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Abstract: The authors propose to estimate nonlinear small area population parameters by using the empirical

Bayes (best) method, based on a nested error model. They focus on poverty indicators as particular nonlinear

parameters of interest, but the proposed methodology is applicable to general nonlinear parameters. They

use a parametric bootstrap method to estimate the mean squared error of the empirical best estimators.

They also study small sample properties of these estimators by model-based and design-based simulation

studies. Results show large reductions in mean squared error relative to direct area-specific estimators and

other estimators obtained by “simulated” censuses. The authors also apply the proposed method to estimate

poverty incidences and poverty gaps in Spanish provinces by gender with mean squared errors estimated

by the mentioned parametric bootstrap method. For the Spanish data, results show a significant reduction in

coefficient of variation of the proposed empirical best estimators over direct estimators for practically all

domains. The Canadian Journal of Statistics 38: 369–385; 2010 © 2010 Statistical Society of Canada

Résumé: Les auteurs proposent d’estimer les paramètres non linéaires d’une population de petits domaines

en utilisant une méthode bayésienne empirique. L’emphase est mise sur les indicateurs de pauvreté comme

paramètres non linéaires d’intérêt particuliers, mais ils proposent une méthodologie qui s’applique à des

paramètres non linéaires plus généraux. Ils utilisent une méthode de rééchantillonnage paramétrique pour

estimer l’erreur quadratiquemoyenne dumeilleur estimateur empirique. À l’aide de simulations basées sur le

modèle et sur le plan de sondage, ils étudient les propriétés de ces estimateurs pour les petits échantillons. Les

résultats obtenusmontrent une grande réduction de l’erreur quadratiquemoyenne par rapport aux estimateurs

propres aux régions et les autres estimateurs obtenus par recensements « simulés». Les auteurs ont aussi

appliqué la méthodologie proposée à l’estimation des incidences de pauvreté et des disparités, en fonction du

sexe, du niveau de la pauvreté des provinces espagnoles. Les erreurs quadratiques moyennes sont estimées

en utilisant la méthode de rééchantillonnage paramétrique citée auparavant. Pour les données espagnoles, les

résultatsmontrent une réduction substantielle du coefficient de variation desmeilleurs estimateurs empiriques

proposés par rapport aux estimateurs spécifiques pour pratiquement tous les domaines. La revue canadienne

de statistique 38: 369–385; 2010 © 2010 Société statistique du Canada

1. INTRODUCTION

Thefirst of theMillenniumDevelopmentGoals established by theUnitedNations is the eradication

of extreme poverty and hunger. The availability of themost possible accurate information concern-

ing the living conditions of people at a regional level is a basic instrument for targeting policies and

programs aiming at the reduction of poverty. However, in many cases the information collected

from national surveys is limited and allows estimation only for larger regions or larger popula-

tion subgroups. Therefore, small area estimation techniques are required that “borrow strength”

across areas through linking models based on auxiliary information coming from censuses or

administrative registers; see Rao (2003) for a comprehensive account of these techniques.
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Many measures of poverty and inequality are nonlinear functions of a quantitative welfare

variable for the population units. This makes many of the current small area estimation methods,

typically developed for the estimation of linear characteristics, such as means, not applicable.

Here we propose the use of empirical best predictors (EBPs) obtained through Monte Carlo

approximation. This method provides estimators that are “best” in the sense of minimizing the

mean squared error (MSE) under the assumed small area model, and it can be applied to estimate

practically any (linear or nonlinear) function of the values of a target associated with the units

of a finite population, when this variable or some transformation of it follows a linear model.

However, for illustration and due to the relevance of the application, we focus on the estimation

of poverty indicators. We show by simulations that EBPs of poverty indicators perform well in

terms of bias and MSE. We also propose a parametric bootstrap method for MSE estimation and

study its bias through simulations.

In Europe, the project EURAREA developed methods for estimation of income characteris-

tics in small areas, see http://www.statistics.gov.uk/eurarea. Their results are restricted to linear

parameters. In the U.S., the need for small area poverty estimates has given rise to the SAIPE pro-

gram (Small Area Income & Poverty Estimates) of the U.S. Census Bureau. The main objective

of this program is to provide updated estimates of income and poverty statistics for the adminis-

tration of federal programs and the allocation of federal funds to local jurisdictions; for further

details see http://www.census.gov/hhes/www/saipe. The county level methodology, summarized

by Bell (1997), basically uses a Fay–Herriot area level model (Fay & Herriot, 1979) to produce

model-based county estimates of the number of school-age children under poverty.

The World Bank (WB) has been releasing small area poverty and income inequality esti-

mates for some countries, using the methodology of Elbers, Lanjouw & Lanjouw (2003). This

methodology is currently widely used, see, for example, Neri, Ballini & Betti (2005), Ballini,

Betti, Carrette & Neri (2006), Tarozzi and Deaton (2009), and Haslett and Jones (2005). Elbers,

Lanjouw & Lanjouw (2003) assumed a unit level model that combines both census and survey

data. Using that model, they produce disaggregated maps that describe the spatial distribution of

poverty and inequality.

Measures of inequality include Gini coefficient, Sen index, the general entropy and Theil

index (see, e.g., Neri, Ballini & Betti, 2005). Although the method developed in this paper also

allows the estimation of these and other inequality and poverty measures, for the sake of brevity

we will focus on the estimation of a class of poverty measures called FGT poverty measures due

to Foster, Greer & Thorbecke (1984), see Section 2, and used in the WB method.

The paper is organized as follows. Section 2 introduces two basic types of direct estimators

of FGT poverty measures, which make use only of the sample data from the target area. Section

3 describes the estimation of FGT poverty measures using best prediction methodology for finite

populations. Section 4 applies the best prediction method under a nested error linear regression

model. Section 5 describes a parametric bootstrapmethod forMSE estimation. Section 6 describes

theWBmethod for estimation of the FGTpovertymeasures andmakes a theoretical comparison of

the different methods in the context of estimating small area means. Section 7 presents the results

of simulation studies on the performance, in terms of bias and MSE, of the proposed method

relative to the WBmethod and direct estimation. Performance of bootstrap MSE estimator is also

studied. Finally, in Section 8, the proposed method is applied to Spanish data to estimate poverty

incidences and poverty gaps in Spanish provinces by gender.

2. DIRECT ESTIMATORS OF FGT POVERTY MEASURES

Consider a finite population of size N partitioned intoD small areas of sizes N1, . . . , ND. Let Edj

be a suitable quantitative measure of welfare for individual j in small area d, such as income or
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expenditure, and let z be a fixed poverty line; that is, the threshold for Edj under which a person

is considered as “under poverty.” Then the family of FGT poverty measures for each small area

d is defined as the area mean

Fαd =
1

Nd

Nd
∑

j=1

Fαdj, d = 1, . . . , D, (1)

of the values Fαdj defined as

Fαdj =

(

z − Edj

z

)α

I(Edj < z), j = 1, . . . , Nd, α = 0, 1, 2, (2)

where I(Edj < z) = 1 if Edj < z (person under poverty) and I(Edj < z) = 0 if Edj ≥ z (person

not under poverty). For α = 0 we get the proportion of individuals under poverty in small area d,

also called poverty incidence or head count ratio. The FGT measure for α = 1 is called poverty

gap, and measures the area mean of the relative distance to the poverty line (the poverty gap)

of each individual. For α = 2 the measure is called poverty severity. This measure squares, and

large values of F2d point out to areas with severe level of poverty.

Remark 1. Observe that the FGT measure for α = 0 is equal to the empirical distribution

function of the population values {Edj; j = 1, . . . , Nd} evaluated at point z,

F1d =
1

Nd

Nd
∑

j=1

I(Edj < z).

In the inference process, a random sample of size n < N is drawn from the population accord-

ing to a specified sampling design. Let � denote the set of indexes of the population units. Let

s ⊂ � be the set of units selected in the sample and r = � − s the set of indexes of the units that

are not selected (with size N − n). The restrictions of �, s, and n to area d are denoted by �d ,

sd , and nd , respectively, where n = n1 + · · · + nD. Note that nd = 0 if an area d is not sampled.

A direct estimator for a small area uses only the sample data from the target small area. A direct

estimator of Fαd for a sampled domain is the unweighted sample mean

F̂αd =
1

nd

∑

j∈sd

Fαdj, α = 0, 1, 2, d = 1, . . . , D. (3)

Let wdj be the sampling weight (inverse of the inclusion probability) of individual j from

sampled area d. Then an approximately design-unbiased estimator of Fαd is the weighted sample

mean

F̂
w
αd =

1

N̂d

∑

j∈sd

wdjFαdj, d = 1, . . . , D, α = 0, 1, 2, (4)

where N̂d =
∑

j∈sd
wdj is a design-unbiased estimator of the population size Nd of sampled

area d. If the sampling weights wdj do not depend on the unit j, as it occurs for example under

simple random sampling within areas where wdj = nd/Nd , j = 1, . . . , Nd , then (4) reduces to

the unweighted sample mean (3).

The limited sample sizesnd within someof the sampled areas prevent the use of estimators such

as (3) or (4). Indeed, a common definition of poverty classifies a person as “under poverty” when
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the selectedwelfare variable for this person is below a given percentage of themedian (the Spanish

National Statistical Institute uses 60%). Under this definition, the outcome of being under poverty

is likely to have low frequency and, in this case, direct estimation becomes even more inefficient.

Then, reliable estimation of poverty measures for small areas requires application of small area

estimation techniques (Rao, 2003). These techniques improve the estimation procedures by using

models that establish some relationships among the areas, based on auxiliary information (census

and/or administrative variables) related to the welfare variables of interest. These models provide

“indirect” estimators that make use of related data from other areas, and which might reduce

drastically the estimation errors as long as model assumptions hold. Model checking should be

an integral part of indirect estimation methods.

3. EB PREDICTION OF FGT POVERTY MEASURES

Consider a randomvectory = (Y1, . . . , YN )
′ containing the values of a randomvariable associated

with the N units of a finite population. Let ys be the sub-vector of y corresponding to sample

elements s and yr the sub-vector of out-of-sample elements r. By reordering the units of the

population, we can write y = (y′
s,y

′
r)

′. The target is to predict the value of a real-valued function

δ = h(y) of the random vector y using the sample data ys. For a particular predictor δ̂, the mean

squared error is defined as

MSE(δ̂) = Ey{(δ̂ − δ)2}, (5)

whereEy denotes expectation with respect to the joint distribution of the population vector y. The

best predictor (BP) of δ is the function of ys that minimizes (5) and it is given by the conditional

expectation

δ̂B = Eyr (δ|ys), (6)

where the expectation is taken with respect to the conditional distribution of yr. Note that the BP

is unbiased because

Eys (δ̂
B) = Eys{Eyr (δ|ys)} = Ey(δ).

Typically, δ̂B depends on a vector θ of unknown model parameters. Then an empirical BP

(EBP) of δ can be obtained by replacing θ by a suitable estimator, θ̂, and then evaluating the

expectation (6) at θ = θ̂.

We now describe how to obtain BPs of FGT poverty measures for small areas. Suppose

that there is a one-to-one transformation Ydj = T (Edj) of the welfare variables, Edj , such that

the vector y containing the values of the transformed variables Ydj for all the population units

satisfies y ∼ N(µ,V). Then we can express the random variables Fαdj given by (2) in terms of

Ydj as

Fαdj =

(

z − T−1(Ydj)

z

)α

I{T−1(Ydj) < z} =: hα(Ydj), j = 1, . . . , Nd .

Thus, the FGT poverty measure (1) is a nonlinear function of the vector y. By taking δ = Fαd , it

now follows from (6) that the BP of Fαd is

F̂
B
αd = Eyr (Fαd |ys). (7)
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Using the decomposition of Fαd defined in (1) in terms of sample and out-of-sample elements,

we have

Fαd =
1

Nd







∑

j∈sd

Fαdj +
∑

j∈rd

Fαdj







, (8)

where rd denotes the set of out-of-sample elements belonging to area d. Now taking conditional

expectation of (8) and introducing the conditional expectation inside the sum, the BP becomes

F̂
B
αd =

1

Nd







∑

j∈sd

Fαdj +
∑

j∈rd

F̂B
αdj







, (9)

where F̂B
αdj is the BP of Fαdj = hα(Ydj) given by

F̂
B
αdj = Eyr [hα(Ydj)|ys] =

∫

IR

hα(y)fYdj
(y|ys) dy, j ∈ rd . (10)

Here fYdj
(y|ys) is the conditional (or predictive) density of Ydj given the data vector ys. The

expectation in (10) cannot be calculated explicitly due to the complexity of hα(y). However, since

y = (y′
s,y

′
r)

′ is Normally distributed with mean vector µ = (µ′
s, µ

′
r)

′ and covariance matrix

partitioned conformably as

V =

(

Vs Vsr

Vrs Vr

)

,

the conditional distribution of yr given ys is

yr|ys ∼ N(µr|s,Vr|s), (11)

where

µr|s = µr + VrsV
−1
s (ys − µs) and Vr|s = Vr − VrsV

−1
s Vsr. (12)

Formulae (11) and (12) are valid under the assumption that sample selection bias is absent;

i.e., the population model holds for the sample (Pfeffermann et al., 1998).

We propose to use an empirical approximation to (10) byMonteCarlo simulation of a large number

L of vectors yr generated from (11). Let Y
(ℓ)
dj be the value of the out-of-sample observation Ydj ,

j ∈ rd , obtained in the ℓth simulation, ℓ = 1, . . . , L. A Monte Carlo approximation to the best

predictor of Ydj for j ∈ rd is then given by

F̂
B
αdj = Eyr [hα(Ydj)|ys] ≈

1

L

L
∑

ℓ=1

hα(Y
(ℓ)
dj ), j ∈ rd . (13)

The one-dimensional integral (10) can also be evaluated by numerical quadrature methods. In

practice, the mean vector µ and the covariance matrix V usually depend on an unknown vector

of parameters θ; see Section 4. Thus the conditional density fYdj
(y|ys) depends on θ and we make

this explicit by writing it as fYdj
(y|ys; θ). We can take an estimator θ̂ of θ such as the maximum

likelihood (ML) estimator or the residual ML (REML) estimator. Then the expectation can be
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approximated by generating values Y
(ℓ)
dj from the estimated density fYdj

(y|ys; θ̂). The resulting

predictor, denoted F̂EB
αdj , is called empirical best predictor (EBP) of Fαdj . Finally, the EBP of the

poverty measure Fαd is given by

F̂
EB
αd =

1

Nd





∑

j∈sd

Fαdj +
∑

j∈rd

F̂EB
αdj



 . (14)

Remark 2. Instead of introducing the expectation inside the sum as in (9), the expectation in (7)

can be directly approximated by Monte Carlo. This allows to estimate practically any small area

parameter δd = h(yd), not necessarily of the separable form
∑

j h(Ydj). Examples of parameters

of interest are the area quantiles of the welfare variables Edj = T−1(Ydj). The EB method for

estimating a general small area parameter δd = h(yd) is then:

(a) Estimate the unknown parameter θ of the distribution of the transformed vectory using sample

data ys.

(b) Draw L out-of-sample vectors y(ℓ)
r , ℓ = 1, . . . , L from (11) and (12), with θ replaced by the

estimator θ̂ obtained in (a).

(c) Augment each of the L generated vectors y(ℓ)
r with the sample data ys to form a population

(or “census”) vector y(ℓ) = (y′
s, (y

(ℓ)
r )′)′, ℓ = 1, . . . , L. Using the elements of y(ℓ) for the

dth area, y
(ℓ)
d = (y′

ds, (y
(ℓ)
dr )

′)′, calculate the small area parameter of interest δ
(ℓ)
d = h(y

(ℓ)
d ).

The Monte Carlo approximation of the EBP of δd is obtained by averaging the small area

parameters for the L simulated populations, that is,

δ̂EBd =
1

L

L
∑

ℓ=1

δ
(ℓ)
d .

The only requirement of this method is that the distribution of some transformation Ydj =

T (Edj) of the welfare variables is known and that the conditional distribution of yr|ys can be

derived.

4. NESTED ERROR LINEAR REGRESSION MODEL

In this sectionwe introduce aparticular super-populationmodel ξ, the nested error linear regression

model (Battese, Harter & Fuller, 1988), which can be used to evaluate the EB predictor (14). This

model relates linearly, for all areas, the transformed population variables Ydj (e.g., log-earnings) to

vectors xdj containing the values of p explanatory variables, and includes a random area-specific

effect ud along with the usual residual errors edj:

ξ : Ydj = x′
djβ + ud + edj, j = 1, . . . , Nd, d = 1, . . . , D,

ud ∼ iid N(0, σ2
u), edj ∼ iid N(0, σ2

e ), (15)

where the area effects ud and the errors edj are independent. Let us define vectors and matrices

obtained by stacking the elements for area d as

yd = col
1≤j≤Nd

(Ydj), ed = col
1≤j≤Nd

(edj), Xd = col
1≤j≤Nd

(x′
dj).
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Then, the vectors yd , d = 1, . . . , D, are independent with yd ∼ N(µd,Vd), where

µd = Xdβ and Vd = σ2
u1Nd

1′
Nd

+ σ2
e INd

. (16)

Here, 1k denotes a column vector of ones of size k and Ik is the k × k identity matrix.

Consider the decomposition of yd into sample and out-of-sample elements yd = (y′
ds,y

′
dr)

′

when nd > 0, and the corresponding decomposition of Xd , µd and Vd . Then the distribution of

ydr given the sample data yds is

ydr|yds ∼ N(µdr|s,Vdr|s), (17)

where

µdr|s = Xdrβ + σ2
u1Nd−nd

1′
nd

V−1
ds (yds − Xdsβ), (18)

Vdr|s = σ2
u(1 − γd)1Nd−nd

1′
Nd−nd

+ σ2
e INd−nd

, (19)

for Vds = σ2
u1nd

1′
nd

+ σ2
e Ind

and γd = σ2
u(σ

2
u + σ2

e /nd)
−1. Note that ydr|yds and ydr|ys have

the same distribution due to the independence of yd , d = 1, . . . , D. We have assumed that the

partition of �d into sd and rd is known and that the explanatory variables xdj associated with

j ∈ rd are known.

Observe that the application of the Monte Carlo approximation (13) involves simulation of

D multivariate Normal vectors ydr of sizes Nd − nd , d = 1, . . . , D, from (17). Then this process

has to be repeated L times, something computationally very intensive and even unfeasible for

large Nd . This can be avoided by noting that the matrix Vdr|s, given by (19), corresponds to the

covariance matrix of a vector ydr generated by the model

ydr = µdr|s + vd1Nd−nd
+ ǫdr, (20)

with new random effects vd and errors ǫdr that are independent and satisfy

vd ∼ N{0, σ2
u(1 − γd)}, d = 1, . . . , D, and ǫdr ∼ N(0Nd−nd

, σ2
e INd−nd

).

Using (20), instead of generating a multivariate normal vector ydr of size Nd − nd , we need

to generate only univariate normal variables vd ∼ N{0, σ2
u(1 − γd)} and εdj ∼ N(0, σ2

e ) inde-

pendently, for j ∈ rd , and then obtain the corresponding elements Ydj , j ∈ rd , from (20) using

µdr|s given by (18). As mentioned before, in practice the model parameters θ = (β′, σ2
u, σ2

e )
′ are

replaced by suitable estimators θ̂ = (β̂
′
, σ̂2

u, σ̂2
e )

′, and then the variables Ydj are generated from

the corresponding estimated normal distributions.

If a domain d is not sampled, then Y
(ℓ)
dj , for j = 1, . . . , Nd , are generated by bootstrap from

Ydj = x′
djβ̂ + u∗

d + e∗
dj where u∗

d ∼ iid N(0, σ̂2
u) and e∗

dj ∼ iid N(0, σ̂2
e ), and u∗

d is independent

of e∗
dj . Formula (13) is then used to get the estimator F̂EB

αdj of Fαdj and the EB estimator Fαd as

F̂
EB
αd = N−1

d

Nd
∑

j=1

F̂
EB
αdj (21)

The estimator (21) is essentially a synthetic estimator since no sample observations are available

from domain d if nd = 0.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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5. PARAMETRIC BOOTSTRAP MSE ESTIMATOR

The model MSE of F̂EB
αd is given by

MSE(F̂EB
αd ) = Eξ(F̂

EB
αd − Fαd)

2, (22)

where Eξ denotes expectation with respect to the super-population model ξ. Note that here the

target parameter Fαd is a random variable, so the usual decomposition of the MSE in terms of

squared bias and variance of F̂EB
αd does not hold. However, (22) can be decomposed as

MSE(F̂EB
αd ) = Vξ(F̂

EB
αd − Fαd) +

{

Eξ(F̂
EB
αd − Fαd)

}2
, (23)

where Vξ denotes model variance and Eξ(F̂
EB
αd − Fαd) is the model bias of F̂EB

αd . Since the model

bias of the “best” estimator F̂B
αd is exactly zero, the squared bias of the “empirical best” estimator

F̂EB
αd in (23) is typically very small relative to the variance of the prediction error F̂EB

αd − Fαd

when D is large. In this case, the MSE is dominated by the variance term in (23).

Analytical approximations to theMSE are difficult to derive in the case of complex parameters

such as the FGT poverty measures. We therefore obtain a parametric bootstrap MSE estimator

by following the bootstrap method for finite populations of González-Manteiga et al. (2008).

This bootstrap method can be readily applied to other complex parameters not necessarily of the

separable form as the FGT measures. Steps for implementing this method are now given.

Step 1. Fit model (15) to sample data (ys,Xs) and obtain estimators β̂, σ̂2
u and σ̂2

e of β, σ2
u and

σ2
e respectively, using a suitable method; in Section 7 we used REML method.

Step 2. Generate u∗
d ∼ iid N(0, σ̂2

u), d = 1, . . . , D and, independently, generate

e∗
dj ∼ iid N(0, σ̂2

e ), j = 1, . . . , Nd , d = 1, . . . , D.

Step 3. Construct the bootstrap superpopulationmodel ξ∗ usingu∗
d , e

∗
dj ,xdj , j = 1, . . . , Nd and β̂:

ξ∗ : Y∗
dj = x′

djβ̂ + u∗
d + e∗

dj, j = 1, . . . , Nd, d = 1, . . . , D. (24)

Step 4. Under the bootstrap superpopulationmodel (24), generate a large numberBof independent

and identically distributed bootstrap populations {Y
∗(b)
dj ; j = 1, . . . , Nd, d = 1, . . . , D}

and calculate bootstrap population parameters F
∗(b)
αd = N−1

d

∑Nd

j=1 F
∗(b)
αdj , where

F
∗(b)
αdj = hα(Y

∗(b)
dj ), b = 1, . . . , B.

Step 5. From each bootstrap population b generated in Step 4, take the sample with the

same indices s ⊂ � as the initial sample, and calculate the bootstrap EBPs, F̂
EB∗(b)
αd ,

b = 1, . . . , B, as described in Sections 3 and 4 using the bootstrap sample data y∗
s and

the known population values xdj .

Step 6. A Monte Carlo approximation to the theoretical bootstrap estimator MSE∗(F̂
EB∗
αd ) =

Eξ∗{(F̂EB∗
αd − F∗

αd)}
2 of F̂EB

αd is calculated as

mse∗(F̂
EB
αd ) =

1

B

B
∑

b=1

(F̂
EB∗(b)
αd − F

∗(b)
αd )2. (25)

The estimator (25) is used to estimate MSE(F̂EB
αd ) given in (22).

The double bootstrap method of Hall and Maiti (2006) could provide a better MSE estimator

in terms of relative bias, but for large populations this method might not be computationally

feasible.
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We now provide a heuristic justification for the proposed bootstrap MSE estimator (25),

by showing that the bootstrap population model ξ∗ in (24), given the original sample data ys,

preserves the properties of the original population model ξ in (15). It follows from the properties

of u∗
d and e∗

dj that the bootstrap vectorsy
∗
d , analogous toyd for the original model, are independent

with y∗
d ∼ N(µ̂d, V̂d), where

µ̂d = Xd β̂ and V̂d = σ̂2
u1Nd

1′
Nd

+ σ̂2
e INd

. (26)

The consistency of the parameter estimators β̂, σ̂2
u and σ̂2

e to the true values β, σ2
u and σ2

e ensure

the consistency of the moments in (26) of bootstrap vectors y∗
d to their counterparts of the original

vectors yd given in (16). Thus, the distribution of the bootstrap population vectors y∗
d (given the

sample data ys) tracks the distribution of the original population vectors yd .

6. ELL METHOD

The method of Elbers, Lanjouw & Lanjouw (2003), called ELL method or World Bank (WB)

method, assumes a nested error linear regression model on the transformed population values,

Ydj , similar to (15) but using random cluster effects, where the clusters may be different from the

small areas. In fact, the small areas are not specified in advance. To make it comparable with the

EB method described earlier, here we assume that the clusters are the same as the small areas.

Then this method basically uses the bootstrap population model ξ∗ given by (24) and generates A

bootstrap “censuses” {Y
∗(a)
dj ; j = 1, . . . , Nd, d = 1, . . . , D}, for a = 1, . . . , A. Note that the ELL

census values do not contain the observed sample data in contrast to the EB method described in

Remark 2.

Then, similarly as in Section 3, the bootstrap population measures F
∗(a)
αd are calculated from

each bootstrap census a and the ELL estimator of Fαd is given by

F̂
ELL
αd =

1

A

A
∑

a=1

F
∗(a)
αd =: F

∗(·)
αd . (27)

For a non-sampled area d, the ELL estimator (27) is essentially equivalent to our synthetic EB

estimator (21). Regardless of whether area d is a sampled area or not, note that (27) is a Monte

Carlo approximation to Eξ∗(F
∗
αd).

The MSE of F̂ELL
αd is then estimated as

mse(F̂ELL
αd ) =

1

A

A
∑

a=1

(F
∗(a)
αd − F

∗(·)
αd )2,

which is an approximation to Vξ∗(F
∗
αd) = Eξ∗{F∗

αd − Eξ∗ (F∗
αd)}

2.

To illustrate the ELL method, consider the special case of estimating the area mean of

the transformed variables, Ȳd = N−1
d

∑Nd

d=1 Ydj , assuming that all the model parameters, β,

σ2
u and σ2

e are known. In this case Ȳ∗
d = X̄dβ + u∗

d + Ē∗
d , where X̄d = N−1

d

∑Nd

j=1 x′
dj and

Ē∗
d = N−1

d

∑Nd

j=1 e∗
dj . Hence, Eξ∗ (Ȳ∗

d ) = X̄dβ noting that Eξ∗ (u∗
d) = 0 and Eξ∗ (e∗

dj) = 0. There-

fore, the ELL estimator of Ȳd is essentially a regression synthetic estimator, X̄dβ, which is

considerably less efficient than the EBP of Ȳd when σ2
u is not small relative to σ2

e /nd (Rao, 2003,
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Chapter 7). Moreover,

Vξ∗ (Ȳ∗
d ) = Eξ∗ (Ȳ∗

d − X̄dβ)
2 = σ2

u +
σ2

e

Nd

,

which coincides with the model variance of the true area mean,

Vξ(Ȳd) = Eξ(ud + Ēd)
2 = σ2

u +
σ2

e

Nd

,

where Ēd = N−1
d

∑D
d=1 edj , so that the ELL estimator of the MSE is tracking Vξ(Ȳd).

7. SIMULATION EXPERIMENTS

7.1. Model-Based Simulation Experiment

A model-based simulation study has been carried out to study the performance of the proposed

EBPs of small area FGT poverty measures with α = 0 (poverty incidence) and α = 1 (poverty

gap). For this, we simulated populations of size N = 20,000, composed of D = 80 areas with

Nd = 250 elements in each area d = 1, . . . , D. The response variables for the population units

Ydj were generated from the model (15) taking as auxiliary variables two dummies X1 ∈ {0, 1}

and X2 ∈ {0, 1} plus an intercept. The values of these two dummies for the population units were

generated from Bernouilli distributions with success probabilities increasing with the area index

for X1 and constant for X2; more specifically, with probabilities

p1d = 0.3 +
0.5d

80
; p2d = 0.2, d = 1, . . . , D,

respectively. Here the welfare variables Edj are exponential functions of the responses Ydj; that

is, the transformation T (·) defined in Section 3 is T (x) = log(x). A set of sample indices sd
with nd = 50 was drawn independently in each area d using simple random sampling without

replacement. The values of the auxiliary variables for the population units and the sample indices

were kept fixed over all Monte Carlo simulations.

The intercept and the regression coefficients associated with the two auxiliary variables used

to generate populations were β = (3, 0.03, −0.04)′. In this way, the mean welfare increases when

moving from the case (X1 = 0, X2 = 0) to (X1 = 1, X2 = 0), but decreases when moving from

(X1 = 0, X2 = 0) to (X1 = 0, X2 = 1). This implies that the “less poor” individuals are those

with values X1 = 1 and X2 = 0. Since the probability p1d of X1 = 1 increases with the area

index but that of X2 = 1 is constant, then the last areas will have more individuals with larger Ydj

and then the FGT poverty measures will decrease with the area index. The random area effects

variance was taken as σ2
u = (0.15)2 and the error variance as σ2

e = (0.5)2. The poverty line z was

fixed as z = 12, which is roughly equal to 0.6 times the median of the welfare variables Edj for

a population generated as mentioned above. In this way, the poverty incidence for the simulated

populations is approximately 16%.

Under this setup, I = 104 population vectors y(i) were generated from the true model. For

each population i, we carried out the following tasks:

(a) The true area poverty incidences and gaps (FGT measures for α = 0 and α = 1 respectively)

were obtained for each population as

F
(i)
αd =

1

Nd

Nd
∑

j=1

F
(i)
αdj, d = 1, . . . , D,
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where

F
(i)
αdj =

(

z − E
(i)
dj

z

)α

I(E
(i)
dj < z), E

(i)
dj = exp(Y

(i)
dj ), j = 1, . . . , Nd .

(b) A direct estimator of F
(i)
αd for each area d and α = 0, 1 was calculated as

F̂
(i)
αd =

1

nd

∑

j∈sd

F
(i)
αdj, d = 1, . . . , D.

(c) Model (15) was fitted to the sample data (y
(i)
s ,Xs) for each population i. Then, substituting the

estimatedmodel parameters in (18) and (19),L = 50out-of-sample vectorsy(iℓ)
r , ℓ = 1, . . . , L

were generated from the conditional distribution (17) using (20). The sample data y
(i)
s was

attached to the generated out-of-sample data y(iℓ)
r to form a population vector y(iℓ). The area

FGT poverty measures for α = 0, 1 were calculated from each population y(iℓ) as

F
(iℓ)
αd =

1

Nd





∑

j∈sd

F
(i)
αdj +

∑

j∈rd

F
(iℓ)
αdj



 , d = 1, . . . , D,

where for sample units j ∈ sd , F
(i)
αdj was already obtained in (a), while for out-of-sample units

j ∈ rd , F
(iℓ)
αdj is calculated as

F
(iℓ)
αdj =

(

z − E
(iℓ)
dj

z

)α

I(E
(iℓ)
dj < z), E

(iℓ)
dj = exp(Y

(iℓ)
dj ), j ∈ rd .

Then the EB predictor of Fαd was calculated for each d and α = 0, 1 as

F̂
EB(i)
αd =

1

L

L
∑

ℓ=1

F
(iℓ)
αd .

(d) ELL estimators of the FGT poverty measures for α = 0, 1 were also calculated. For this, first

model (15) was fitted to the sample data (y
(i)
s ,Xs) and then A = 50 populations or censuses

were generated using the parametric bootstrap described in Section 5. For each population,

the poverty measures were calculated and finally, the results were averaged over the A = 50

populations, as described in Section 6, to calculate the ELL estimators F̂
ELL(i)
αd , d = 1, . . . , D,

for each i.

Remark 3. We used L = A = 50 for the EB and ELL methods in the simulation study. In

practical applications of the ELL method, the choice of A ranged from 50 to 100. As for the EB

method, a limited comparison with the values for L = 50 and L = 1,000 showed that the choice

L = 50 gives fairly accurate results. In practice, however, when applying the EB method to a

given sample data set, it is advisable to use larger values of L such as L ≥ 200.
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Figure 1: (a) Bias (×100) and (b)MSE (×104) over simulated populations of EB, direct and ELL estimators
of the poverty gap F1d for each area d. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Means over Monte Carlo populations i = 1, . . . , I of the true values of the FGT poverty

measures of order α = 0, 1 were computed as

E(Fαd) =
1

I

I
∑

i=1

F
(i)
αd, d = 1, . . . , D.

Similarly, biases over Monte Carlo populations of the three estimators, E(F̂EB
αd ) − E(Fαd),

E(F̂αd) − E(Fαd), and E(F̂ELL
αd ) − E(Fαd), along with corresponding MSEs E(F̂EB

αd − Fαd)
2,

E(F̂αd − Fαd)
2, and E(F̂ELL

αd − Fαd)
2, were computed.

Figure 1a and b reports, respectively, the biases and theMSEs of the estimators for the poverty

gap (α = 1). Figure 1a shows that the EB estimator has the smallest absolute bias followed by

ELL and the direct estimator, but compared to the corresponding values of MSE (Figure 1b)), the

square of themodel bias is negligible for all the three estimators. Hence, theMSE of the estimators

considered here is dominated by themodel variance of the prediction error, as explained in Section

5. It is clear from Figure 1b that the EB estimator is significantly more efficient than ELL and

direct estimators. Surprisingly, Figure 1b also reveals that the ELL estimator is less efficient than

the direct estimator, showing that the prediction error variance is larger for the ELL method.

Results for the poverty incidence (α = 0) were similar and are not reported here.

Turning to MSE estimation, the parametric bootstrap procedure described in Section 5 was

implemented with B = 500 replicates and the results are plotted in Figure 2 for the poverty gap

(α = 1). The number of Monte Carlo simulations was I = 500 and the true values of the MSE

were independently computed with I = 50,000 Monte Carlo simulations. Figure 2 shows that the

bootstrap MSE estimator tracks the pattern of the true MSE values. Similar results were observed

for the poverty incidence (α = 0).

7.2. Design-Based Simulation Experiment

A design-based simulation experiment was also carried out to study the performance of estimators

over repeated samples drawn from a fixed population. Only one population was generated in the

same way as in Section 7.1, with the same population and sample sizes, and using the same values

of model parameters. Then, in each replication out of I = 1,000, a new sample was drawn from

this fixed population according to SRS without replacement within each area. From each sample,

the three types of estimators of poverty measures, namely EB, direct and ELL were obtained.
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Figure 2: True MSE (×104) of EB estimators of poverty gap (α = 1) and bootstrap MSE estimate
with B = 500 for each area d. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 3: (a) Bias (×100) and (b) MSE (×104) of EB, direct and ELL estimators of the poverty gap F1d for
each area d under the design-based setup. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

Results on the design bias and design MSE of the estimators for poverty gap (α = 1) are

reported in Figure 3a and b, respectively. As expected, Figure 3a shows that the Monte Carlo

design bias of the direct estimator is practically zero, followed by EB and ELL estimators. In

terms of MSE, Figure 3b shows that ELL estimators have small MSEs for some of the areas and

very large for other areas, while the MSE of EB and direct estimators remain small for all areas.

For most areas, the MSE of EB estimator is smaller than that of direct estimator.

8. APPLICATION

The EBmethodwas applied to compute poverty incidences and poverty gaps by gender in Spanish

provinces. For this, data from the European Survey on Income and Living Conditions (EUSILC)
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Table 1: Population size, sample size, direct and EB estimates of poverty incidences (×100), estimated

MSEs of direct and EB estimators (×104) and CVs of direct and EB estimators (×100) for the Spanish

domains with sample size closest to minimum, first quartile, median, third quartile, and maximum.

Province Gen Nd nd F̂w
0d F̂EB

0d var(F̂w
0d) mse∗(F̂

EB
0d ) cv(F̂w

0d) cv(F̂EB
0d )

Soria F 17,211 17 60.41 31.48 158.6708 27.0518 20.85 16.52

Tarragona M 264,627 129 12.46 14.86 8.5695 5.7605 23.50 16.15

Córdoba F 364,583 230 30.66 33.32 10.7598 5.0252 10.70 6.73

Badajoz M 351,985 472 36.58 36.56 6.1853 1.7031 6.80 3.57

Barcelona F 2,752,431 1,483 10.82 13.10 0.6605 0.4944 7.51 5.37

from the year 2006 has been used. The welfare variable for the individuals is the equivalized

annual net income calculated following the standard procedure of the Spanish Statistical Insti-

tute (INE). This variable has been transformed by adding a fixed quantity to make it always

positive and then taking logarithm. This transformed variable acts as the response variable in

the nested-error regression model. As auxiliary variables, we have considered the indicators of

the five quinquennial groupings of the variable age, the indicator of having Spanish nationality, the

indicators of the three levels of the variable education level, and the indicators of the three cate-

gories of the variable employment, with categories “unemployed,” “employed,” and “inactive.”

For each auxiliary variable, one of the categories was considered as base reference, omitting the

corresponding indicator and then including an intercept in the model.

The values of the dummy indicators are not known for the out-of-sample units, but the EB

method requires only the knowledge of the total number of people with the same x-values. These

totals were estimated using the sampling weights attached to the sample units in the EUSILC.

The MSEs of the poverty measures were estimated using the parametric bootstrap estimator

mse∗(F̂
EB
αd ) given by (25) with B = 500 replicates. Values of EB estimators, F̂EB

αd , and associated

coefficients of variation (CVs) for the poverty incidence (α = 0) and the poverty gap (α = 1) are

listed respectively in Tables 1 and 2 for a few representative domains (provinces× gender), where

cv(F̂EB
αd ) = {mse∗(F̂

EB
αd )}1/2/F̂EB

αd . Tables 1 and 2 also show the values of the direct estimator

(4) and the estimated variances following standard formulas in sampling theory, but taking as

observations the quantities Fαdj , j ∈ sd and using the EUSILC sampling weights. Tables with

full results for all domains can be found in Molina and Rao (2009). The CVs of EB estimators

are much smaller than those of the direct estimators for practically all domains. Moreover, the

reduction in CV tends to be greater for domains with smaller sample sizes. National statistical

Table 2: Population size, sample size, direct and EB estimates of poverty gaps (×100), estimated MSEs

of direct and EB estimators (×104) and CVs of direct and EB estimators (×100) for the Spanish domains

with sample size closest to minimum, first quartile, median, third quartile, and maximum.

Province Gen Nd nd F̂w
1d F̂EB

1d var(F̂w
1d) mse∗(F̂

EB
1d ) cv(F̂w

1d) cv(F̂EB
1d )

Soria F 17,211 17 23.46 11.84 122.9756 5.5980 47.27 19.99

Tarragona M 264,627 129 1.95 4.53 0.2800 1.0997 27.15 23.14

Córdoba F 364,583 230 8.01 12.26 1.1694 1.1819 13.50 8.87

Badajoz M 351,985 472 12.59 14.11 1.2979 0.3086 9.05 3.94

Barcelona F 2,752,431 1,483 3.60 3.92 0.1297 0.1027 10.00 8.17
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Figure 4: Cartograms of estimated percent poverty incidences in Spanish provinces for Men and Women.
Canary islands have been moved from their original position in the map to the bottom-right corner. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 5: Cartograms of estimated percent poverty gaps in Spanish provinces forMen andWomen. Canary
islands have been moved from their original position in the map to the bottom-right corner. [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]

offices usually establish a maximum publishable CV. For these data, the estimated CVs of direct

estimators of poverty incidences exceeded the level of 10% for 87 (out of the 104) domains while

those of the EB estimators exceeded this level for only 28 domains. If we increase the level to

20%, then the direct estimators have greater CV for 25 domains but the CVs of EB estimators

exceeded 20% only for one domain.

Cartograms of the estimated poverty incidences and the poverty gaps in Spanish provinces

for males and females have been constructed using the EB estimates, see Figures 4 and 5. In these

maps we can see that the poorer provinces concentrate mainly in the southern and western parts of
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Spain. Provinces with critical poverty incidences (over 30%) for men are, in the south: Almería

and Córdoba; west: Badajoz, Ávila, Salamanca and Zamora and then Cuenca, situated east of

Madrid. For women the poverty incidences increase in most provinces, becoming critical also, in

the south: Granada, Jaén, Albacete and Ciudad Real, and in the north: Palencia and Soria. The

poverty level for Lleida (north-east) seems unexpected considering that this province belongs to

the region of Catalonia, which is commonly considered as a “richer” region.

The poverty gapmeasures the degree of poverty instead of the number of people under poverty.

For a region with many people whose income is under the poverty line but very close to it, the

poverty gap will be close to zero. Observe that the provinces with an income of over 12.5% under

the poverty line are also among those provinces with critical values of poverty incidence, except

for the northern provinces such as Lérida, which do not have significant gaps in comparison with

the rest of the provinces.

9. CONCLUSIONS

In this paper Empirical Best (EB) methodology to estimate poverty measures for small areas

is proposed. A parametric bootstrap method is used for mean squared error (MSE) estimation.

Simulation results show good performance of EB estimators in comparison with direct and ELL

estimators.

Model (20) illustrates a parallelism between ELL and EB methods. When the clusters in

ELL method are taken to be equal to the small areas, ELL method generates a full population

or census file of responses Ydj from the bootstrap model (24). Then the poverty measure is

calculated from this census file. The bootstrap procedure is replicated several times and the

computed poverty measures are averaged over bootstrap replications. The EBmethod also creates

new census files, but first plugging in the observed sample elements Ydj in their corresponding

place, and then generating only the out-of-sample values from the conditional model (20). The

main difference between model (20) and bootstrap model (24) used for the ELL method is the

term σ2
u1Nd−nd

1′
nd

V−1
ds (ys − Xsβ) appearing in the conditional mean given in (18). The rest of

the procedure is the same as in the ELL method. Thus, this term provides an improvement for

sampled areas that are not fully explained by auxiliary variables and therefore reduces the MSE

of estimators significantly.

Note that the ELLmethod uses the census valuesxdj , j ∈ �d without requiring the knowledge

of the partition into sd and rd , unlike our EBmethod. This feature of ELLmethodmay be attractive

to users since the users are not required to identify the non-sampled xdj in the census x-file. But,

as shown in Section 7, the ELLmethod pays a heavy price for sampled areas in terms of efficiency

and it can be even less efficient than a direct area-specific estimator.

We remark that EB is a model-based method that relies on the validity of the model. Thus,

model selection procedures and model diagnostics are essential in the practical application of this

methodology.

In simulations, EBmethod has also been applied to estimate various other small areameasures,

including non-separable functions such as quantiles and the Gini coefficient. The conclusions

drawn here with respect to bias and MSE of EB estimators in comparison to direct and ELL

estimators seem to hold also for other measures.

Wehave alsodevelopedhierarchicalBayes (HB)methods, jointlywithB.Nandram, formaking

inferences on poverty indicators and other measures for small areas, using an efficient Bayesian

sampling-based approach for nested error linear regression models. HB methods provide “exact”

inferences via the posterior distribution of the desired population measures, including posterior

credible intervals on the parameters of interest. These results will be reported in a separate paper.

We are also studying the use of survey weights by developing pseudo-EB estimators, similar to

those of You and Rao (2002) and Jiang and Lahiri (2006), for the area means.
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