
University of Wollongong University of Wollongong 

Research Online Research Online 

Centre for Statistical & Survey Methodology 
Working Paper Series 

Faculty of Engineering and Information 
Sciences 

2009 

Small Area Estimation of Proportions in Business Surveys Small Area Estimation of Proportions in Business Surveys 

Hukum Chandra 
University of Wollongong, hchandra@uow.edu.au 

R. Chambers 
University of Wollongong, ray@uow.edu.au 

N. Salvati 
University of Pisa 

Follow this and additional works at: https://ro.uow.edu.au/cssmwp 

Recommended Citation Recommended Citation 
Chandra, Hukum; Chambers, R.; and Salvati, N., Small Area Estimation of Proportions in Business Surveys, 
Centre for Statistical and Survey Methodology, University of Wollongong, Working Paper 15-09, 2009, 22p. 
https://ro.uow.edu.au/cssmwp/35 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/cssmwp
https://ro.uow.edu.au/cssmwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/cssmwp?utm_source=ro.uow.edu.au%2Fcssmwp%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages


Copyright © 2008 by the Centre for Statistical & Survey Methodology, UOW. Work in progress, 
no part of this paper may be reproduced without permission from the Centre. 
 

Centre for Statistical & Survey Methodology, University of Wollongong, Wollongong NSW 
2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: anica@uow.edu.au 

 
 
 
 

Centre for Statistical and Survey Methodology 

 

The University of Wollongong 
 
 
 

Working Paper 
 
 

15-09 
 

 
Small Area Estimation of Proportions in Business Surveys 

 
 
 

Hukum Chandra, Ray Chambers, Nicola Salvati 
 
 

 



 1 

Small Area Estimation of Proportions in Business Surveys 
 

Hukum Chandra  
Indian Agricultural Statistics Research Institute, 

Library Avenue, PUSA Campus, New Delhi-110012, India 
Phone 0091-11-25841475, Fax 0091-11-25841564 

Email: hchandra@iasri.res.in 
 

Ray Chambers 
Centre for Statistical and Survey Methodology, 

 University of Wollongong, Wollongong, NSW, 2522, Australia 
 Email: ray@uow.edu.au 

 
Nicola Salvati 

Dipartimento di Statistica e Matematica Applicata all'Economia 
 University of Pisa, Via Ridolfi, 10, 56124 - Pisa, Italy 

E-mail: salvati@ec.unipi.it 
 
 

 

ABSTRACT 

 

Binary data are often of interest in business surveys, particularly when the aim is to 

characterise grouping in the businesses making up the survey population. When small area 

estimates are required for such binary data, use of standard estimation methods based on 

linear mixed models becomes problematic. We explore two model-based techniques of small 

area estimation for small area proportions, the empirical best predictor (EBP) under a 

generalized linear mixed model and the model-based direct estimator (MBDE) under a 

population level linear mixed model. Our empirical results show that both the MBDE and the 

EBP perform well. The EBP is a computationally intensive method, whereas the MBDE is 

easy to implement. In case of model misspecification, the MBDE also appears to be more 

robust. The mean squared error (MSE) estimation of MBDE is simple and straightforward, 

which is in contrast to complicated MSE estimation for the EBP.  

 

KEY WORDS: Small area proportions, model-based direct estimation, generalised linear 

mixed model, empirical best predictor. 
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1.  Introduction 

The demand of reliable statistics for population characteristics at disaggregated geographical 

levels (small areas), when only reduced sample sizes are available, has promoted the 

development of statistical methods for small area estimation (SAE). Conventional estimates 

for small area quantities based on survey data alone are often unstable because of sample size 

limitations. From this perspective, model-based methodologies allow for the construction of 

efficient estimators and their confidence intervals by borrowing the strength through use of a 

suitable model. Small area models make use of explicit linking models based on random 

area-specific effects that take into account between areas variation beyond that explained by 

auxiliary variables included in the model. For continuous response variables, the empirical 

best linear unbiased predictor (EBLUP) approach under the linear mixed model (LMM) is 

very common and is known to be efficient for small area estimation, see Rao (2003). Chandra 

and Chambers (2005, 2009) described the model-based direct estimation (MBDE) method of 

SAE. The MBDE is a weighted linear estimator for small areas, defined by using sample 

weights derived under a population level LMM. By construction, the MBDE is a direct 

estimator and so enjoys the model robustness properties of this class of estimators. It is 

noteworthy that weights used to define the MBDE ‘borrow strength’ via a model that 

explicitly allows for small area effects. Besides ease of implementation, the MBDE is robust 

under model misspecifications. However, this robustness can be at the price of increased 

variability. 

In this paper we consider the situation where the variable of interest is binary and small 

area estimates are required. Use of standard estimation methods based on linear mixed 

models (e.g. the EBLUP) becomes problematic in this case. The empirical best predictor 

(EBP) under a generalized linear mixed model (GLMM) with logistic link function is often 

used for SAE based on such data; see Rao (2003) and Saei and Chambers (2003). We observe 



 3 

that the EBP is model dependent and will be efficient if the model assumptions hold. 

However, a major difficulty in use of GLMM for SAE is that the likelihood function often 

involves high dimensional integrals (computed by integrating a product of discrete and 

normal densities, which has no analytical solution), which are difficult to evaluate 

numerically. Although computationally attractive alternatives to the likelihood method are 

available, they can suffer from inconsistency (Jiang, 1998). In context of SAE, mean squared 

error (MSE) estimation for EBP is an outstanding problem because the analytical form of 

MSE cannot be calculated explicitly (Manteiga at el., 2007), although an approximate MSE 

of the EBP can be derived (Saei and Chambers, 2003). An option in this case is to use re-

sampling methods, but these are computationally intensive. 

An alternative is to ignore the deficiency of the LMM and proceed as if a linear model 

does hold. This option is relatively simple and cheap to implement. However, it sidesteps the 

issues that the LMM is incorrect. Given that the MBDE approach has been shown to be 

model-robust in a number of empirical applications (Chandra and Chambers 2005, 2009 and 

Chandra et al. 2007), it can be expected to produce reasonable results in this case. 

This paper explores two model-based techniques of SAE for small area proportions, the 

empirical best predictor under a GLMM and the model-based direct estimator under a 

population level LMM. In particular, we examine the application of linear assumption based 

MBDE to binary data and compare its performance with the EBP via simulation studies using 

real data sets. 

The rest of the paper is organised as follows. The next section introduces the linear 

mixed model and the generalised linear mixed model, associated estimators for small area 

proportions and their mean squared error estimators. In the section 3 we then report empirical 

results and provide a discussion. Finally, section 4 concludes the paper with major findings 

and further research prospects. 
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2.  Small Area Estimation of Proportions 

In this section we introduce the generalised linear mixed model (GLMM) and linear mixed 

model (LMM). We then describe related estimators for small area quantities based on these 

models and their mean squared error (MSE) estimation. In particular, we focus on a binary 

response variable with aim of estimating the population proportions for the variable of 

interest in small areas and as well as estimates for the MSEs of these estimated proportions. 

 

2.1 The Empirical Best Predictor for the Small Areas 

GLMMs are widely used for the development of indirect estimates for small areas when the 

response data are non-normal. Indirect estimators for small area quantities under GLMMs are 

often known as empirical best predictors (EBPs). 

To start with, let us denote the finite population size by N and assume that it is 

partitioned into D non-overlapping sub-groups (or small areas),  Ui  each of sizes  Ni  with 

  i = 1,..., D  such that 
  
N = Nii=1

D
. Let j and i respectively index units within small areas, 

 
yij  

is the survey variable of interest (typically a binary variable), known for sampled units, 
  
xij  is 

the vector of auxiliary variables (including the intercept), known for the whole population. 

Let  si  and  ri  respectively denotes the sample (of size  ni ) and non-sample (of size Ni ni ) in 

small area i. The objective is to make inference about the small area  i  population 

proportions, 
  
pi = Ni

1 y jj Ui
 
  
= Ni

1 y jj si
+ y jj ri

{ } . Let 
 ij  be the probability that 

  
yij = 1. Let  ui  denote the random area effect for the small area i, assumed to be normally 

distributed with mean zero and variance . We assume that  ui ’s are independent and 

  
yij | ui Bin(1, ij )  with 

  
E( yij | ui ) = μij = ij  and 

  
Var( yij | ui ) = ij   

= ij (1 ij ) . A popular 
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model for this type of data is the GLMM with logistic link function, also referred as the linear 

logistic mixed model (LLMM), given by  

 
   
logit( ij ) = log ij (1 ij ){ } = ij = x ij + ui , j = 1,...., Ni;i = 1,..., D  (1) 

where   ( p 1)  is the vector of regression parameters. 

In the small area estimation literature, it is common practice to express the model (1) at 

the population level as follows (Rao, 2003, Chapter 6). Let   yU  be the   N 1 vector of 

response variable with elements 
  
yij  ( j = 1,...., Ni;i = 1,..., D) ,   XU  be the  N p  known 

design matrix with rows 
  
xij , 

   
GU = diag(1Ni

;1 i D)  is the known matrix of order  N D , 

  
1Ni

 is a column vector of ones of size  Ni ,    u = (u1,...,uD )  and  U  denotes the   N 1 vector 

of linear predictors 
 ij  given by (1). We define    μ = E(yU | u)  the conditional mean function 

of the response vector   yU  given  u  with elements 
 
μij  and 

   
Var(yU | u) = diag{ ij} the 

conditional covariance matrix. Let   g( )  be a monotonic link function (McCullagh and 

Nelder, 1989, page 27), such that   g(μ)  can be expressed in terms of a linear model of form 

    g(μ) = U = XU + GU u . (2) 

The equation (2) then defines a GLMM if   yU  given μ  are independent and belong to the 

exponential family of distributions. The vector of random area effects u has mean 0 and 

variance    ( ) = ID , where   ID  is the identity matrix of order D. For a binary response, the 

link function   g( )  is typically a logit function, see (1). The relationship between yU  and  U  

is therefore represented through a known function   h( ) , defined by    E(yU | u) = h( U ) . 

Suppose that our interest is in predicting the vector of linear parameters for small areas 

  = aU yU , where    aU = diag{a ii ,i = 1,.., D}  is a  D N  matrix and 
   
a i = (ai1,...,aiNi

)  is a vector 

of known elements. In particular, for estimation of a population proportion  pi  for small area 
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i,   a i  denotes the population vector with value   Ni
1  for each population unit in area i and zero 

elsewhere. Without loss of generality, we arrange the vector   yU  so that its first n elements 

correspond to the sampled units, and then partition   aU , yU ,  U ,   XU  and   GU  according to 

sample and non-sample units as 

 
  
aU =

a s

a r

, 
  
yU =

ys

yr

, 
 

U =
s

r

, 
  
XU =

Xs

Xr

 and 
  
GU =

Gs

Gr

. 

Here a subscript of s denotes components defined by the n sample units while a subscript of r 

is used to denote components defined by the remaining  N n  non-sample units. We then 

write    E(ys | u) = h( s )  and   E(yr | u) = h( r ) . Typically,   h( )  is obtained as   g
1( ) . The 

parameter of interest   = aU yU  can be expressed as  

    = a sys + a ryr = a sys + a rh(Xr + G ru) . (3) 

The vector   ys  of sample values is known, whereas the second term in the right hand side of 

(3), which depends on the non-samples values    yr = h(Xr + G ru) , is unknown and can be 

predicted by fitting the model (3) to the sample data. In this paper 
   
ys = {ysij}  denotes the 

vector of sample values of the binary survey variable y, e.g.   y = 1 if the consumption 

expenditure per household is less than a poverty line, 0 otherwise. Similarly, 
   
yr = {yrij} 

represents the vector of non-samples values of the survey variable. The parameter of interest 

 pi  for each small area can then be obtained by predicting each element of 
  
{yrij} .  

For known ( ) , the values of  and  u  are estimated from the sample data by 

Penalized Quasi-Likelihood (PQL) under model (3) (Breslow and Clayton, 1993). This gives 

the best linear unbiased estimate (BLUE) for  and the best linear unbiased predictor 

(BLUP) for  u . Using (3) we then obtain the BLUP-type estimator of . In practice ( )  is 

unknown and the vector of variance components  is estimated from the sample data. Using 
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the estimated value  ˆ  of the  leads to the empirical BLUE  
ˆ  for  and the empirical 

BLUP   û  for  u  and thus the empirical BLUP type estimator of , which is given by    

    
ˆ = a sys + a rh(Xr

ˆ + G rû) . (4) 

As mentioned in the previous section, fitting a GLMM involves evaluating a likelihood 

function that does not have close form analytical expression. Several approximations to this 

likelihood function and approximate maximum likelihood estimators have been proposed in 

the literature. In particular, the PQL approach is a popular estimation procedure for the 

GLMM that is based on a linear approximation to the non-normal response variable, which is 

then assumed to have an approximately normal distribution. This approach is reliably 

convergent but tends to underestimate variance components as well as fixed effect 

coefficients (Breslow and Clayton, 1993). McGilchrist (1994) introduced the idea of using 

BLUP to obtain approximate restricted maximum likelihood (REML) estimates for GLMMs. 

This link between BLUP and REML is described in Harville (1977) for the normal case. Saei 

and Chambers (2003) described an iterative procedure to obtained Maximum Penalized 

Quasi-Likelihood (MPQL) estimates of  and  u  for given . At convergence, the MPQL 

estimate of  is obtained by substituting the converged values of  and  u . However, in 

practice the variance components parameters defining the matrix  are unknown and have to 

be estimated from sample data. The MPQL estimates of these variance components are 

biased and so this approach is not recommended in the practice. Alternative estimates based 

on ML and REML can be defined. In particular, the bias in the REML estimates is typically 

small. An iterative procedure that combines the MPQL estimation of  and  u  with REML 

estimation of  is described in Saei and Chambers (2003). In the empirical results reported 

in section 3, we adopted this algorithm for parameter estimation. 
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Turning now to estimation of mean squared error of the EBLUP-type predictor (4) we 

put 
   
Hr = H( ˆ

r ) = h( r ) r
r = ˆr

 and 
   
B̂s =

2l1 s s
s = ˆs

, the matrix of second 

derivatives of   l1  (the log-likelihood function   l1  defined by the vector   ys  given u) with respect 

to  s  at   s =
ˆ

s . Similarly, we put 
   
B̂r =

2l1 r r
r = ˆr

. We write    X r
*
= a rHr X r  and 

    Gr
*
= a rHrGr . An approximate estimate of the mean squared error for the EBLUP-type 

estimator (4) (see Saei and Chambers, 2003; Manteiga et al., 2007) is then 

   mse( ˆ ) = m1(
ˆ ) + m2 ( ˆ ) + 2m3(

ˆ ) + m4 ( ˆ )  (5) 

where  

   m1(
ˆ ) = Gr

*
T̂sGr

* with    T̂s = ( ˆ 1
+ GsB̂sGs )

1 , 

    
m2 ( ˆ ) = Cr X sB̂s X s X sB̂sGsT̂sGsB̂s X s( )

1
Cr , with 

    
Cr = X r

*
Gr

*
T̂sGsB̂s X s{ } , 

   
m3(

ˆ ) = tr ( ˆ
t
ˆ

s
ˆ

k )v( ˆ )( ){ } , with     
ˆ

s = GsB̂sGs + GsB̂sGsGsB̂sGs , and  

   m4 ( ˆ ) = a rB̂ra r .  

Let    = Gr
*
T̂s  where    Grt

*  is the tth row of the matrix    Gr
* , then 

  
ˆ

t = ( t ) = ˆ    =
ˆ 2

Grt
*
T̂sT̂s . 

Here    v( ˆ )  is the asymptotic covariance matrix of estimates of variance components  ˆ , which 

can be evaluated as the inverse of the appropriate Fisher information matrix for  ˆ . This 

depends upon whether we are using ML or REML to estimate  ˆ . In this paper we used 

REML estimates for  ˆ . See Saei and Chambers (2003) for these expressions for both ML 

and REML estimates for  ˆ . Using (4) the empirical best predictor (EBP) for the small area i 

proportion  pi  is then 

 
  
p̂i

EBP = Ni
1 yijj si

+ μ̂ijj ri
{ }  (6) 
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where 
  
μ̂ij = exp( ˆ

ij ){1+ exp( ˆ
ij )}

1
= ˆ

ij  and 
   
ˆ

ij = x ij
ˆ + ûi . Similarly, replacing   a i  as above, 

we obtain the MSE estimator of (6) from (5). 

 

2.2  The MBDE for Small Area Proportion 

The model-based direct estimation (MBDE) approach to SAE investigated in Chandra and 

Chambers (2005, 2009) is effectively a linear estimation methodology and implicitly assumes 

that the variable of interest follows a LMM. Following the notation of Chandra et al. (2007), 

a brief description of MBDE is as follows. Suppose that the population values follow the 

linear mixed model  

    yU = XU +GU u + eU  (7) 

where    yU = (y1,.....,yD ) ,    XU = (X1 ,......,XD ) , 
    
GU = diag(Gi = 1Ni

;1 i D) , 

   u = (u1,...,uD )  and    eU = (e1,...,eD )  denote partitioning into area components. The 

independence between small areas indicates the covariance matrix of   yU  has block diagonal 

structure,    VU = diag(Vi;1 i D)  with 
   
Vi = 1Ni

1Ni
+ e

2
INi

. In practice the variance 

components that define   VU  are unknown and can be estimated from the sample data using 

methods described, for example, in Harville (1977). We denote these estimates by 

  
ˆ = ( ˆ , ˆ

e
2 )  and put a ‘hat’ on any quantity where these estimates are substituted for actual 

values, e.g.    V̂U = diag(V̂i;1 i D)  and 
   
V̂i =

ˆ1Ni
1Ni

+ ˆ
e
2
INi

. As with (2) we again consider 

the decomposition of different terms into sample and non-sample components and, from 

Royall (1976), we note that the sample weights that define the EBLUP for the population 

total of y  under the population level linear mixed model (7) are then 

    
ws

EBLUP
= (wj

EBLUP ) = 1s + Ĥ XU 1N Xs1s( ) + Is Ĥ Xs( )V̂ss
1
V̂sr1r  (8) 
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where 
   
Ĥ = X isV̂iss

1
X isi( )

1
X isV̂iss

1
i( ) . The model-based direct estimator (MBDE) of 

proportion for small area i is then defined as  

   
p̂i

MBDE
= wij

MBDE y jj s
= (wis

MBDE ) ys  (9) 

where 

  
wij

MBDE
=

I( j si )wj
EBLUP

I(k si )wk
EBLUP

k s

. 

Here   I( j si )  is the indicator function for unit j to be in the area i sample, and 

  
ws

EBLUP
= (wj

EBLUP )  is the vector of weights given by (8). A robust estimator of the MSE of the 

MBDE (9) (Chandra and Chambers, 2009; Royall and Cumberland, 1978) is 

 
  
mse( p̂i

MBDE ) = V̂ar( p̂i
MBDE ) + B̂ias( p̂i

MBDE ){ }
2
. (10) 

The first term on right hand side of (10) is the estimate of prediction variance of the MBDE 

(9), given by 
  
V̂ar( p̂i

MBDE ) = Ni
2 aij

2 + (Ni ni )n
1{ } ˆ

j
1( y j μ̂ j )

2
j s

 with 

  
aij = Niwij

MBDE I( j i) , where I(t) is the indicator function for condition t, and  j i  

corresponds to unit j coming from small area i and 
  
μ̂ j  is an unbiased linear estimator of the 

conditional expected value of 
 
y j  under (7), i.e. of 

    
μ j = x j +G jui; j si . Under (7), 

    
μ̂ j = x j

ˆ +G jûi; j si . Here 
  
ˆ

j  is given by 
  
ˆ

j = 1 2 jj + kj
2

k s
, where the constants 

 kj  

are obtained from writing 
  
μ̂ j  in the form 

  
μ̂ j = kj ykk s

. The second term on the right hand 

side of (10), which is estimate of prediction bias of the MBDE (9), is 

  
B̂ias( p̂i

MBDE ) = wij
MBDE μ̂ jj s

Ni
1 μ̂ jj i

. The MSE estimator (10) is called a robust 

model-based estimator because it does not depend on second order moments assumptions and 

is thus robust to misspecification of the second order moments of the working model. A more 
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detailed discussion of this approach to mean squared error estimation is set out in Chambers 

et al. (2007). 

 

3. Empirical Evaluations  

In this section we present simulation studies that illustrate the performance of the empirical 

best predictor (6) under the GLMM (2), denoted by EBP below, and the MBDE estimator (9) 

under the LMM (7), denoted by MBDE below. 

 

3.1  Data Sets 

We carried out design-based simulation studies using three real data sets. These data are from 

different types of surveys (agricultural, environmental and consumer expenditure), and allow 

us to evaluate the performance of these methods in the context of real populations and 

realistic sampling methods. The three data sets used in the simulations are as follows: 

i) The Australian Agricultural and Grazing Industries Survey (AAGIS) Data. This is based 

on data collected from a sample of 1652 Australian broadacre farms spread across 29 

regions of Australia. These regions are the small areas of interest. A population of N = 

81,982 farms was generated by bootstrapping the original AAGIS sample. That is, the 

1,652 farms in the original AAGIS sample were themselves sampled with replacement N 

times using selection probabilities proportional to a farm’s AAGIS sample weight, where 

the sum of AAGIS sample weights is 81,982. Independent samples of n = 1,652 farms 

were then taken from this population using stratified random sampling, with regions are 

strata and with stratum sample allocations the same as in the original AAGIS sample. The 

y-variable of interest was a binary (0-1) variable, ZeroDebt, which takes the value 1 if 

farm debt is zero for the given farm and value zero otherwise. The total area of the farm in 
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hectares is used as the model covariate (x), and the target is estimation of the proportion of 

ZeroDebt farms in each region.  

ii) The Environmental Monitoring and Assessment Program (EMAP) Data. This data set is 

based on data provided by Space-Time Aquatic Resources Modelling and Analysis 

Program (STARMAP) at Colorado State University. It consists of a sample of 349 lakes in 

the North-Eastern states of the United States, grouped by 6-digit Hydrologic Unit Codes 

(HUC). The HUCs are the regions of interest. There were sample sizes equal to one in 

three of these HUCs, so these regions were combined with neighbouring regions. This 

resulted in 23 small areas, with sample sizes that varied from 2 to 45. We generated a 

population of size N = 21,028 by sampling N times with replacement from the above 

sample data and with probability proportional to a unit’s sample weight; and then selected 

1000 independently stratified random samples of the same size as the original sample from 

this (fixed) simulated population. HUC sample sizes were also fixed to be the same as in 

the original sample. The variable of interest y in this case takes value 1 if Acid 

Neutralizing Capacity (ANC) - an indicator of the acidification risk of water bodies - is 

less than 500 and 0 otherwise. The elevation of the lake is the auxiliary variable. We are 

interested in estimating the proportion of lakes in each HUC with ANC less than 500. 

iii)  Albanian Living Standards Measurement Study (LSMS) Data. These data are from a 

sample of 3591 households spread across 36 districts of Albania that participated in the 

World Bank’s Living Standards Measurement Study conducted in 2002 in Albania. The 

survey provides information on a variety of issues related to the living conditions of the 

people in Albania, including details on income and non-income dimensions of poverty in 

the country, and forms the basis of poverty assessment in this country. We generated a 

population of N = 724,782 households by sampling N times with replacement from the 

above sample of 3,591 households and with probability proportional to a household’s 
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sample weight. The simulation was then based on selecting 1000 independently stratified 

random samples of the same size as the original sample from this simulated population 

(fixed). District sample sizes were also fixed to be the same as in the original sample, 

varying from a low of 8 to a high of 688. The variable of interest y takes value 1 if 

equivalent income of household is below median income and is 0 otherwise. Our aim is to 

estimate the proportion of households below median equivalent income at District level, 

using the ownership of land, which is a strong indicator of poverty, and the presence of 

facilities in the dwelling (television and parabolic dish antenna) as covariates. Unlike the 

first and second data sets these covariates are binary. 

 

3.2  Performance Measures 

The performance of different small area estimators were evaluated with respect to three basic 

criteria: the relative bias (RB) and the relative root mean squared error (RRMSE), both 

expressed as percentages, of estimates of the small area proportions and the coverage rate of 

nominal 95 per cent confidence intervals for these proportions. In the evaluation of coverage 

performances, intervals are defined by the estimate of small area proportion plus or minus 

twice their standard error.  

The relative bias was measured by %AvRB and %MedRB, where 

 
  
% AvRB = mean

i
Mi

1 K 1 m̂ikk=1

K( ) 1{ } 100  

with %MedRB defined similarly, but with the mean over the small areas replaced by the 

median. The root mean squared error was measured by  %AvRRMSE  and  %MedRRMSE , 

where 

  
% AvRRMSE = mean

i
Mi

1 K 1 m̂ik mik( )
2

k=1

K
100  
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with  %MedRRMSE  differing from  %AvRRMSE  only by the use of median rather than mean 

when averaging over the small areas. Coverage performance for prediction intervals was 

measured by %AvCR and %MedCR, where 

 
  
% AvCR = mean

i
K 1 I m̂ik mik 2M̂ik

1/ 2( )
k=1

K

100  

and again %MedCR differs from %AvCR only by the use of median rather than mean when 

averaging over the small areas. Note that the subscript of k here indexes the K simulations, 

with  mik  denoting the value of the small area i mean in simulation k (this is a fixed 

population value in the design-based simulations considered here), and   m̂ik ,   M̂ik  denoting the 

area i estimated value and corresponding estimated MSE in simulation k. The actual area i 

mean value (the average over the simulations) is denoted 
  
Mi = K 1 mikk=1

K
. 

 

3.3  Result and Discussion 

In Table 1 we report the average (AvRB) and median (MedRB) relative bias, average 

(AvRRMSE) and median (MedRRMSE) relative root mean squared error and average (AvCR) 

and median (MedCR) coverage rate for nominal 95% intervals of the small area proportions 

generated by two small area estimation methods (EBP and MBDE) based on repeated 

sampling from the simulated AAGIS, EMAP and Albanian populations. All averages (and 

medians) are expressed as percentages and are over the small areas of interest. For the EMAP 

population the true small area proportions for regions 5 and 9 are zero. Consequently, 

average (and median) results for EMAP data in Table 1 are based on the remaining 21 areas. 

The region-specific performance measures for the AAGIS, EMAP and Albanian data are 

shown in Figures 1-3 respectively. 

The results in Table 1 show that the average (and median) relative bias of MBDE is 

smaller than that of EBP. The region-specific relative biases given in Figures 1-3 also show 
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that MBDE has consistently better bias behaviour than EBP. In particular, EBP is badly 

biased in some regions, e.g. region 6 and 10 for the AAGIS data (Figure 1), region 1, 3 and 

13 for the EMAP data (Figure 2) and region 1, 3 and 14 for the Albanian data (Figure 3). 

Overall in term of relative bias, MBDE appears to dominate EBP for these populations.  

In contrast, the two methods are comparable in terms of relative root mean squared 

error (i.e. efficiency), with neither approach dominating the other. However, in many areas 

MBDE approach seems preferable, e.g. region 1 and 6 for AAGIS data (Figure 1). In two 

regions (1 and 6) where EBP fails, inspection of the population and sample data indicated 

that this is because of a few outlying estimates. Similarly, in Figure 2 the unstable 

performance of the EBP in regions 3 and 6 is noteworthy. These unstable results are due 

mainly to the fact that there is little or no variability in the data in these two regions. In 

contrast, the MBDE method appears unaffected by such behaviour. Further, in these cases the 

EBP produces overestimates for the small area proportions. 

The MBDE has marginally better coverage performance for the AAGIS and the 

Albania data, while both methods show overcoverage for the EMAP data. In Figure 2 we 

observe overcoverage in a number of regions. This is because the MSE for the MBDE is 

being significantly overestimated. This is particularly puzzling for regions 1-6, 9, 16 and 17. 

A critical examination of results revealed that in these regions true small area population 

proportion is either 1 (regions 1-4, 6, 16 and 17) or 0 (regions 5 and 9). In these regions the 

estimated area proportions via MBDE are same as true values so true MSEs are zero. 

However, the estimates of these MSEs are not zero. This leads to overestimated MBDE mean 

squared errors. Although the true MSE is not exactly zero for the EBP method in these cases 

(since it is an indirect estimator), similar problems exist with its MSE estimator in such 

regions. 
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These empirical results clearly show that MBDE performs well when applied to binary 

data. In contrast, under the true model, EBP is expected to be more efficient than the MBDE. 

However, in practice, the true model in always unknown and so we deal with working 

models. In this case MBDE can be expected to perform reasonably well. In particular, our 

results indicate that under a misspecified model (e.g. data with less variability) the MBDE 

approach provides more robust small area estimates that are easy to implement. In contrast, 

the EBP is a computationally intensive method based on approximations that seems less 

robust. 

 

4.  Concluding Remarks 

We have investigated two model-based methods of small area estimation for small area 

proportions, the empirical best predictor (EBP) under a generalized linear mixed model and 

the model-based direct estimator (MBDE) under a population level linear mixed model. In 

particular, we examine an application of linear assumption based MBDE to binary data. The 

empirical evaluations based on three real data from different types of survey (agricultural, 

environmental and consumer and expenditure) show that both MBDE and EBP methods 

perform well. No efficiency loss was observed in MBDE due to linear assumption. The EBP 

is a computationally intensive method, whereas the MBDE is easy to implement. In case of 

model misspecification, the MBDE also appears to be more robust. In addition, MSE 

estimation of MBDE is simple and straightforward, which is in contrast to complicated MSE 

estimation for the EBP.  

Our results also indicate that there is a need for research to be carried out on a suitable 

methodology for small area estimation of proportions when the area sample is all either 1 or 

0. There is some theory (see Jovanovic and Levy, 1997) that attempts to address this 

problem. However, this needs to be explored in the context of small area estimation.
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Table 1. Average (AvRB) and median (MedRB) relative bias, average (AvRRMSE) and 

median (MedRRMSE) relative RMSE and average (AvCR) and median (MedCR) coverage 

rate generated by EBP and MBDE. All averages are expressed as percentages and are over 

the small areas of interest. 

AAGIS EMAP Albania 
Criterion 

EBP  MBDE  EBP  MBDE  EBP  MBDE 

AvRB 6.13 -0.32 1.22 -0.25 1.02 -0.03 

MedRB 0.46 0.24 -0.35 0.00 0.08 -0.04 

AvRRMSE 23.89 21.76 17.50 18.05 11.05 12.64 

MedRMSE 15.01 17.06 8.43 7.92 10.23 11.23 

AvCR 88 93 96 98 93 94 

MedCR 96 94 97 99 95 95 
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Figure 1. Regional performance of EBP (dashed line) and MBDE (solid line) for the AAGIS 
data. 
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Figure 2. Regional performance of EBP (dashed line) and MBDE (solid line) for the EMAP 
data. 
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Figure 3. Regional performance of EBP (dashed line) and MBDE (solid line) for the Albania 
data. 
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