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Small Area Shrinkage Estimation
G. Datta and M. Ghosh

Abstract. The need for small area estimates is increasingly felt in both the
public and private sectors in order to formulate their strategic plans. It is now
widely recognized that direct small area survey estimates are highly unreli-
able owing to large standard errors and coefficients of variation. The reason
behind this is that a survey is usually designed to achieve a specified level
of accuracy at a higher level of geography than that of small areas. Lack of
additional resources makes it almost imperative to use the same data to pro-
duce small area estimates. For example, if a survey is designed to estimate
per capita income for a state, the same survey data need to be used to pro-
duce similar estimates for counties, subcounties and census divisions within
that state. Thus, by necessity, small area estimation needs explicit, or at least
implicit, use of models to link these areas. Improved small area estimates are
found by “borrowing strength” from similar neighboring areas.

The key to small area estimation is shrinkage of direct estimates to-
ward some regression estimates obtained by using in addition administrative
records and other available sources of information. These shrinkage estimates
can often be motivated from both a Bayesian and a frequentist point of view,
and indeed in this particular context, it is possible to obtain at least an opera-
tional synthesis between the two paradigms. Thus, on one hand, while small
area estimates can be developed using a hierarchical Bayesian or an empir-
ical Bayesian approach, similar estimates are also found using the theory of
best linear unbiased prediction (BLUP) or empirical best linear unbiased pre-
diction (EBLUP).

The present article discusses primarily normal theory-based small area es-
timation techniques, and attempts a synthesis between both the Bayesian and
the frequentist points of view. The results are mostly discussed for random
effects models and their hierarchical Bayesian counterparts. A few miscella-
neous remarks are made at the end describing the current research for more
complex models including some nonnormal ones. Also provided are some
pointers for future research.

Key words and phrases: Area-level models, BLUP, confidence intervals,
EBLUP, empirical Bayes, hierarchical Bayes, mean squared error, multivari-
ate, second-order unbiased, unit-level models.

1. INTRODUCTION

Small area estimation has become a topic of grow-
ing importance in recent years. The need for such esti-
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mates is increasingly felt in both the public and private
sectors in order to formulate their strategic plans. For
instance, to address emerging or existing social issues,
many national governments have passed laws that re-
quire production of reliable and up-to-date small area
estimates on a regular basis. As an example, in the
early 1990s, the U.S. Congress passed a law requiring
the Secretary of Commerce to produce and publish, at
least every two years, starting in 1996, current small
area estimates related to the incidence of poverty for

95

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/11-STS374
http://www.imstat.org
mailto:gauri@uga.edu
mailto:ghoshm@stat.ufl.edu


96 G. DATTA AND M. GHOSH

states, counties, local jurisdictions of governments and
school districts. In the private sector, businesses, espe-
cially the smaller ones, make decisions based on local
income, population and environmental data to evaluate
markets for new products and to determine areas for the
location, expansion and contraction of their activities.

Small areas may refer to small geographical areas
such as counties, subcounties, census tracts, etc. Al-
ternately, they may also refer to small domains cross-
classified by age, sex and other demographic character-
istics. Other than “small areas” and “small domains,”
often the terms “local areas,” “subdomains” and “sub-
states” are used interchangeably. Throughout this ar-
ticle, we will use the term “small area,” possibly the
most popular usage of the term, especially in survey
sampling.

Shrinkage estimators have even a longer history than
small area estimators. An exact definition of these es-
timators is hard to come by. Lemmer (1988) in his
Encyclopedia of Statistical Sciences article character-
ized shrinkage estimators as ones obtained through
modification of some standard estimators, for example,
maximum likelihood estimator (MLE), uniformly min-
imum variance unbiased estimator (UMVUE), least
squares estimator, etc., in order to minimize some de-
sirable criterion such as mean squared error (MSE),
quadratic risk, bias, etc. With these objectives in mind,
shrinkage estimators can be interpreted in a very broad
sense. In particular, the best linear unbiased predictors
(BLUP’s), empirical best linear unbiased predictors
(EBLUP’s), empirical Bayes (EB), hierarchical Bayes
(HB), and possibly a host of other estimators fall within
this general category. One common feature of all these
estimators is that they are usually weighted averages
of one of the aforementioned standard estimators and
some other estimator reasonable under an appropriate
model. Weights to these estimators are determined with
the objective of meeting some “optimality” criterion.

Shrinkage estimates have a natural place in small
area estimation where direct estimates such as the
MLE, UMVUE, etc., are usually unreliable owing to
large standard errors and coefficients of variation as-
sociated with them. The reason behind this is that the
original survey was targeted to achieve accuracy at a
higher order of aggregation than that of small areas.
Due to limited resources, the same survey data need to
be used for producing small area estimates. This neces-
sitates “borrowing strength” from similar other small
areas with the objective of “increasing the effective
sample size” in order to obtain estimates of increased
precision.

The early small area estimators achieved this ob-
jective by shrinking the area-specific direct estima-
tors (e.g., county-specific averages) toward some over-
all estimator (e.g., the state average). Later, with the
availability of auxiliary information from administra-
tive records and other sources, the direct estimators are
now usually shrunk toward some estimated regression
surface. This shrinking process needs explicit (or at
least implicit) use of models.

Bayesian estimators have been in existence for more
than two centuries. Very often, they can be regarded
as shrinkage estimators, shrinking, for example, the
sample mean toward the prior mean. The BLUP and
EBLUP estimators developed by Henderson (1953) for
mixed linear models are also genuine shrinkage estima-
tors, shrinking the direct estimators toward some re-
gression estimators. However, as the title of this spe-
cial issue suggests, the name “shrinkage” possibly was
coined with the seminal paper of Stein (1956). Stein
introduced shrinkage estimators to estimate a multi-
variate normal mean vector and proved under the sum
of squared error loss their domination over the sam-
ple mean vector in three or higher dimensions. He
gave a purely decision-theoretic motivation of his re-
sult, and was implicitly considering a balanced one-
way ANOVA model for random effects. The original
result of Stein involved shrinking the sample mean to-
ward some guessed value of the population mean. Later
extensions of his ideas due to Lindley (1962) and Stein
(1962) led to shrinkage toward an overall average, and
more generally to a regression surface, still with bal-
anced data. Stein’s estimators gained immense popu-
larity in the 1970s when Efron and Morris, in a series
of articles, gave interesting EB interpretation of these
estimators (see, e.g., Efron and Morris, 1973). A pi-
oneering extension of Stein’s ideas in the small area
estimation context is due to Fay and Herriot (1979)
in their highly referred article. The paper showed how
Stein-type results (without necessarily the exact domi-
nance consideration) could be extended to unbalanced
random effect regression models with tremendous po-
tential for application.

It is near impossible to cover all aspects of small area
estimation in a single review article. Our primary focus
will be on one-way random effects regression models,
and connecting the ideas of BLUP and EBLUP with
HB and EB estimators. These models are usually re-
ferred to in the small area literature as “area-level”
models where one begins with some small area sum-
mary statistics, and tries to improve on these estima-
tors by shrinking them toward some regression sur-
face. This is in contrast to the so-called “unit-level”
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models where one has data available for the sampled
units within a small area. We will barely touch upon
the latter. Another component of research which has
received scant attention in the small area literature is
the development of EB confidence intervals. We will
discuss this topic also at some length. For a detailed ex-
posure to small area estimation, the reader is referred
to the recent book of Rao (2003a) and the review ar-
ticles of Ghosh and Rao (1994), Pfeffermann (2002),
Rao (1999, 2003b) and Datta (2009).

The outline of the remaining sections is as follows.
In Section 2, we discuss balanced one-way random ef-
fects regression models, and discuss the connection be-
tween the BLUP’s, EBLUP’s, HB, EB, and in particu-
lar, the Stein-type shrinkage estimators. Section 3 ex-
tends these results to unbalanced one-way models, and
compares and contrasts both HB and EB estimators in
this setup. MSE approximation of small area estimators
is also discussed in this section. Section 4 discusses
multivariate small area shrinkage estimators, and dis-
cusses one particular application related to adjustment
of census counts. Section 5 discusses EB confidence
intervals for both balanced and unbalanced data. Sec-
tion 6 gives a brief account of unit-level models for
small area estimation. Section 7 contains a few other
small area models such as measurement error models
and generalized linear models. This section contains
also a discussion of balanced loss functions in the con-
text of small area estimation. Section 8 contains a sum-
mary of the results presented, and provides a few point-
ers toward topics for future research.

2. SHRINKAGE ESTIMATORS FOR BALANCED
DATA

The primary objective of this section is to introduce
shrinkage estimators of small area means under differ-
ent paradigms, and point out the interrelationship be-
tween them. The corresponding uncertainty measures
are also compared. We begin with the following model.

Let yi (i = 1, . . . ,m) denote the area-level survey
estimators for the m small areas. Consider the model

yi |θi
ind∼ N(θi,V ), and

(2.1)
θi |A ind∼ N(xT

i β,A), i = 1, . . . ,m.

In the above x1, . . . ,xm are p-dimensional design
vectors and β (p × 1) is the unknown regression co-
efficient. Writing θi = xT

i β + ui (i = 1, . . . ,m), it is
easy to reexpress (2.1) as a random effects model with

yi = xT
i β + ui + ei, i = 1, . . . ,m,(2.2)

where the ui and the ei are mutually independent
with ui

i.i.d.∼ N(0,A) and the ei
ind∼ N(0,V ). Further,

writing X = (x1, . . . ,xm)T , y = (y1, . . . , ym)T , u =
(u1, . . . , um)T and e = (e1, . . . , em)T , one can rewrite
(2.2) in matrix notation as

y = Xβ + u + e.(2.3)

We assume rank(X) = p(< m). Noting that marginally,
y ∼ N(Xβ, (V + A)Im), where Im is the identity ma-
trix of order m, it is clear that we encounter an iden-
tifiability problem when both V and A are unknown.
The problem does not occur in a unit-level model when
one can find a separate estimate of V by utilizing the
unit-level data. However, this option is unavailable in
an area-level model, where it is customary to assume a
known V . In practice, V is a sort of smoothed estimate,
for example, using the generalized variance function
approach; see, for example, Wolter (1985) or Otto and
Bell (1995).

First assume A(> 0) is known. We begin with the
HB model with the prior π(β) = 1. Then we have the
following theorem.

THEOREM 1. Under the given model, the poste-
rior distribution of θ is N((1 − B)y + BPXy, V ((1 −
B)Im + BPX)), where B = V/(V + A) and PX =
X(XT X)−1XT .

PROOF. The result follows by noting that θ |β,y ∼
N((1 − B)y + BXβ,V (1 − B)Im) and β|y ∼
N((XT X)−1XT y, (V + A)(XT X)−1), and then us-
ing the formulas for iterated expectation and variance
along with normality of the conditionals. �

REMARK 1. It follows from the above theorem
that the posterior mean given by

θ̂B = E(θ |y) = (1 − B)y + BPXy(2.4)

is a weighted average of the direct estimator y and
the regression estimator PXy = Xβ̂ , where β̂ = (XT ·
X)−1XT y. It is easy to check that the weights are in-
versely proportional to the sample variance and the
prior variance. Thus θ̂B shrinks the direct estimator y
of θ to the regression estimator PXy of θ , where the
amount of shrinking depends on the ratio V/A. In the
limiting cases when B → 0 (i.e., when V � A) or
B → 1 (i.e., when V � A), θ̂B tends respectively to
the direct estimator y and the regression estimator PXy,
quite in keeping with one’s intuition. Later, in Theo-
rem 2, we will motivate the estimator in (2.4) as the
BLUP of θ without any distributional assumption. We
also point out that this is also the best unbiased predic-
tor under normality.
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REMARK 2. It is also important to note that if the
parameter β were also known, the posterior variance
of θ would be V (1 − B)Im. Thus the term V BPX in
the posterior variance in Theorem 1 can be interpreted
as the additional posterior uncertainty due to unknown
β , but known A. We will examine later in this section
the effect of an unknown A as well on the posterior
variance.

Next we show that the estimator of θ given in (2.4)
can be motivated without any distributional assumption
but using only the first two moments. The following
theorem proves that this estimator is a BLUP, that is, it
has the smallest mean squared error (MSE) within the
class of all linear unbiased estimators (predictors) of θ .
Also, the MSE equals the posterior variance given in
Theorem 1.

THEOREM 2. The estimator θ̂B of θ given in (2.4)
is the BLUP of θ . Also, E[(θ̂B − θ)(θ̂B − θ)T ] =
V {(1 − B)Im + BPX}.

PROOF. Since E(Y) = Xβ , any linear unbiased
predictor CY + b of θ = Xβ + u must satisfy CXβ +
b = Xβ for all β . That is, b = 0, and CX = X, or
equivalently, CPX = PX. For such a predictor CY,
since CY − θ = (C − Im)u + Ce,

E[(CY − θ)(CY − θ)T ]
= A(C − Im)(C − Im)T + V CCT

= (V + A)CCT − A(C + CT ) + AIm
(2.5)

= V (1 − B)Im

+ (V + A){C − (1 − B)Im}
· {C − (1 − B)Im}T .

Now subject to the condition CPX = PX, it can be
shown that

{C − (1 − B)Im}{C − (1 − B)Im}T
= {C − (1 − B)Im − BPX + BPX}

· {C − (1 − B)Im − BPX + BPX}T(2.6)

= {C − (1 − B)Im − BPX}
· {C − (1 − B)Im − BPX}T + B2PX.

Note that C = (1 − B)Im + BPX satisfies the condi-
tion CPX = PX and this choice minimizes E[(CY −
θ)(CY − θ)T ]. Thus the BLUP of θ is given by θ̂B .
Also, from (2.5) and (2.6), it follows that the mean
squared and product matrix of prediction error of the
BLUP is V {(1 − B)Im + BPX}. �

REMARK 3. Under normality of u and e, the
BLUP θ̂B of θ is also the best unbiased predictor of
θ ; that is, among all unbiased predictors of θ , θ̂B has
the least mean squared error.

Theorems 1 and 2 establish the equivalence of the
BLUP and the HB predictor and also of the correspond-
ing uncertainty measures for the balanced one-way ran-
dom effects model when the parameter A is known. In-
deed, the result is also true for the general mixed effects
model (see, e.g., Datta, 1992). However, this algebraic
equality does not quite hold for unknown A, or equiv-
alently unknown B .

To see this, we will consider separately, the EBLUP
(or EB) and HB estimators, and point out where the
differences occur. For the given random effects model,
y ∼ N(Xβ, (V + A)Im), which in the Bayesian termi-
nology, is the marginal distribution of y after integrat-
ing out θ . Based on this marginal pdf, (β̂, S = ‖y −
Xβ̂‖2) is minimal sufficient for (β,A). Noting that
S ∼ (V + A)χ2

m−p, the UMVUE of B = V/(V + A)

is given by B̂EB = V (m − p − 2)/S for m > p + 2.
The corresponding EB or EBLUP estimator of θ is then
given by

θ̂EB ≡ θ̂EBLUP

=
[
1 − V (m − p − 2)

S

]
y(2.7)

+ V (m − p − 2)

S
Xβ̂,

the James–Stein estimator (James and Stein, 1961).
One criticism of the above EB or EBLUP estima-

tor is that the estimator B̂EB of B can assume values
bigger than 1 with positive probability. The resulting
EB or EBLUP estimator then pulls the direct esti-
mator y toward the opposite direction of the regres-
sion estimator PXy. Replacing B̂EB by (B̂EB)+, where
(B̂EB)+ = min(B̂EB,1), the positive part Stein estima-
tor rectifies the problem. However, it was shown by
Datta et al. (2002) that P(B̂EB > 1) goes to zero at an
exponential rate for large m. So, the estimator B̂EB is
usually quite adequate even for moderate m.

In contrast, with the alternative fully Bayesian ap-
proach (Morris, 1983a), if one assigns the prior
π(β,A) = 1 so that π(β,B) = B−2, one gets π(θ |
B,y) the same as given in Theorem 1 for a known B ,
but needs in addition

π(B|y) ∝ B(m−p)/2 exp
(
− 1

2V
BS

)
B−2I [0 < B < 1]

= B(m−p−4)/2 exp
(
− 1

2V
BS

)
I [0 < B < 1].
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Here, for the sake of simplicity and to present Mor-
ris’s results, we have considered only a uniform prior
for A. It is certainly possible to consider other pri-
ors, including inverse gamma priors with appropriate
shape and scale parameters of the inverse gamma dis-
tribution, so long as the resulting posterior is proper.
A prior of the form π(β,A) = A−k will yield a
proper posterior provided k < 1 and m > p − 2k + 2.
Thus, while the uniform prior π(β,A) = 1 yields a
proper posterior when m > p + 2, the priors A−1 or
A−2 will always yield improper posteriors. For the
uniform prior, the posterior mean of θ is now ob-
tained by replacing B in Theorem 1 with E(B|y),
while V (θ |y) = V [(1 − E(B|y))Im + E(B|y)PX] +
V (B|y)(y − PXy)(y − PXy)T . Thus, other than the
replacement of B by E(B|y) in the variance formula
given in Theorem 1, the additional uncertainty due to
estimation of B is also incorporated in this variance
formula.

Integrating by parts, one can show that for large
m, E(B|y) can be approximated by (m − p − 2)V/S

(cf. Theorem 1 of Datta and Ghosh, 1991a). Simi-
larly, V (B|y) can be approximated by 2(m − p −
2)V/S2. With these approximations, E(θ |y) is ap-
proximated by θ̂EB, while V (θ |y) can be approx-

imated as V (1 − (m−p−2)V
S

)Im + (m−p−2)V 2

S
PX +

2(m−p−2)V 2

S2 (y − Xβ̂)(y − Xβ̂)T . These results agree
with Morris’ (1983b) intuitive approximations for
E(θ |y) and V (θ |y) for the special case of intercept
model. In addition, if instead of the posterior mean,
one estimates B by its posterior mode, one gets the es-
timator B̂MO = min((m − p − 4)V/S,1), which leads
to an estimator of θ quite akin to the positive part
James–Stein estimator, the only difference being that
m − p − 2 is now replaced by m − p − 4.

It is instructive to find the Bayes risk of θ̂EB under
squared error loss L(θ ,a) = ‖θ − a‖2. The following
theorem is proved.

THEOREM 3. Let m > p + 2. Then writing hii =
xT
i (XT X)−1xi for all i:

(a)

E[(θi − θ̂EB
i )]2 = V (1−B)+V Bhii + 2V B(1 − hii)

m − p
;

(b)

E‖θ − θ̂
EB‖2 = V [m − (m − p − 2)B].

PROOF. Let B̂ = V (m − p − 2)/S. If θ̃i = E[θi |
β,A,y], then θ̃i = yi − B(yi − xT

i β) and V [θi |β,A,

y] = V (1 − B). Using iterated expectation it follows
that

E[(θi − θ̂EB
i )]2 = V (1−B)+E[(θ̃i − θ̂EB

i )]2.(2.8)

Using the expressions of θ̃i , θ̂EB
i , and independence of

β̂ and y − Xβ̂ , it follows that

E[(θ̃i − θ̂EB
i )]2

= E[{BxT
i (β̂ − β)}2]

(2.9)
+ E[(B̂ − B)2(yi − xT

i β̂)2]
= V Bhii + E[(B̂ − B)2(yi − xT

i β̂)2],
where hii = xT

i (XT X)−1xi . By Basu’s theorem, S

and (yi − xT
i β̂)2/S are independently distributed (see

Ghosh, 1992a). Then

E[(B̂ − B)2(yi − xT
i β̂)2]

(2.10)
= E[S(B̂ − B)2]E[(yi − xT

i β̂)2/S].
By a simple calculation E[S(B̂ − B)2] = 2V B . Also,
by the independence of S and (yi − xT

i β̂)2/S,

E[(yi − xT
i β̂)2/S] = E(yi − xT

i β̂)2

E(S)

= (σ 2/B)(1 − hii)

(σ 2/B)(m − p)
(2.11)

= 1 − hii

m − p
.

Combining (2.8)–(2.11), one gets (a). Summing both
sides of (a) over i, and noting

∑m
i=1 hii = tr[(XT X)−1 ·

(XT X)] = p, one gets (b). �
REMARK 4. It is interesting to observe that a com-

parison of Theorem 3 with Theorem 1 (or Theorem 2)
reveals that the excess Bayes risk due to estimation of
the unknown variance component A is simply 2V B . It
is easy to see from Theorem 1 or 2 that the Bayes risk
with known A is V [m(1 − B) + pB].

REMARK 5. Another interesting observation from
Theorem 3 is that an unbiased estimator of the MSE is
V [m − V (m−p−2)2

S
] which is simply Stein’s unbiased

estimator. While this is in agreement with equation
(1.18) of Morris (1983b), our expression for the com-
ponent MSE given by part (a) in Theorem 3 agrees with
equation (1.16) of Morris (1983b) only in the special
case of an intercept model, that is, when θi = μ + ui

(i = 1, . . . ,m). We believe that this is due to an over-
sight in Morris (1983b) in the derivation of the compo-
nent risk for the general regression model.
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We will now see how the above results can be gen-
eralized with unequal numbers of observations in the
different small areas.

3. SHRINKAGE ESTIMATORS FOR UNBALANCED
DATA

The equal sampling variance scenario considered in
the previous section hardly arises for small area prob-
lems, where sampling variances for small areas are al-
most always unequal. A widely used area-level model
first introduced by Fay and Herriot (1979) is given by

yi |θi
ind∼ N(θi,Vi), θi

ind∼ N(xT
i β,A).(3.1)

Clearly the above model can be viewed also as a ran-
dom effects model as shown in the previous section.

Fay and Herriot used the above model for estimat-
ing the per capita income (PCI) for small places in the
United States with population less than 1000. In their
case, yi is the logarithm of per capita income for the
ith small area. The auxiliary variables considered were
logarithms of the PCI for the associated counties, tax
return data, data on housing from the previous decen-
nial census. The Fay–Herriot method was adopted by
the U. S. Bureau of the Census to provide updated PCI
estimates for small areas.

Fay and Herriot adopted an EB approach in their
analysis. Write G = Diag(V1, . . . , Vm), D = G + AIm,
B = GD−1 = D−1G = Diag(B1, . . . ,Bm), where Bi =
Vi/(Vi + A), i = 1, . . . ,m. First, assuming β and A

to be both known, the Bayes estimator of θ is θ̂B =
(Im − B)y + BXβ . In order to estimate β and A as
needed in an EB approach, first observe that for A

known, the generalized least squares estimator of β is

β̃(A) = (XT D−1X)−1XT D−1y
(3.2)

= [XT (Im − B)X]−1XT (Im − B)y,

where we assume, as before, rank(X) = p(< m). We
may note here that the corresponding BLUP estima-
tor of θ is (Im − B)y + BXβ̃(A). In order to esti-
mate A as well, Fay and Herriot (1979) and Datta, Rao
and Smith (2005) used the moment identity given by
E[∑m

i=1{yi −xT
i β̃(A)}2/(Vi +A)] = m−p. Dropping

the expectation from the left-hand side we get
m∑

i=1

{yi − xT
i β̃(A)}2/(Vi + A) = m − p.(3.3)

Since the expression in the left-hand side of (3.3) is a
nonincreasing function of A, if this expression evalu-
ated at A = 0 is less than m − p, there will be no so-
lution to the above equation. In this case, the estimate

is taken to be zero. In the other case, taking an initial
guess at A and solving (3.2) and (3.3) iteratively, one
finds the estimators Â and β̂ = β̃(Â). The resulting EB
or EBLUP estimator of θ is given by

θ̂EB = (Im − B̂)y + B̂Xβ̂,(3.4)

where B̂ = Diag(V1/(V1 + Â), . . . , Vm/(Vm + Â)).

Morris (1983b) provided a general discussion of the
EB approach in this case with the same prescription
for estimation of β and A. An alternative HB formu-
lation analogous to the one in Section 2 is given by
Ghosh (1992a) who also explored an interrelationship
between the EB and the HB procedures. The HB model
is given by

yi |θi,β,A
ind∼ N(θi,Vi),

θi |β,A
ind∼ N(xT

i β,A),(3.5)

i = 1, . . . ,m, π(β,A) = 1.

Then the joint posterior density is

π(θ ,β,A|y)

∝ A−m/2 exp
[−1

2{(y − θ)T G−1(y − θ)(3.6)

+ A−1‖θ − Xβ‖2}].
Then one gets θ |β, a,y ∼ N [(Im−B)y+BXβ,G(Im−
B)], β|A,y ∼ N [β̃(A),A{XT (Im − B)X}−1], where
β̃(A) = [XT (Im − B)X]−1XT (Im − B)y. The marginal
posterior of A is

π(A|y) ∝ A−(m−p)/2
m∏

i=1

(1 − Bi)
1/2

(3.7)

·
∣∣∣∣∣

m∑
i=1

(1 − Bi)xixT
i

∣∣∣∣∣
−1/2

exp
[
−1

2
Q(y)

]
,

where Q(y) = A−1[∑m
i=1(1 − Bi)y

2
i − {∑m

i=1(1 −
Bi)yixi}T {∑m

i=1(1 −Bi)xixT
i }−1{∑m

i=1(1 −Bi)yixi}].
It follows now that

E(θ |y) = [Im − E(B|y)]y + E[BHXy|y],(3.8)

V (θ |y) = E[{Im − B}G|y]
+ E[{B(Im − HX)}G|y](3.9)

+ V [B{y − Xβ̃(A)}|y],
where HX = X[XT (Im − B)X]−1XT (Im − B). Numer-
ical integration involving one-dimensional integrals
needs to be carried out for evaluating both E(θ |y)

and V (θ |y). In the special case, when V1 = · · · = Vm,
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these expressions simplify to the ones obtained in the
previous section. This is because in this special case,
Im − B = (1 − B)Im. We may also reemphasize that
the first component in the right-hand side of (3.9) is
the posterior variance when both β and A are known.
The second term provides additional uncertainty due to
unknown β but known A. The third term accounts for
additional uncertainty due to unknown A as well.

In the Bayesian framework, posterior variances are
the natural uncertainty measures. In the frequentist ap-
proach, a naive method is to substitute A by some suit-
able estimator in the mean squared prediction error for-
mula for the BLUP [cf. (2.5) and (2.6) for the bal-
anced case]. In the unbalanced case, the mean squared
and product matrix of prediction error for the BLUP
is given by the sum of the first two terms in the right-
hand side of (3.9) without the conditional expectation
operator. As it appears, this will miss the third compo-
nent as it will not account for uncertainty due to esti-
mation of A. This results in an underestimation of the
true MSE of the EBLUP.

To account for the error in estimating A, following
an earlier work of Kackar and Harville (1984), Prasad
and Rao (1990) considered the MSE of the EBLUP.
Unlike in the balanced case of Section 2, there is no
closed-form expression of this MSE. They obtained an
asymptotic expression of the MSE which is accurate to
the order o(m−1). This approximation is based on an
orthogonal decomposition of the MSE E(θ̂EB

i − θi)
2.

Specifically, they used the decomposition

θ̂EB
i − θi = {(1 − Bi)yi + BixT

i β − θi}
+ {θ̂B

i − (1 − Bi)yi − BixT
i β}

+ {θ̂EB
i − θ̂B

i };
the first component is always orthogonal to the second
and the third components. The orthogonality of the last
two components holds only for certain specific estima-
tors of A. It is necessary that these estimators are trans-
lation invariant under the transformation gc(y) which
maps y to y+Xc and are even functions of y. In partic-
ular, the ANOVA estimator in Prasad and Rao (1990),
the ML and the REML estimators considered in Datta
and Lahiri (2000), and the method of moment estima-
tor due to Fay and Herriot (1979), Morris (1983b) and
Datta, Rao and Smith (2005) all satisfy these condi-
tions. For these estimators of A, it follows that

E(θ̂EB
i − θi)

2

(3.10)
= g1i (A) + g2i (A) + g3i (A) + o(m−1),

where g1i (A) = Vi(1 − Bi), g2i (A) = B2
i AxT

i ·
{∑m

j=1(1 − Bj)xj xT
j }−1xi and g3i (A) = V 2

i (A +
Vi)

−3 Var(Â). The derivation of the third term is based
on a second-order Taylor expansion [i.e., retaining up
to the O(m−1) term] of E[Bi(yi − xT

i β̃(A))− B̂i(yi −
xT
i β̃(Â))]2. This derivation requires also orthogonality

of β and A in the Fisherian sense, that is, block diag-
onality of the relevant components of the Fisher infor-
mation matrix. An intuitive estimator, say, mseI (Â), of
the MSE in (3.10) is given by

mseI (Â) = g1i (Â) + g2i (Â) + g3i (Â).(3.11)

In view of the fact that E[g1i (Â)] = g1i (A)−g3i (A)+
o(m−1), and g3i (A) is O(m−1), the above estimator is
not second-order unbiased. Based on the ANOVA esti-
mator of A, say, ÂPR, which is second-order unbiased
for A, Prasad and Rao (1990) showed that the estimator

mseS(ÂPR) = ĝ1PRi + ĝ2PRi + ĝ3PRi(3.12)

is second-order unbiased in the sense that

E[mseS(ÂPR)] = MSE(θ̂EB
i ) + o(m−1),

where

ĝ1PRi = g1i (ÂPR) + g3i (ÂPR), ĝ2PRi = g2i (ÂPR),

ĝ3PRi = g3i (ÂPR).

See Harville (1990) for similar results for mixed lin-
ear models. In the small area context Datta and Lahiri
(2000) showed that the expression in (3.12) based on
the REML estimator of A is also second-order unbi-
ased. Second-order unbiased estimator of the MSE of
the EBLUP using the ML estimator and Fay–Herriot
estimator of A are given in Datta and Lahiri (2000)
and Datta, Rao and Smith (2005), respectively. For fur-
ther discussion we may refer to Rao (2003a) and Datta
(2009).

The posterior variance of θi , on the other hand
[see (3.9)], is given by

V (θi |y) = Vi[1 − E(Bi |y)]

+ E

[
B2

i AxT
i

{
m∑

j=1

(1 − Bj)xj xT
j

}−1

xi

∣∣∣y
]

+ V [Bi{yi − xT
i β̃(A)}|y]

(3.13)
= E[g1i (A)|y] + E[g2i (A)|y]

+ V [Bi{yi − xT
i β̃(A)}|y]

= g1HBi + g2HBi + g3HBi (say).
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Morris (1983b) provided an approximation to the
HB estimator E(θi |y) and the associated posterior vari-
ance. Denoting Morris’ point estimator of θi by θ̂i

M
,

θ̂i
M = (1 − B̂M

i )yi + B̂M
i (xT

i β̂),(3.14)

where B̂M
i = ((m − p − 2)/(m − p))(Vi/(Vi + Â)),

and β̂ and Â are obtained by solving (3.2) and (3.3)
iteratively. It can be checked that (3.2) and (3.3) are
equivalent to Morris’ (1983b) equations (5.2) and (5.4).
Morris (1983b) approximated the posterior variance by
s2
iM , given by s2

iM = eiM + viM , where eiM = g1iM +
g2iM , viM = g3iM with

g1iM = Vi[1 − B̂M
i ], g2iM = ViB̂

M
i t̂i ,

(3.15)

g3iM = 2(B̂M
i )2(yi − xT

i β̂)2

m − p − 2
· V̄ + Â

Vi + Â
,

and t̂i = xT
i [XT (V + ÂI)−1X]−1xi/(Vi + Â), i =

1, . . . ,m, V̄ = ∑m
i=1 Vi/m.

From the three measures of uncertainty given by
(3.12), (3.13) and (3.15) we see a close correspondence
in the respective terms in the expansion of the MSE
of the EB estimator, the posterior variance of θi and
Morris’ approximation of the posterior variance. It is
clear, though, that while the posterior variance of θi

accounts for all sources of uncertainty in a straight-
forward way, the EB or EBLUP method needs careful
evaluation of all terms in the MSE expression and con-
struct a second-order unbiased estimator of this quan-
tity. Morris (1983b) provided a clever approximation
to the posterior variance. The estimator of the MSE of
the EBLUP displays poor performance when A is esti-
mated by zero or severely underestimated (this happens
if the true variance parameter A is small). In such case
the first term ĝ1PR is too small compared to the first
term in the posterior variance. This results from the
integration of A with respect to its long tail posterior
distribution. Use of posterior variance has been found
to be attractive in small area application. As an exam-
ple, the U.S. Bureau of the Census uses this method
in producing small area income and poverty estimates
based on American Community Survey data. The cor-
responding term in Morris’ approximation is a clever
approximation to the posterior expectation. Although
not as small as ĝ1PR, this also tends to be small. The
g1i (A) function evaluated at the point estimator of A,
via posterior mode or REML, is usually smaller than its
integrated value with respect to the posterior of A. The
second and the third terms in these measures of un-
certainty, being of lower order of magnitude, usually

show a greater degree of agreement. Another attrac-
tive feature of posterior variance is that it depends on
the individual small area observation yi [through the
last term in (3.13)]. This is not true for the second-
order unbiased estimator of the MSE given in (3.12).
However, the estimate of conditional frequentist mean
squared error of prediction obtained by conditioning
on yi depends on the individual small area observa-
tion (see, e.g., Booth and Hobert, 1998, or Datta et al.,
2011). For related discussions comparing the Bayesian
and the frequentist measures of uncertainty in small
area estimation we refer to Singh, Stukel and Pfeffer-
mann (1998) and Datta, Rao and Smith (2005). Mor-
ris’ approximation, which closely mimics the posterior
variance, also enjoys this feature.

We consider an illustration of the Fay–Herriot model.
The U.S. Department of Health and Human Services
(HHS) needs estimates of four-person family state me-
dian income to implement an energy assistance pro-
gram to low-income families. The Bureau of the Cen-
sus (BOC) has provided such estimates for nearly thirty
years. The BOC now uses the Fay–Herriot model to
provide more sophisticated estimates. In this model the
direct estimate of the four-person family state median
income, to be denoted by yi , is obtained from the Cur-
rent Population Survey (CPS). Auxiliary variables for
the multiple regression model are obtained from the
per capita income information of the Bureau of the
Economic Analysis (BEA) survey and the latest cen-
sus data for the four-person family median income. In
our illustration, we will consider only a subset of the
U.S. states and use only one covariate. We consider 15
U.S. states belonging to the southeast U.S. geographi-
cal region. While there are 17 states in this region, we
excluded Texas and Washington, DC, from our analy-
sis as these two small areas have their sampling vari-
ances (Vi’s) very much different from the remaining 15
states. In the notation of this section, we have m = 15,
p = 2, xT

i = (1, xi), with xi , the adjusted census me-
dian income, given by

xi = BEA PCI(c) for state i

BEA PCI(b) for state i

· Census median(b) for state i,

where c stands for current year (in our application
1979) and b stands for base year (1969), BEA PCI(b)
and BEA PCI(c) are obtained from the BEA data for
these two years, and Census median(b) is obtained
from the 1969 census.

We present the relevant data in Table 1 below. Also
included in the table are the EB estimates (θ̂ bEB in the
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TABLE 1
Data for estimating 1,979 four-person family median income for the 15 southeastern U.S. states, and different small area estimates

State y x V θ̂
bHB

θ̂
bEB

θ̂
bM

θ̂
uHB

θ̂
uEB

θ̂
uM

DE 21,860 23,103 1,9002 21,185 21,787 21,031 21,088 21,802 21,025
MD 26,235 27,607 1,7222 25,399 26,145 25,221 25,227 26,134 25,090
VA 24,160 25,514 1,4182 23,418 24,080 23,264 23,403 24,040 23,262
WV 18,274 21,807 1,3802 19,133 18,367 19,330 19,027 18,397 19,160
NC 20,296 21,408 1,0122 19,634 20,223 19,472 19,849 20,133 19,712
SC 19,282 21,706 1,7952 19,448 19,299 19,472 19,452 19,296 19,454
GA 22,687 22,599 1,1962 21,217 22,524 20,842 21,510 22,402 21,199
FL 19,675 23,944 1,0422 20,884 19,807 21,174 20,480 19,941 20,700
AL 17,978 22,233 1,2822 19,273 18,119 19,575 19,047 18,187 19,264
KY 18,657 21,359 1,2852 19,008 18,695 19,087 18,954 18,716 19,017
TN 19,776 21,240 1,2742 19,351 19,729 19,239 19,430 19,707 19,350
MS 19,167 19,887 1,7622 18,360 19,075 18,131 18,371 19,097 18,274
AR 18,917 20,214 1,5072 18,388 18,858 18,250 18,452 18,859 18,383
LA 18,965 22,861 1,4442 19,996 19,078 20,240 19,878 19,096 20,020
OK 19,295 23,668 1,6752 20,578 19,436 20,894 20,535 19,418 20,673

balanced case, and θ̂ uEB in the unbalanced case), the
HB estimates (θ̂ bHB in the balanced case, and θ̂ uHB in
the unbalanced case) and Morris’ approximation to the
HB estimates (θ̂ bM in the balanced case, and θ̂ uM in
the unbalanced case). As noted before, the sampling
variances are different for the states and the resulting
Fay–Herriot model is an unbalanced model. To com-
pare the frequentist and the Bayesian approaches for
both the balanced and the unbalanced setup, we have
illustrated the balanced Fay–Herriot model given by
(2.1) by replacing each Vi by their average 2,162,469.
From the last six columns of Table 1, we note that the
point estimates of the small area means do not differ
substantially either over EBLUP, HB or Morris’ esti-
mates, or if the setup is a balanced or an unbalanced
Fay–Herriot model. It is usually our experience that the
model-based small area point estimates are substan-
tially robust over varying sampling variances or over
the method of estimation, Bayes or frequentist.

In Table 2 we include various components of the un-
certainty measures for the Prasad–Rao estimated MSE,
the posterior variance of the HB estimates and Morris’
approximation to the HB moments. From these compo-
nents we can get the relevant overall uncertainty mea-
sure for the EBLUPs, the HB estimates and Morris’
approximation of EB estimates. We note that in the
balanced case the relative reduction in the Prasad–Rao
estimated MSE over the sampling variance (the mea-
sure of uncertainty for the direct estimates) ranges be-
tween 21 and 62 percent. These numbers clearly show
substantial gain in the accuracy of the model-based

estimates. In the unbalanced setup, these relative re-
ductions range between −23 and 80 percent; only two
states, NC and FL, have negative improvement, which
is somewhat surprising. However, these two states be-
ing direct-use states in the CPS, perhaps they enjoy
large sample size to produce relatively accurate direct
estimates. Also, for these states, the g3 term is rela-
tively big resulting in a large estimated MSE of the
EBLUP. The corresponding improvement numbers for
the HB estimates are between 26 and 64 percent in the
unbalanced case, and 28 and 58 percent in the balanced
case. For Morris’ approximation, these numbers are be-
tween 21 and 69 percent in the unbalanced case, and 30
and 72 percent in the balanced case.

In Table 2 we present the decomposition of the un-
certainty corresponding to the three sources: uncer-
tainty due to estimation of unknown small area mean,
uncertainty due to estimation of the regression coeffi-
cients and uncertainty due to unknown variance com-
ponents. We consider the mean squared error of an
EBLUP (or EB predictor), the posterior variance and
its approximation due to Morris (1983b) for both the
balanced and an unbalanced setup. From this table we
find that for each method of estimation and each setup,
all the three components of uncertainty contribute sub-
stantially toward the overall measure of uncertainty
for most small areas. Thus it is important to account
for the uncertainty in estimating the regression coeffi-
cients and the variance components in deriving a reli-
able overall measure of uncertainty associated with the
model-based small area estimates.
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TABLE 2
Decomposition of various measures of uncertainty of the model-based small area estimates

State Setup g1HB g2HB g3HB g1M g2M g3M ĝ1PR ĝ2PR ĝ3PR

DE Balanced 792,210 97,376 44,113 459,930 120,989 124,922 418,657 142,987 268,279
Unbalanced 1,129,602 121,110 39,030 937,376 116,803 75,548 377,191 139,692 194,412

MD Balanced 792,210 696,375 66,040 459,930 865,242 187,017 418,657 1,022,559 268,279
Unbalanced 1,039,678 858,915 103,302 828,078 915,537 168,214 409,823 1,157,267 229,034

VA Balanced 792,210 295,960 51,495 459,930 367,728 145,828 418,657 434,588 268,279
Unbalanced 863,313 277,090 77,930 656,777 332,909 142,517 485,759 453,886 310,056

WV Balanced 792,210 106,701 71,651 459,930 132,575 202,908 418,657 156,680 268,279
Unbalanced 839,191 84,658 67,832 636,503 100,218 144,901 497,472 135,006 322,621

NC Balanced 792,210 125,904 43,600 459,930 156,435 123,472 418,657 184,878 268,279
Unbalanced 583,606 60,730 43,268 447,884 85,908 98,855 639,733 139,644 477,672

SC Balanced 792,210 110,835 2,312 459,930 137,711 6,548 418,657 162,750 268,279
Unbalanced 1,077,706 126,061 1,807 872,021 125,390 3,518 395,558 152,055 213,886

GA Balanced 792,210 91,351 218,486 459,930 113,503 618,727 418,657 134,140 268,279
Unbalanced 716,079 57,972 235,098 540,917 74,935 508,347 562,280 108,923 392,592

FL Balanced 792,210 134,749 144,408 459,930 167,426 408,947 418,657 197,866 268,279
Unbalanced 605,744 73,260 125,413 462,990 103,414 293,078 626,452 166,675 462,923

AL Balanced 792,210 94,683 163,838 459,930 117,643 463,970 418,657 139,033 268,279
Unbalanced 774,894 66,728 156,347 585,124 82,616 342,043 530,290 115,370 357,952

KY Balanced 792,210 128,846 11,885 459,930 160,090 33,657 418,657 189,198 268,279
Unbalanced 776,906 93,056 13,089 586,680 115,699 26,677 529,228 162,238 356,806

TN Balanced 792,210 136,323 18,482 459,930 169,381 52,340 418,657 200,177 268,279
Unbalanced 769,515 97,600 16,381 580,981 122,136 37,950 533,140 172,245 361,029

MS Balanced 792,210 269,811 68,948 459,930 335,238 195,254 418,657 396,191 268,279
Unbalanced 1,060,717 318,630 40,995 852,009 327,641 98,442 401,844 405,527 220,560

AR Balanced 792,210 239,946 28,598 459,930 298,131 80,987 418,657 352,337 268,279
Unbalanced 918,002 229,443 18,346 705,154 260,944 45,703 460,413 342,328 282,932

LA Balanced 792,210 92,944 104,354 459,930 115,483 295,519 418,657 136,480 268,279
Unbalanced 879,552 79,807 86,164 670,775 91,992 191,249 478,058 121,522 301,805

OK Balanced 792,210 118,713 164,196 459,930 147,500 464,983 418,657 174,318 268,279
Unbalanced 1,014,326 130,894 113,081 800,405 138,730 255,182 419,730 174,242 239,566

In this example in the balanced Fay–Herriot setup
the estimate of A obtained by Prasad–Rao or Morris’
method is 16,1617, which is substantially smaller than
the HB estimate given by 1,735,616. The latter esti-
mate is more than ten times the frequentist estimate
and it results from a very long tail of the posterior dis-
tribution of A. This larger HB estimate of A results in
a substantially bigger value of the first component (the
g1 term) of the Bayesian measure than the correspond-
ing component in the other measures. In fact the fre-
quentist estimate of A is so small that, contrary to our
expectation, for some areas the estimate of the g1 term
is not the dominant term in the estimated mean squared
error (see the columns for Morris’ approximation and
Prasad–Rao estimates).

We notice that the picture does not change substan-
tially when we consider the unbalanced setup. Here
again, the posterior density of A has a long tail result-
ing in a posterior mean of 2,063,419. The Prasad–Rao
estimate is again far too small, only 192,527, and Mor-
ris’s estimate is in between, which is 515,969, much
larger than the Prasad–Rao estimate but much smaller
than the HB estimate.

We reiterate that all three components contribute
substantially toward the overall measure of uncertainty.
In particular, from the seventh and the eighth columns
of Table 2, we note that the third term (the g3 term) is
bigger than the second term (the g2 term) in 14 of the
30 rows. From the last two columns of the table, we
note that the third term is bigger than the second term in
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22 of the 30 rows. All these indicate that ignoring this
component in the frequentist estimate of MSE or Mor-
ris’ estimate will result in a severe underestimation. It
is particularly so for the Prasad–Rao frequentist MSE
since the first term (g1 term) is also adjusted for bias
by adding the g3 term. Incidentally, the HB measure
of uncertainty automatically accounts for all sources of
uncertainty.

We conclude this section noting that here and in
the previous section we assumed the sampling vari-
ances Vi’s are known. This assumption was necessary
to avoid the identifiability problem. If additional in-
dependent estimates (independent of Yi ’s) of Vi ’s are
available, and Vi’s depend on a finite number of pa-
rameters, then the previous results can be extended to
develop model-based small area estimates of the means
and their measures of uncertainty. It can be done for
both the EBLUP and HB approaches. This is essen-
tially similar to the unit-level model considered briefly
in Section 6. However, if Vi’s cannot be assumed to
depend on a finite number of parameters, then the
mean squared approximation results presented here do
not hold. In this scenario Wang and Fuller (2003) as-
sumed that independent V̂i , i = 1, . . . ,m, are available
which are unbiased for Vi . Assuming independent chi-
squared distributions of these estimates, they derived
MSE approximation of the EBLUP of θi . Their approx-
imation is valid provided both m and d, the minimum
of the degrees of freedom of the chi-squared distribu-
tion, are large. Their approximation to the MSE is ac-
curate only to the order of d−3/2. We refer to this arti-
cle for details. Another related paper in this setup is by
Rivest and Vandal (2004).

4. EXTENSIONS

The Fay–Herriot (1979) model discussed in the
previous section can be extended in different direc-
tions. First, instead of y|θ ∼ N(θ ,G), where G =
Diag(V1, . . . , Vm), one can begin with y|θ ∼ N(θ ,V),
where V is a known positive definite matrix which is
not necessarily diagonal. The full model is thus

y|θ ∼ N(θ ,V), θ ∼ N(Xβ,AIm).(4.1)

Datta et al. (1992) considered this model in the context
of adjustment of census undercounts. It is easy to check
for A(> 0) known, the BLUP (or the HB predictor with
a flat prior for β) is given by

θ̃B = (Im − B)y + BXβ̃(A),(4.2)

where B = (V + AIm)−1V and β̃(A) = [XT (V +
AIm)−1X]−1XT (V + AIm)−1y. With A unknown, one

can opt either for estimation of A from the marginal
distribution of y, namely, N(Xβ,V + AIm) or put a
flat prior for A, that is, π(β,A) = 1. Datta et al. (1992)
tried both methods in the context of adjustment of cen-
sus counts based on 1988 Missouri Dress Rehearsal
data, but found very little difference in the estimation
of θ .

The work of Datta et al. (1992) is based on modeling
the adjustment factors related to census counts. To be
specific, let Ti denote the true count and the Ci the cen-
sus count for the ith small area. Then Cressie (1989)
and Isaki, Huang and Tsay (1991) proposed modeling
θi = Ti/Ci (i = 1, . . . ,m).

Direct estimates of these adjustment factors are usu-
ally obtained from a postenumeration survey (PES)
conducted by the Bureau of the Census. In 1990, the
Bureau of the Census produced PES estimates of the
adjustment factors for 1,392 subdivisions (poststrata)
of the total population. The PES sample contained ap-
proximately 377,000 persons in roughly 5,200 census
blocks. However, prior to the 1990 census, the Census
Bureau had a trial run for several test sites in Missouri
to obtain direct estimates of these adjustment factors
based on (purported) complete enumeration and PES.
Datta et al. (1992) conducted an evaluation of this so-
called Census Dress Rehearsal Data using the method
described earlier in this section.

The HB and the EB estimators of θ based on (4.2)
are given respectively by

θ̂HB = [Im − E(B|y)]y + E[BXβ̃(A)|y],(4.3)

θ̂EB = [Im − B̂]y + B̂Xβ̃(Â).(4.4)

The posterior variance V (θ |y), as before, is given by

V (θ |y) = V{Im − E(B|y)}
+ E[BX{XT (V + AIm)−1X}−1XT BT |y]
+ Var[B{y − Xβ̃(A)}|y].

This was found numerically very similar to the plug-in
estimate of the second-order approximate MSE given
by

E[{θ − θ̂EB}{θ − θ̂EB}T ]
≈ V(Im − B) + BX{XT (V + AIm)−1}XT BT

+ 2VK3V[tr(V−2)]−1,

where

K = (V + AIm)−1

− (V + AIm)−1X{XT (V + AIm)−1X}−1

· XT (V + AIm)−1.
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The study of Datta et al. (1992) revealed that for every
poststratum, the EB (or EBLUP) and HB estimators of
the adjustment factors outperformed the direct estima-
tors.

There is also a multivariate extension of the Fay–
Herriot (1979) model considered in Datta, Fay and
Ghosh (1991). Now the data consist of y1,y2, . . . ,ym,
where each yi is r-dimensional. Bivariate and trivari-
ate versions of the model were used in Datta, Fay and
Ghosh (1991), and later in Datta et al. (1996) to esti-
mate median income of four-person families for the 50
states and the District of Columbia. They considered
the random effects model

yi = Xiβ + ui + ei , i = 1, . . . ,m,(4.5)

where ui
i.i.d.∼ N(0,A) and ei

ind∼ N(0,Vi ), the ui and
the ei being mutually independent, and the Vi(> 0) are
known. Alternatively, in a Bayesian framework, writ-

ing θ i = Xiβ + ui (i = 1, . . . ,m), yi |θ i
ind∼ N(θ i ,Vi)

and θ i
ind∼ N(Xiβ,A). Both EB (or EBLUP) and HB

estimators of the θ i were found. These estimators were
shown to outperform the direct estimators with respect
to their precision measures.

5. CONFIDENCE INTERVALS IN SMALL AREA
ESTIMATION

Morris (1983b) noted that although Stein’s shrink-
age estimators were widely used for point estimation,
a lack of the availability of estimated uncertainty with
these estimators delayed development of reliable confi-
dence intervals. An early attempt to construct EB con-
fidence intervals is due to Cox (1975). In the small
area estimation terminology, he developed approxi-
mate confidence intervals that are accurate to the or-
der of O(m−1) for an individual small area mean θi

for the balanced Fay–Herriot model without any co-
variate. Again in the small area estimation terminol-
ogy, Morris (1983a, 1983b) was the first to consider
confidence intervals for small area means for the Fay–
Herriot model with covariates. He considered both the
balanced and the unbalanced sampling variance cases.
His method consists essentially in finding an HB confi-
dence interval for θi , approximating (using Laplace ap-
proximations to integrals) this interval with estimates
of the hyperparameters only at the last stage. He con-
structed these intervals using normal percentile points
and provided a heuristic justification of these naive
EB intervals. Later Laird and Louis (1987) proposed
EB bootstrap confidence intervals in the spirit of Mor-
ris (1983a, 1983b), while Carlin and Gelfand (1990),

following a suggestion of Efron, proposed calibrating
the naive EB confidence intervals. Indeed, in small
area estimation setup, both for unit-level and area-level
data, Prasad and Rao (1990) also suggested approxi-
mate confidence intervals for small area means. They
based their intervals on normal percentile points and
used their second-order unbiased estimator of the MSE
of the EBLUP. As in Morris (1983a, 1983b), Prasad–
Rao intervals also have a coverage error to the order of
O(m−1).

For the case when V1 = . . . , Vm = V and A are both
known, a flat prior for β will result in a 100(1 − α)%
confidence interval of the form (1 − B)yi + BxT

i β̂ ±
zα/2V

1/2(1 − B + Bm−1)1/2, where we may recall
that β̂ = (XT X)−1XT y, the least squares estimator
of β . This result follows immediately from Lindley
and Smith (1972). A naive EB confidence interval is
given by (1 − B)yi + BxT

i β̂ ± zα/2V
1/2(1 − B)1/2,

which does not take into account uncertainty due to es-
timation of β . Accordingly, the coverage probability
will fall short of the target under the said hierarchical
model. The Type III bootstrap approach of Laird and
Louis (1987) provides a confidence interval identical
to the hierarchical Bayesian approach, where the boot-
strap samples y are drawn from the N(Xβ̂, (V +A)Im)

pdf. The same confidence interval is also arrived at
by the conditional approach of Hill (1990). Hill’s ap-
proach consists of finding the conditional distribution
of θi − ((1 − B)yi + BxT

i β̂) given the ancillary statis-
tic Ui = yi − xT

i β̂ . Also, it is pointed out by Laird and
Louis (Theorem 2.1, page 743) that the Type III boot-
strap can never match a hyperprior solution when A is
unknown.

For the balanced Fay–Herriot model, Datta et al.
(2002) developed an expansion for the coverage proba-
bility of confidence intervals derived by Morris (1983a,
1983b) and Prasad and Rao (1990). Based on this
expansion they perturbed the endpoints of the confi-
dence interval to achieve asymptotic coverage accu-
rate to the order of o(m−1). Also, following the frame-
work of Hill (1990), Datta et al. (2002) studied con-
ditional coverage probabilities of such intervals even
for unknown A by conditioning on a suitable ancil-
lary statistic. They obtained an expansion of the condi-
tional coverage probability as well and used the expan-
sion to better calibrate the interval. For some d > p let
B̂(S) ≡ B̂d(S) = (m − d)min{V/S, (m − p)−1}. As-
suming max1≤i≤mhii = O(m−1), where hii is defined
in Theorem 3, they had for any fixed t > 0 the follow-
ing expansion.
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THEOREM 4.

P
[
θ1 ∈ (

1 − B̂(S)
)
Y1 + B̂(S)xT

1 β̂ ± tV
(
1 − B̂(S)

)1/2]
= 2�(t) − 1

− tφ(t)

[
(1 + t2)B2

2m(1 − B)2 + B

1 − B

{
h11 + 5 − d

m

}]

+ O(m−3/2).

Let zα/2 denote the upper α/2 point of N(0,1) dis-
tribution. Taking t = zα/2 will result in an underesti-
mation in the nominal coverage 1 − α. If we take

t∗ = zα/2

[
1 + (1 + z2

α/2)B̂
2

4m(1 − B̂)2
+ (5 − d + mh11)B̂

2m(1 − B̂)

]
,

it follows that the interval (1 − B̂(S))Y1 + B̂(S)xT
1 β̂ ±

t∗V (1 − B̂(S))1/2 has coverage probability equal to
1 − α up to O(m−3/2) error terms. Although this theo-
rem is presented in the context of EB intervals, Datta et
al. (2002) also discussed expansion of coverage prob-
abilities of intervals that are created through the HB
argument of Morris (1983a).

Extending the argument of Hill (1990), Datta et al.
(2002) also obtained an expansion of the coverage
probability of an EB confidence interval of θ1 by condi-
tioning on an ancillary statistic U = (Y1 −xT

1 β̂)
√

(m−
p)/

√
S. They proved the following theorem.

THEOREM 5.

P
[
θ1 ∈ (

1 − B̂(S)
)
Y1 + B̂(S)xT

1 β̂

± tV
(
1 − B̂(S)

)1/2|U ]
= 2�(t) − 1

− tφ(t)

[
(1 + t2)B2

2m(1 − B)2 + (2U2 + 3 − d)B

m(1 − B)

+ Bh11

1 − B

]

+ Op(m−3/2).

The bias corrected confidence intervals for θ1 are ob-
tained as before with appropriate changes.

Datta et al. (2002) performed a simulation study to
evaluate the performance of the approximate confi-
dence intervals given in the two theorems above. In
these simulations they used a simple setup with m =
30 small areas with no covariates. Since the coverage
probability does not depend on β , it was taken as zero
in generating the samples. Also, the coverage proba-
bility depends only on B , so without any loss of gen-
erality V was taken to be 1. These authors considered

various values of B in the range 0.025 to 0.975. They
computed both conditional and unconditional cover-
age probabilities as discussed in the theorems given
above. They found little qualitative difference in per-
formance between the unconditional and conditional
coverage probabilities. They also noted that while the
extent of underestimation of the coverage probabilities
with t = zα/2 from the nominal level α was small for
small B , the underestimation was severe for B in the
upper half. On the other hand, the adjusted intervals
appeared to be too large resulting in overestimation of
the coverage probabilities. This overestimation is due
to an overestimation of the mean squared error of the
EB estimator of θ1. Incidentally, Lahiri and Rao (1995)
also noted similar overestimation of the MSE when B

approaches 1, that is, when A/V approaches 0.
Smith (2001) in his unpublished Ph.D. dissertation

developed EB confidence intervals for the ith small
area mean θi for the more practical case of unbal-
anced Fay–Herriot model in (3.1). Associated with the
EB or EBLUP θ̂EB

i of θi , let s2
i denote some esti-

mated measure of uncertainty. Note that s2
i could be

a second-order unbiased estimator of the MSE of θ̂EB
i

as in (3.12) or something similar. For some estima-
tor Â of A, Smith (2001) defined s2

i = h2
i (Â) + ci ,

where h2
i (A) = g1i (A) + g2i(A). The term ci is an

Op(m−1) order term, that may depend on Â and the
data Y, and may be related to g3i term in (3.10) and
bias term of Â. There are many possible choices cor-
responding to various MSE estimates. Rao (2001) pro-
posed a number of area-specific estimators of the MSE
of the EBLUP, and they can be included by proper
choice of ci . Alternatively, in the HB setup, ci may in-
clude (yi − xT

i β̂)2 Var(Bi(A)|y), which is an approx-
imation to the last term in the posterior variance in
(3.13). This general choice enabled Smith to study ap-
proximate coverage probabilities of confidence inter-
vals constructed in Morris (1983a, 1983b) by using EB
and HB methods. Corresponding to ci , let the paramet-
ric function c∗

i (A) be such that ci − c∗
i (A) = op(m−1).

Also, define qi(A) = B2
i (A)b

Â
(A)+ c∗

i (A)− 2g3i (A),

where b
Â
(A) is the asymptotic bias of Â. With the

above notation we now state Theorem 1.7.1 of Smith
(2001) below.

THEOREM 6. For any z > 0,

P [θ̂EB
i − zsi ≤ θi ≤ θ̂EB

i + zsi]
= 2�(z) − 1 + zφ(z)

qi(A)

h2
i (A)
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− (z3 + z)φ(z)g3i (A)

4h4
i (A)

D2
i

(A + Di)
+ o(m−1).

Note that the leading term in the above expansion
is the nominal coverage probability. The first-order er-
ror term in this expansion is of order O(m−1). From
this expansion it follows that as in Theorem 4 we can
perturb the cut-off point z in order to achieve the nom-
inal coverage probability to the order o(m−1). Another
point to note is that since the O(m−1) term ci (or
equivalently, c∗

i ) was not completely specified, for any
given z we can choose c∗

i (A) (depending on z and A)
to make the O(m−1) term in the expansion of the cov-
erage probability disappear. In particular, the choice
ci = c∗

i (Â) with

c∗
i (A) = 2g3i (A)−Bi(A)2b

Â
(A)+ (z2 + 1)Di

4A
g3i (A)

will give an EB confidence interval that matches the
nominal coverage probability to the order of o(m−1).

In this section we have considered confidence in-
tervals for individual small area means, which is the
current state of the literature. In the early applications
of small area estimation, practitioners were only in-
terested in point estimates (see, e.g., Fay and Herriot,
1979). Only in the last twenty years or so, substan-
tial development of the measures of uncertainty of the
model-based estimates of small area means has taken
place. Construction of appropriate confidence intervals
for small area means is still limited and is restricted
only to individual means. While in the EB setup confi-
dence sets for several population means have been con-
sidered, this problem is not fully addressed yet in small
area estimation. In a recent article, Ganesh (2009)
has considered simultaneous credible intervals in small
area estimation. However, calibrated confidence sets
for multiple small area means in EB or EBLUP ap-
proach have not been studied yet.

6. OTHER IMPORTANT DEVELOPMENTS IN
SMALL AREA ESTIMATION

We mentioned in the Introduction that both area-
level and unit-level data are available in small area
estimation. In the previous sections we have concen-
trated mostly on area-level models. In this section we
review some of the results for unit-level models. For
a unit-level model let yij denote the value for the
j th unit in the ith small area, with j = 1, . . . ,Ni ,
i = 1, . . . ,m, where Ni is the size of the finite pop-
ulation corresponding to the ith small area. Let γi =
N−1

i

∑Ni

j=1 yij denote the finite population mean for

the ith small area. For notational simplicity let yij , j =
1, . . . , ni, i = 1, . . . ,m denote values of the character-
istic of the sampled units from these m small areas. Let
the vector y(s) denote all the sampled values. A direct
estimator of γi based on the ith area sample mean Ȳis

is usually less reliable due to a small sample size ni .
To borrow strength from the neighboring areas through
shrinkage estimation the following model, known as
the nested-error regression model, has been found very
useful for unit-level data. The model is given by

Yij = xT
ijβ + vi + eij ,

(6.1)
j = 1, . . . ,Ni, i = 1, . . . ,m,

where xij is a p-component vector of auxiliary vari-
ables, vi and eij are independently distributed with

vi
i.i.d.∼ N(0, σ 2

v ) and eij
ind∼ N(0, σ 2

e ), j = 1, . . . ,Ni,

i = 1, . . . ,m. We denote the observations for the sam-
pled units in the ith small area by Y(1)

i = (Yi1, . . . ,

Yini
)T . Similarly, Y(2)

i is used to denote the vector of
observations corresponding to the unsampled units in
the ith small area. Battese, Harter and Fuller (1988)
and Prasad and Rao (1990) used this model to de-
velop EBLUP estimate of finite population mean γi .
They approximated γi for large Ni by θi = X̄T

i β + vi

and used the predictor of θi to estimate γi . Here X̄i =
N−1

i

∑Ni

j=1 xij is the known mean vector of the auxil-
iary variables.

Let Y(1) be obtained by stacking the vectors Y(1)
i for

all the m small areas. Similarly, denote by X(1) the ma-
trix of p columns obtained by stacking the xij ’s cor-
responding to the sampled units. We also denote the
variance of Y(1) by �11. From Prasad and Rao (1990)
the BLUP of θi is obtained as

θ̃i

(
ψ,Y(1)) = X̄T

i β̃ + δi(Ȳis − x̄T
is β̃),(6.2)

where ψ = (σ 2
v , σ 2

e ), and

β̃ = (
X(1)T �−1

11 X(1))−1X(1)T �−1
11 Y(1)(6.3)

is the generalized least squares estimator of β . Here
δi = σ 2

v (σ 2
v + σ 2

e n−1
i )−1 is the shrinkage coefficient

which shrinks the direct estimator Ȳis of γi (or θi ) to-
ward a regression surface.

Under the superpopulation model given by (6.1),
from Prasad and Rao (1990) and Datta and Ghosh
(1991b) one can show that the BLUP of the finite popu-
lation mean γi under the nested error regression model
is given by

γ̃i

(
ψ,Y(1)) = fiȲis + (1 − fi)θ̃i(u)

(
ψ,Y(1)),(6.4)
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where fi = ni/Ni , θ̃i(u)(ψ,Y(1)) is given by (6.2), with
X̄i replaced by x̄i(u), the mean of xij ’s for the Ni − ni

unsampled units from the ith area. The BLUP of the
small area mean γi usually depends on variance com-
ponents, which in practice will be unknown. Estimates
of variance components ψ are plugged in to the BLUP
to obtain EBLUP estimates. The variance components
are estimated from the marginal distribution (by inte-
grating out vi ’s) of the data, Y(1).

While Datta and Lahiri (2000) suggested ML and
REML estimation of the variance components, Prasad
and Rao (1990) used ANOVA methods to obtain unbi-
ased estimators for variance components in the nested
error regression model. Prasad and Rao (1990) first
obtained êij , ûij , j = 1, . . . , ni , i = 1, . . . ,m, where
{êij , j = 1, . . . , ni, i = 1, . . . ,m} are the residuals from
the ordinary least squares regression of Yij − Ȳis on
{xij − x̄is} and ûij are the residuals from the ordinary
least squares regression of Yij on xij . Estimators

σ̂ 2
e = (n − m − p∗)−1

m∑
i=1

ni∑
j=1

ê2
ij , and

(6.5)

σ̂ 2
v = n−1∗

[
m∑

i=1

ni∑
j=1

û2
ij − (n − p)σ̂ 2

e

]

are unbiased, where n∗ = n − tr[(X(1)T X(1))−1 ·∑m
i=1 n2

i x̄is x̄T
is], and p∗ is equal to the number of lin-

early independent vectors in the set {xij − x̄is , j =
1, . . . , ni, i = 1, . . . ,m}.

Second-order accurate approximations to MSE of
the EBLUP of θi were developed by Prasad and Rao
(1990) and Datta and Lahiri (2000). These authors
showed for the nested error regression model the three
terms in the approximation [cf. (3.10)] are

g1i (ψ) = (1 − δi)σ
2
v ,

g2i (ψ) = (X̄i − δi x̄is)
T (

X(1)T �−1
11 (ψ)X(1))−1(6.6)

· (X̄i − δi x̄is),

g3i (ψ) = n−2
i (σ 2

v + σ 2
e /ni)

−3

(6.7)
· var(σ 2

v σ̂ 2
e − σ 2

e σ̂ 2
v ).

For an estimator ψ̂ of ψ , from Prasad and Rao (1990)
and Datta and Lahiri (2000) a second-order unbiased
estimator of the MSE of the EBLUP of θi is given by

mse(θ̃i(ψ̂)) = g1i (ψ̂) + g2i (ψ̂) + 2g3i (ψ̂)
(6.8)

− bT (ψ̂; ψ̂)∇g1i(ψ̂),

where bT (ψ̂;ψ) is the asymptotic bias of ψ̂ , and
∇g1i (ψ) is the gradient vector of g1i (ψ). For estima-
tors of variance components with asymptotic bias of
o(m−1), the last term in (6.8) drops out. This happens
for the ANOVA estimators suggested by Prasad and
Rao (1990) and the REML estimators considered by
Datta and Lahiri (2000).

Estimation of the MSE of EBLUP outlined above
and in Section 3 is based on Taylor’s expansion. Alter-
natively, a resampling-based approach may be used to
estimate the MSE. Laird and Louis (1987) suggested a
bootstrap measure of accuracy of the EB estimator for
the Fay–Herriot model. Subsequently, Butar and Lahiri
(2003) adopted their approach in small area estimation.
Further references to this literature may be found in
Pfeffermann and Tiller (2005), Lahiri (2003) and Hall
and Maiti (2006). Jiang, Lahiri and Wan (2002) pro-
posed jackknife methods to estimate the MSE of the
EBLUP.

Datta and Ghosh (1991b) proposed a general HB
model for unit-level data in small area estimation.
Some earlier Bayesian analysis for two-stage sampling
in a simpler framework is due to Scott and Smith
(1969), with subsequent extension to the multistage
sampling by Malec and Sedransk (1985). Based on
the superpopulation approach to finite population sam-
pling Datta and Ghosh (1991b) developed HB esti-
mates of small area means by deriving certain predic-
tive distributions. To that objective, they considered the
following HB model:

(A) Conditional on β , λ = (λ1, . . . , λt )
T and r , let

Y ∼ N
(
Xβ, r−1(

� + ZD(λ)ZT ))
,

where Y is N × 1 vector of characteristics of all
the N units in the finite population, X and Z are
N × p and N × q matrices, respectively, for ap-
propriate known p and q .

(B) β, r and λ have a certain joint prior distribution.

Stage (A) of the above model can be identified as
a general mixed linear model (cf. Datta and Ghosh,
1991b). To see this, write

Y = Xβ + Zv + e,(6.9)

where e and v are mutually independent with e ∼
N(0, r−1�), and v ∼ N(0, r−1D(λ)). Here e is N × 1,
and v is q × 1 vector of random effects, � is a known
positive definite matrix and D(λ) is a q × q p.d. matrix
which is known except for λ.

In the context of finite population Y is partitioned
as YT = (Y(1)T ,Y(2)T ), where Y(1) corresponds to
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the sampled units and Y(2) corresponds to the unsam-
pled units. Similarly, the design matrices X and Z are
partitioned. To make inference about certain functions
of Y, the Bayesian solution is obtained by deriving
the predictive distribution of Y(2) given Y(1) = y(1)

(which is the posterior distribution of Y(2)). In small
area estimation the vector of sampled units Y(1) is
from m small areas. If Y(1)

i is the (ni × 1) vector of
sampled units from the ith small area, then Y(1)T =
(Y(1)T

1 , . . . ,Y(1)T
m ). Similarly, the vector Y(2) corre-

sponding to the unsampled units can be partitioned.
The finite population mean γi from small area i is a
linear function of Y(2), and its predictive distribution
may be derived from the distribution of Y(2). In partic-
ular, based on a quadratic loss function, the HB estima-
tor is given by the posterior mean of γi , and a measure
of uncertainty is given by the posterior variance of γi .
While the solution for the general HB model is pre-
sented in Datta and Ghosh (1991b), we now spell out
below some of the details for the nested error regres-
sion model.

For the nested error regression model in (6.1), t = 1,
r = σ−2

e and λ1 = σ 2
e /σ 2

v . To complete the HB model,
Datta and Ghosh (1991b) assigned independent prior
distribution on β , σ 2

e and σ 2
v . They put a uniform

prior over Rp for β , and σ 2
e ∼ IG(a0/2, g0/2) and

σ 2
v ∼ IG(a1/2, g1/2), where IG(β,α) is a distribution

whose pdf is proportional to exp(−β/x)x−α−1. Quan-
tities a0, g0, g1 are nonnegative and a1 is positive, and
are chosen suitably small to reflect diffused prior infor-
mation on the variance components.

The HB estimates for any reasonably complex model
do not admit any closed-form expressions, and they are
evaluated by numerical computations. Required poste-
rior moments can be found either by Gibbs sampling
(cf. Gelfand and Smith, 1990) or by numerical integra-
tion. Using formulas for iterated expectation and vari-
ance, Datta and Ghosh (1991b) have shown that the
posterior mean and the posterior variance can be com-
puted by evaluating several one-dimensional integrals
with respect to the posterior density of λ1. In particular,
the HB estimate of γi is

γ̂i
HB = E

[
γ̃i

(
λ1,y(1))|y(1)],

where the expectation E[·|y(1)] is with respect to the
posterior density of λ1, and γ̃i(λ1,y(1)) (with a slight
abuse of notation) is the same as the expression of
γ̃i(ψ,Y(1)) given in (6.4). Note that the above HB esti-
mate of γi is obtained by shrinking the direct small area
estimator Ȳis to an estimated regression surface. Simi-
larly, the posterior variance of γi can also be computed

by numerical integration involving one-dimensional in-
tegrals. Alternatively, the Gibbs sampling can also be
implemented very easily for the present model. Indeed
Datta and Ghosh (1991b) have shown that the set of
complete conditional distributions are given by either
multivariate normal or inverse gamma distributions.

7. OTHER SMALL AREA ESTIMATORS

7.1 Measurement Error Models

In our presentation of the unit-level model, we have
assumed so far that the covariates are measured without
error. However, sometimes it is not possible to obtain
exact measurements of these covariates. For example,
if in prediction of certain crop yield, the nitrogen level
in the soil is a covariate, this covariate needs to be de-
termined by analysis of soil sample. This will result in
measurement error of the covariate. For the nested er-
ror regression model with a single covariate with mea-
surement error Ghosh and Sinha (2007), Ghosh, Sinha
and Kim (2006) and Torabi, Datta and Rao (2009)
have considered estimation of small area means. While
Ghosh and Sinha (2007) used a functional measure-
ment error model, Ghosh, Sinha and Kim (2006) and
Torabi, Datta and Rao (2009) considered a structural
measurement error model for estimation of small area
means. Ghosh, Sinha and Kim (2006) and Torabi, Datta
and Rao (2009) used the model given by

yij = β0 + β1xi + vi + eij ;
(7.1)

j = 1, . . . , ni; i = 1, . . . ,m,

where as before yij is the response variable of the
j th unit in the ith area (or stratum), xi is the un-
known true area-specific covariate associated with yij .

Further, vi
i.i.d.∼ N(0, σ 2

v ) and independent of eij
i.i.d.∼

N(0, σ 2
e ). Under measurement errors, Xij (= xi + uij )

are observed, where uij
i.i.d.∼ N(0, σ 2

u ). They also as-

sumed that xi
i.i.d.∼ N(μx,σ

2
x ). The vector of model pa-

rameters is given by θ = (β0, β1,μx, σ
2
x , σ 2

u , σ 2
v , σ 2

e )T ,

and xi, vi, eij and uij are assumed to be mutually inde-
pendent.

Based on the preceding model Ghosh, Sinha and
Kim (2006) obtained the EB predictor of γi by re-
placing the model parameters by their estimates in the
Bayes estimator of γi based on the conditional distri-
bution of Yij , j = ni + 1, . . . ,Ni , given θ and yij , j =
1, . . . , ni . Since Xij ’s are also stochastic Torabi, Datta
and Rao (2009) instead first derived the fully efficient
Bayes estimator of γi based on the conditional dis-
tribution of Yij , j = ni + 1, . . . ,Ni , given θ , yij , j =
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1, . . . , ni , and xij , j = 1, . . . , ni . Finally, they obtained
an EB estimate of γi by replacing θ , the model param-
eters by their estimates as given in Ghosh, Sinha and
Kim (2006). Torabi, Datta and Rao (2009) employed
the jackknife method to obtain an estimate of mean
squared prediction error (MSPE) of the EB predictor.
For further details we refer to these two papers.

7.2 Generalized Linear Models

Until now we have considered small area estimation
problems only for continuous-valued response. How-
ever, often in practice, response variables are binary or
categorical. For example, in the SAIPE program, U.S.
Census Bureau is interested in estimating the poverty
rates among school children. The response variable
here is binary taking values 1 and 0 depending on
whether the child is in poverty or not. More gener-
ally, the response variable may take values in multi-
ple categories. Again, in the disease mapping context,
the response is typically the number of occurrences of
a rare event. Generalized linear models are needed for
the analysis of this kind of data.

Both empirical and hierarchical Bayesian approaches
have played an important role in developing small
area estimates for discrete data. Dempster and Tomber-
lin (1980), Farrell, MacGibbon and Tomberlin (1997)
and MacGibbon and Tomberlin (1989) have obtained
small area estimates of proportions based on EB tech-
niques. A general EB formulation for simultaneous es-
timation of means from the natural exponential family
quadratic variance function family of distributions is
due to Ghosh and Maiti (2004). They provided also es-
timated mean squared errors of the small area estima-
tors. Earlier, for the binary case, Jiang (1998) and Jiang
and Zhang (2001) obtained such mean squared error
estimators based on the jackknife approach. On the
other hand, a general hierarchical Bayesian approach
based on generalized linear models in the small area
estimation context is due to Ghosh et al. (1998).

7.3 Balanced Loss Functions

HB and EB estimators in the small area context are
mostly derived under squared error loss. As an alter-
native, Ghosh, Kim and Kim (2008) considered the
balanced loss introduced and made popular by Zellner
(1988, 1994). For simplicity, we go back to the frame-
work of Section 2 where we considered small area
models with equal number of observations within each
area. For an arbitrary estimator T = (T1, . . . , Tm)T of
θ , the balanced loss is given by L(θ ,T) = m−1[w‖y −
T‖2 + (1 − w)‖T − θ‖2], where ‖ · ‖ is the Euclidean

norm and w ∈ [0,1] is the known weight. The choice of
w reflects the relative weight which the experimenter
wants to assign to goodness of fit and precision of es-
timation. The extreme cases w = 0 and w = 1 refer
solely to precision of an estimate and goodness of fit,
respectively.

Under the balanced loss with a flat prior for β , it
follows from Section 2 that the Bayes estimator of θ

is θ̂B
BAL = [1 − (1 − w)B]y + (1 − w)BPXy with cor-

responding Bayes risk m−1E‖θ̂B
BAL − θ‖2 = V [(1 −

B)+ bw2(m−p)/m]. An EB estimator is obtained by
substituting the same estimator B̂EB = V (m−p−2)/S

or (B̂EB)+ = min(B̂EB,1) of B as given in Section 2,
where we may recall that S = ‖y − PXy‖2. The cal-
culation of the Bayes risk of the resulting EB esti-
mator is similar to that in Section 2. The details are
omitted. The special case of the intercept model where
xT
i β = μ for all i was considered in Ghosh, Kim

and Kim (2007, 2008). These authors also considered
constrained Bayes estimators along the lines of Louis
(1984) and Ghosh (1992a).

8. SUMMARY AND FUTURE RESEARCH

The paper reviews several normal theory-based
small area estimation techniques. In particular, the
role of shrinkage estimation in the small area con-
text is highlighted, and different variants of Stein-type
shrinkers are discussed. Both hierarchical and empir-
ical Bayesian methods are presented in the context of
mixed linear models for unbalanced data, and are il-
lustrated with specific small area problems. Empirical
Bayes confidence intervals based on hierarchical nor-
mal models are provided. Extensions of these results
to measurement error models and generalized linear
models are also touched upon.

There are several promising areas of future research.
As mentioned earlier, small area estimation needs ex-
plicit, or at least implicit, use of models. These model-
based estimates can differ widely from the direct esti-
mates, especially for areas with very low sample sizes.
One potential drawback of the model-based estimates
is that when aggregated, the overall estimate for a
larger geographical area may be quite different from
the corresponding direct estimate, the latter being usu-
ally believed to be quite reliable. This is because the
original survey was designed to achieve specified in-
ferential accuracy at this higher level of aggregation.
The problem can become more severe in the event of
model failure as often there is no real check for the
validity of the assumed model. Moreover, this overall
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agreement with the direct estimates may sometimes be
politically necessary to convince the legislators of the
utility of small area estimates.

One way to avoid this problem is the so-called
“benchmarking approach” which amounts to modify-
ing these model-based estimates so that one gets the
same aggregate estimate for the larger geographical
area. A simple illustration is to modify the model-
based county-level estimates so that one matches the
state-level direct estimate. Currently the most popular
approach is the so-called “raking” method which in-
volves multiplying all the small area estimates by a
constant factor so that the weighted total agrees with
the direct estimate. Clearly, this is an ad hoc procedure
with very little statistical foundation.

It appears that constrained Bayes small area esti-
mates (Louis, 1984; Ghosh, 1992b) will be particularly
appropriate to achieve this end. Instead of match-
ing the first two moments from the empirical his-
togram of Bayes estimates with those from the poste-
rior histogram of the parameters as in Louis (1984) or
Ghosh (1992a), one should require that the aggregate
or some weighted aggregate of these small area esti-
mates should equal the large area aggregate estimate.
This can possibly be achieved even for fairly complex
models. See also Shen and Louis (1998).

The other interesting issue is to extend the measure-
ment error model much further so that one can even
handle discrete data and also more complex normal
theory models.
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