likewise 

random and the pdf (6.1) can be written alternatively as, 
 

                                    )|(/)|(),|()|( kkpkkpkkkpkks xExyfxyExyf SS .                         (6.2) 

Note that ),|( kkkp xyE S  is generally not the same as )Pr( skk � S , which may depend on all 

the population measurements. It follows from (6.2) that for a given population pdf, the 

sample pdf is fully specified by the expectation ),|( kkkp xyE S = ),|(/1 kkks xywE , where sE  

defines the expectation with respect to the sample distribution. The sample expectation can be 

identified and estimated from the sample data and knowledge of the sampling design and, see 

Pfeffermann and Sverchkov (1999) for discussion and examples. Furthermore, Pfeffermann et 

al. (1998b) establish that for independent population measurements, the sample 

measurements are asymptotically independent with respect to the sample distribution under 

commonly used sampling schemes for selection with unequal probabilities. The asymptotic 

assumes foN  with n held fixed. (N and n are the population and sample sizes 

respectively.) 

     How can the sample distribution be used for SAE? Consider for convenience the unit level 

random effect model ijiijiij uy HTHP � ��  mentioned earlier in this section. The 

corresponding sample model is, 
 

                                )|(/)|(),|()|( || iijpiijpiijijpiijs EyfyEyf TSTTST                            (6.3a) 

                                         )(/)()|()( ipipiipis EfEf STTST                                             (6.3b) 

where ij|S  is the conditional sample selection probability given that area i  is in the sample, 

)Pr( sii � S  and )|( iijp yf T  and )( ipf T  are the corresponding population densities. By 

modelling the expectations defining the sample distributions in (6.3a) and (6.3b), one can 

obtain the ‘model dependent’  predictors of the small area means, employing the methods 

discussed in previous sections. As a simple illustration suppose that the selection of the areas 

is carried out with probabilities iS  such that )exp()Pr()|( 10 iii aaksiE TTS �u �  where 
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k  is some constant and that the sampling process within the areas is noninformative. Simple 

calculations show that for known variances ( 2
uV , 2*V ) the optimal (BLUP or HB) predictors of 

the area means for areas in the sample and areas not in the sample are correspondingly, 
  

                                    

)exp(1
)exp(ˆ),|(ˆ

ˆ),|(ˆ

0

0
2

1
,

2
1,

i

ii
iiic

iiiis

dak
daka

ysiE

aysiE

��
�� � 

� � 
JVTTT

JVTTT
+

+

                            (6.4) 

where y  denotes the sample data, iii aad JVT , 22
11 )2/(ˆ�  and yy iiii )1(ˆ JJT ��  is the 

optimal predictor under noninformative selection of the areas (see Section 3). As clearly 

indicated by (6.4), the optimal predictors for areas in the sample are higher than the optimal 

predictors under noninformative sampling since under the assumed selection process the 

selected areas tend to have larger means. Conversely, the optimal predictors for areas not in 

the sample are lower than the optimal predictors under noninformative sampling. Thus, the 

use of the predictors iT̂  that ignore the sampling process yields biased prediction. We are 

currently studying the application of this approach in conjunction with the model (3.1) using 

data from the Brazilian “Basic Education Evaluation Study”. 
 

Comment: Application of the EB or HB approaches under informative sampling does not 

require changing the prior distributions since they refer to the population model. Ghosh 

(1999) explores the properties of the EB predictor obtained by use of the sample distribution 

in the case of the Fay-Herriot model (3.3).  
 

7  The importance of modeling the correlations among random area effects 

     Many of the models in common use for SAE assume that the random small area effects are 

independent between the areas. In practice, it would often be reasonable to assume that the 

random effects associated with ‘neighboring areas’  by some distance measure (not necessarily 

geographical) are correlated, with the correlations decaying to zero as the distance increases. 

Such models are very common in spatial analysis (see, e.g., Cressie 1993), but are not in 

wide use for SAE problems. As few exceptions we mention the articles by Datta and Ghosh 

(1991), Datta et el. (1999), Ghosh et al. (1996), Ghosh et al. (1998), Rao and Yu (1994) and 

Pfeffermann and Burck (1990) that have been reviewed in previous sections.  
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     How much can be gained by accounting for existing correlations among the area effects?  

In order to study this question, we consider two simple examples. In the first example we let 

the ‘working model’  be defined by (3.3) but with no concomitant variables and with the added 

simplification of equal sample sizes, nni  . Thus, the working model is, 
 

                 22 /)(; VVTP   � �� neVareeuy eiDiiiii  ; 2)( uiuVar V                        (7.1) 

with ),( ii eu  being independent within and between the areas. Let 2V  and 2
uV  be known but 

P  unknown. Under this model, the optimal predictor of the small area mean is,  
 

                               yyii )1(ˆ JJT �� ;   ¦ -m
i i myy 1 /  ;   )/( 222 VVVJ � uu .                      (7.2) 

Suppose now that under the ‘correct model’ , 0),( ! Uki uuCorr  for ki z . Simple 

calculations show that for this model the optimal predictor and its MSE are, 
 

                              yyii )~1(~* JJT ��  ;    ])1(/[)]1([~ 222 VUVUVJ ��� uu                        (7.3) 
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where )()( 222
iu yVar � VVG . The ‘working predictor’  iT̂  is unbiased under the correct 

model and its MSE is obtained from (7.4) by replacing J~  by J .  

     The question arising is: what is the loss from using iT̂  instead of *
iT ? We mention first 

that )]1(1/[]/~[)̂(/)(lim * JUJJTT �� ./ iim MSEMSE  with the limit decreasing to 0  as U  

increases to 1, showing that with many areas and large cross-sectional correlations, the loss in 

efficiency can be substantial. Table 1 shows the relative efficiencies )̂/()( *
ii MSEMSER TT  for 

selected numbers of areas and different values of U  and )./( 22
uL VV  
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   Table 1:  Relative  efficiencies  of working predictor compared 
     with the optimal predictor under equal correlations model 
 

  L=0.1 L=1.0 L=10 L=100 
 25. U  1.00 0.99 1.00 1.00 

m=5 50. U  0.97 0.93 0.99 1.00 
 75. U  0.88 0.80 0.98 1.00 
 25. U  0.99 0.98 1.00 1.00 

m=40 50. U  0.96 0.90 0.97 1.00 
 75. U  0.85 0.67 0.92 1.00 
 25. U  0.99 0.98 0.99 1.00 

m=100 50. U  0.96 0.89 0.97 1.00 
 75. U  0.85 0.65 0.88 1.00 

 
     For the second example we use the same working model but let ||),( ki

ki uuCorr
0 U  to 

represent the true correlations among the random area effects. This correlation pattern 

corresponds to the case where the means iy  refer to different time points and the area effects 

follow the AR(1) model,  

                                     )1/()(, 2222
1 UVVVHHU 11 � � � 2 uiiii Varuu .                       (7.5) 

If mi   signifies the last time point with observations, the optimal predictor of mT  under this 

model is easily obtained by application of the recursive Kalman filter equations (Harvey 

1989). For ‘large m ’  the MSE of the optimal predictor can be computed explicitly by solving 

the corresponding Riccati equation. We find that  
 

                          2222/12222422* 2/})1()]1(4)1{[()( UGUUUVVGUT ����� umMSE .            (7.6) 

As in the previous example, the working predictor iT̂  defined by (7.2) is unbiased under the 

model (7.5) and as fom , 2)̂( JVT oiMSE  under both the working model and the true 

model. Table 2 shows the relative efficiencies )̂/()( *
ii MSEMSER TT  for large m  and different 

values of U  and )./( 22
uL VV  

      
Table 2: Relative efficiencies of working predictor compared   
with optimal predictor under Auto-regression model, large m 
 

 L=0.1 L=1 L=10 L=100 
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25.0 U  0.99 0.98 0.99 1.00 

50.0 U  0.97 0.93 0.97 1.00 

75.0 U  0.91 0.80 0.91 0.99 

95.0 U  0.66 0.48 0.66 0.93 

 

     The first notable (but expected) result emerging from the two tables is that for fixed ratios 

L, R  decreases as U  increases, implying that the loss from using the working predictor 

increases. Yet, unless 5.0!U , 90.0tR . Another less expected result is that increasing L does 

not necessarily imply a corresponding decrease in R . In fact, in both tables R  decreases as L 

increases from 0.1 to 1 but then it increases when further increasing L. (It is easily shown that 

for the AR(1) model and for the limiting case fom  under the equal correlations model, 

)/1()( LRLR   for all L, with the minimum value of R  attained at L=1 for which 5.0 J .) 

This result is explained by the fact that as 2V  increases in relation to 2
uV , more weight is 

assigned to the synthetic estimator y  which is common to both the working and the true 

model so that the differences between the MSE of the two predictors diminish. The results 

presented in Table 2 for the AR(1) model are ‘one sided’  in the sense that the ‘borrowing of 

strength’  is only from previous occasions. We studied also the ‘two sided’  case where data 

collected before and after the time point of interest are used for deriving the optimal predictor 

and obtained very similar results. 

     The overall conclusion from this study is that unless the correlations between the area 

random effects are large, the loss in efficiency from using the working model is small. Notice 

also that for small values of U  the MSE of the working predictor iT̂  under the correct model 

is similar to the MSE evaluated under the working model. Clearly, the results of this rather 

limited study need to be tested under different models. 
 

8  Concluding remarks 

     This article attempts to overview the main topics in SAE research in recent years, 

emphasizing the new models and inference methods with particular attention to point 

estimation and MSE evaluations. Two important issues not considered are model selection 

and model diagnostics. As mentioned before, SAE is one of the few fields in survey sampling 
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where it is widely recognized that the use of model dependent inference is often inevitable. 

Given the growing use of small area statistics and their immense importance, it is imperative 

to develop efficient tools for the selection of models and the ascertainment of their goodness 

of fit. This is a difficult problem because small area models contain assumptions on 

unobservable random effects, which are therefore difficult to verify. We mention also that 

under informative sampling discussed in Section 6, the observed data no longer represent the 

population model, making the model selection and diagnostics even harder. Ghosh and Rao 

(1994) discuss a few formal and informal diagnostic tests that have been developed until that 

year. Recently, Jiang, Lahiri and Wu (1999) developed a ‘chi-square statistic’  for testing the 

distribution of the combined error components. A third related issue is how to secure the 

robustness of the estimators after a model and inference method have been selected. Several 

sensitivity analyses are reported in the literature but more theoretical research is needed for 

studying the robustness of the SAE methods in common use. With the extensive research on 

SAE taking place in so many countries, I expect many new innovative studies on these and 

other issues in the near future. 
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