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LBL-18693 

ABSTRACT 

SMALL ATOM APPROXIMATIONS FOR PHOTOELECTRON SCATTERING 
IN THE INTERMEDIATE ENERGY RANGE 

J.J. Barton and D.A. Shirley 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

and 
Department of Chemistry 
University of California 

Berkeley, California 94720 

Five approximate models for describing the scattering of spherical 

waves by central potentials are explored. The point-scattering model 

introduced by Lee and Pendry (Phys. Rev. B, ~,2795,(1975)) allows a 

short-range potential to be close to the source; a new homogeneous wave 

model lifts the restriction on the potential diameter, but requires 

asymptotic incident waves. The popular plane-wave model requires both 

an infinitesimal diameter potential and incident waves at their 

asymptotic limit. For realistic potentials at near-neighbor 

separations, none of these models is adequate: even a hybrid model 

combining features of the pOint-scattering and homogeneous-wave methods 

does not allow for amplitude variation across the potential. The fifth 

small atom model is based on a Taylor series, magnetic quantum number 

expansion of the ~ddition theorem for screehed spherical waves. This 

Taylor series approximation has the homogeneous-wave model as its zero-

order term and the exact spherical wave scattering process as its limit. 
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Multiple-scattering equations for Angle-Resolved Photoemission Extended 

Fine Structure (ARPEFS) are derived and the effectiveness of these 

approximations are compared. We demonstrate that while the plane-wave 

model is reasonably accurate for near-180 o backscattering, small angle 

scattering requires the curved wavefront corrections available in the 

Taylor series ~xpansion method. 



• 
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I. INTRODUCTION 

The theoretical description of electron scattering in solids for 

intermediate energies from 100 to 1000 eV faces a peculiar challenge: 

simple physical models for the scattering process are surprisingly 

accurate, while more sophisticated calculations become intractable. The 

striking success of single-scattering, plane-wave models for the 

qualitative description of Angle-Resolved Photoemission Extended Fine 

1 
Structure (ARPEFS) and of Extended X-ray Absorption Fine Structure 

2 
(EXAFS) has led to satisfactory empirical analysis of these 

measur~ments, but multiple-scattering, spherical wave calculations are 

too complex for routine quantitative analysis cases where the simple 

model fails. 

The two crucial theoretical issues--spherical vs. plane-wave 

scattering and multiple versus single scattering--are entwined. First, 

we must decide if the curvature of the wave emanating from one ion core 

will influence the scattering of that wave by an adjacent potential. If 

we may neglect the curvature, then the scattering of electrons in a 

solid reduces to a series of plane-wave calculations, connected only 

through the wave phase and incident direction. 3 If, on the other hand, 

the curvature is important, more sophisticated calculations are 

required. For single scattering of 1=1 photoelectrons we have 

previously derived the required eqUations~ Unfortunate~y the outgoing 

scattered wave from the first scattering event will always contain much 

higher angular momentum partial waves, requiring more sophisticated 
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equations and leading to larger corrections. Thus if double scattering 

is important, we certainly would expect the wave curvature to be 

important. 

This leads us to the second central issue in electron scattering: 

the role of multiple scattering. The various experimental processes 

address different aspects of this issue. The results of Low Energy 

Electron Diffraction (LEED) calculations
5 

are clear: multiple scattering 

is important. Theoretical work with photoelectron scattering
6 

and more 

recent work on x-ray absorption edgeS
7 

have utilized the relative 

simplicity of the photoelectron scattering process to show that at 

intermediate energies only forward scattering leads to multiple 

scattering events at a level that cannot be neglected. Finally in EXAFS 

the photoelectron returns to the absorbing atom: in the process a large 

number of high angular-momentum waves are backscattered to the absorber. 

Thus our previous conclusion that double scattering would require curved 

wave calculations is contradicted by evidence
8

,9 that a plane-wave model 

contains the essential character of the EXAFS phenomenon; we might be 

further tempted to extrapolate the empirical evidence and ignore 

wavefront curvature for all scattering at high energy.3 Any correct 

theoretical procedure must be compatible with all of these observations. 

In a previous paper~ we explored the wavefront curvature question 

for single scattering of ~=1 photoelectrons. Two important conclusions 

from that work are i) curved wave corrections are much smaller for 

backscattering than they are for forward scattering, and ii) only the 

backscattering corrections get smaller at high energy; the forward 
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scattering corrections do not fall asymptotically with large k. Because 

the studies cited above already demonstrate the importance of forward 

scattering, and because the once-scattered wave will contain angular 

momenta much greater than ~=1, we are led to investigate curved 

wavefront corrections to multiple scattering in the intermediate energy 

range. 

This would seem to be a rather straightforward project. We have 

after all an impressive foundation in the low energy region from LEED 

theOry,5 photoelectron diffraction
10

, and, more recently, near edge x-

b t · 11 ray a sorp lon. Indeed, Tong and co-workers have extended their 

photoelectron diffraction calculations into the intermediate energy 

10 
range, and their results have provided indications of the importance 

of multiple scattering. These calculations are not, however, simple 

extensions of the plane wave model; they are full curved-wave treatments 

and consequently--for a reason we now discuss--much more expensive than 

low energy multiple scattering calculations. 

The origin of the difficulty in applying multiple scattering curved 

wave calculations at intermediate energies is that the maximum angular 

momentum in a scattered wave leaving a scattering atom increases with 

electron wavenumber. 

from a potential may 

kr 
o 

The maximum angular momentum, ~ , scattering 
max 

be related to its range, r
O

' by12 

~ 
max 

(1) 
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As the energy--and hence the number of important scattered waves--

increases, the number of numerical operations also increases. For plane-

wave models this increase is manageable because each scattering event 

depends only linearly on ~ • On the other hand, the time required for 
max 

exact curved wave calculations are proportional to at least (~ )4 
max ' 

prohibiting even cixploratory multiple scattering calculations to be 

attempted. (Also note that approximate curved wave calculations based 

on a small, fixed maximum angular momentum will be incorrect above some 

energy given by eqn. (1». 

Simply from the success of plane-wave models of electron scattering 

we may conclude that another physical approximation must exist that 

would allow accurate introduction of curved wave corrections with more 

modest effort than the exact theory requires. In this paper we seek 

such an approximation by examining five approximate models for the 

scattering of spherical waves from central potentials: 

i) pOint scattering, 

ii) homogeneous wave scattering, 

iii) plane-wave, 

iv) renormalized homogeneous wave, 

v) Taylor series-magnetic quantum number expansion. 

The first four models were initially motivated by existing angular-

momentum expansions known as addition theorems. We discuss the 

approximations necessary for each model and outline the physical 

problems to which they apply. The fifth small atom approximation is 

b d I t · . 13 · t . ase on a new angu ar-momen urn serIes expansIon ; 1 contaIns 
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important curved wave corrections not included in any of the first four 

models and it provides for orderly development of higher order 

corrections. 

In section II we discuss electron scattering of spherical waves by 

the partial wave method and exact scattering of spherical waves in the 

100-1000 eV range. Physically motivated small atom approximations to 

the spherical wave formula are reviewed in section III, and we examine 

some of the contributions to the success of the plane-wave model. The 

remaining sections concern the fifth, more general small atom model. 

Section IV applies the Taylor series expansion for the spherical wave 

scattering to (1s) initial state photoelectron scattering. Section V 

discusses spherical wave scattering factors which govern the convergence 

of the Taylor series and Section VI illustrates the convergence for a 

single example and describes an intuitive picture of the Taylor series 

terms. We conclude in section VII with some remarks on further 

applications. 
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II. SPHERICAL WAVE SCATTERING AND NOZAWA'S GAUNT INTEGRAL SUMMATION 

To provide the background for our development of approximate 

electron scattering formulae, we will set up the electron scattering 

1 4 
problem, review Nozawa's origin-shift addition theorem. for spherical 

waves, and discuss the difficulty with this approach. 

Our scattering system consists of a point source of electrons and a 

lattice of non-overlapping central potentials (the muffin-tin mOdeI
5

). 

This model approximates a number of physical problems. If the lattice 

represents a surface system and the point source is a screened 

photoemitter, then we have a photoelectron diffraction or Angle-Resolved 

Photoemission Extended Fine Structure model. If the lattice is a bulk 

material or surface system, the point source is again a screened 

photoemitter, and we calculate an integrated photoabsorption cross 

section, then we have an Extended X-ray Absorption Fine Structure 

(EXAFS) model. If the lattice is a surface, but the point source is a 

once scattered electron from an incoming plane wave, we have part of a 

model for multiple scattering, Low Energy Electron Diffraction (a sum 

over all scattering potentials excited by the plane wave is required to 

complete the LEED problem). For numerical calculation and physical 

discussion, the photoelectron diffraction (ARPEFS) case is the Simplest 

problem because the scattered wave is directly detected. We shall 

concentrate on this problem. 

If we consider a model which consists of non-overlapping 

potentials, we may calculate the multiple scattering by combining a 

general description for a spherical wave scattering from a potential 
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with a prescription for enumerating all significant scattering paths. 

Because we wish to describe photoelectron diffraction in the 

intermediate energy range (ARPEFS), we will concentrate on the 

scattering of photoelectrons originating from a (1s) level of an atom in 

an ordered and oriented system. We will also choose our examples to 

1 
correspond to a recent ARPEFS experiment on the c(2x2)S/Ni(001) system. 

When the angle-resolved cross section for S(1s) photoemission is 

measured in such a system, the intensity oscillates with energy 

demonstrating interference among channels describing the possible paths 

to the detector.
15 

Most of the interference occurs between waves 

describing direct and single-scattered photoemission, but forward 

scattering of the single-scattered electrons must also be included to 

10 
predict the interference amplitude correctly.. A more complete 

discussion of the physics of photoelectron diffraction can be obtained 

6 15 16 
elsewhere." For the purposes of this paper we note that: 

i) dipole selection rules predict that a single p type (1=1) 

continuum orbital is populated through photoabsorption bya 

(1s) initial orbital, 

ii) by selecting the z axis of our coordinate system parallel to 

the electric vector of a polarized photon beam, the 

photoelectron angular distribution can be written as 

II 
proportional to Y10(r) = (3/4~) 2COS 0, 

iii) in most materials, the photoion may be considered fully 

screened on the absorbing atom, and 
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iv) both the photoabsorbing atom's phase ·shift of the continuum 

wave and the total atomic cross section appear equally in all 

terms describing the final amplitude and thus do not affect 

the oscillations. Thus the oscillations may be isolated by 

normalization to form a function X(k)=I(k)/Io(k)-1 as in 

EXAFS, but X(k) contains no source-atom phase shift, in 

contrast to EXAFS. 

With these ideas in mind, we may write the important part of the 

outgoing wavefunction as an ~=1 spherical wave 

(2) 

We refer to this wavefunction as the "direct" wave. 

~ 

We will use the scattering geometry depicted in Figure 1. We use r 

~ 

as a general position vector. and k as the propagation vector of the 

electron, ~ith k giving the electron wave number.. We define the 

~ ~ ~ 

scattering potential positions by a, b, c ••• for the first, second, 

third and so on, scattering events. These latter vectors connect atoms: 

~ 

they are "bond" vectors, not position vectors. The vector R is the 

position of the angle resolving detector. Our convention and notation 

for spherical harmonics, Y~m' are given in Appendix A of ref 13. For 

~ 

brevity we use the notation Y~m(r), where r = r/r. The functions j~(kr) 

and h~(kr) = hi
1
)(kr) are spherical Bessel functions as defined by, for 

example, pendry5, Appendix A. 
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Our discussion of the small atom approximations will consider the 

single and double scattering of ~=1 photoelectron waves. A single 

scattering event will have an incident ~=1 wave (eqn. (2», but the 

second event in double scattering will include all angular momenta 

characteristic of the multiple scattering problem. Thus higher order 

scattering can be built up by repeating the steps in the second part of 

our double scattering equations. 

To better understand the small atom models, we will first briefly 

review the potential scattering of plane and spherical waves. If a 

Plane wave is incident upon the potential, the expansion in an angular 

momentum series is well known: 

-+ -+ 
i k·r 

e 

-+ -+ -+ -+ 17 
where k=ka and r = a + b. The partial wave method instructs us to 

expect an outgoing spherical wave, i~h~(kr)Y~m(kr), proportional to each 

regular spherical wave incident on the potential; the complex 

proportionality factor, T~, is derived from the partial wave phase 

shifts, o~(k), and has both a scattering amplitude and wave phase shift: 

(4 ) 

Thus the scattered wave becomes 



~ 

1jJ~(b) = 
a 

12 

(plane wave) (5) 

(We will subscript a scattered wave by its origin; for a wave at the 

~ ~ 

detector we replace b by R.). 

If a spherical wave from a source at the ori gin is incident on the 

potential 

deri ved by 

may expand 

G 
tm9.."m" 

centered at 

Nozawa. 
14 

it around 

~ ~ ~ 

~ 

a, 

If 

~ 

a as 

the expansion in spherical harmonics has been 

the spherical wave emanates from the origin, 

(6) 

where r=a+b. In the mathematical literature, this type of formula is 

called an addition theorem; we will refer to this equation as Nozawa's 

origin-shift addition theorem. With this result we can calculate the 

scattered wave as 

~ 

1jJ (b) = 
~ 

(7) 
a 

where G9..m9.."m" is given above. 

we 

To understand and use this formula we must compute the integral of 

three spherical harmonics, called the Gaunt integral.
18 

This integral 

can be related to the 3j vector addition (Clebsch-Gordan) SymbOlS
19 

and 
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Gaunt has derived an analytic formula to calculate its value. The 

integral is non-zero only when 

m" m + m',I£"-£1 :ii £' :ii £" + £ even (8) 

5 
Pendry gave a computer program to implement Gaunt's formula. Typically 

a table of these Gaunt integrals is consulted in actual calculations. 

The complexity of the formula for spherical wave scattering is 

self-evident. In computer calculations we must recognize that the number 

4 
of transformation coefficients G~m£"m" is proportional to (£max+1) and 

each coefficient requires the summation of - £max complex numbers times 

the Gaunt integral. Since £max is roughly proportional to k, multiple 

-1 
scattering calculations already difficult at k = 3A become 

-1 
prohibitively expensive at k = 12A • Even this presumes that the Gaunt 

integrals are calculated once and stored; for calculations to 600 eV 

(£ = 19), - 10
6 

integrals are required. For these reasons we must 
max 

approximate the scattering calculations. 
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III. PHYSICALLY MOTIVATED SMALL ATOM APPROXIMATIONS 

Faced with the intractable spherical wave equations we are led to 

consider approximate forms. In this section we will examine four 

approximations, which we will refer to as point scattering, homogeneous 

wave scattering, plane-wave scattering, and the hybrid, renormalized 

homogeneous wave method. In the point scattering model, the incident 

spherical wave is treated exactly, but the potential is taken to have an 

infinitesimal diameter. 
8 

This model was introduced by Lee and Pendry as 

a small atom approximation for EXAFS. The homogeneous wave model allows 

the potential to have a physical diameter but every incident wave is 

assumed to have reached its asymptotic limit, exp(ikr)/ikr. The plane-

wave model is the common limit of both the pOint scattering and 

homogeneous wave models; it assumes an infinitesimal potential and 

incident waves at their asymptotic limit. The renormalized homogeneous 

wave model combines the mechanics of the point scattering and 

homogeneous wave methods. Figure 2 compares these approximations 

graphically for an ~=7 spherical wave. We begin by deriving formulae 

for the scattered waves in each approximation. 

A. Point Scattering Model 

The motivation for the point scattering model is a practical one: 

the origin-shift addition theorem for plane waves, eqn. 3 is much 

simpler than the corresponding formula for spherical waves, eqn. 6. To 

8 
repeat the physi cal approach of Le.e and Pendry, we imagine the outgoing 

spherical wave meeting a potential with a sufficiently small diameter so 
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that we may ignore the curvature of wavefronts across the potential and 

the change in wave amplitude and phase along the propagation direction 

in the region of the potential. In other words, we represent an 

incident spherical wave, i~h~(kr)Y~m(;)' over the infinitesimal point 

potential by a plane wave with the amplitude and phase of the spherical 

wave 

(9) 

For a potential of finite diameter, the pOint-scattering approximate 

~ 

wave will agree with the actual incident wave only at the pOint a. As 

illustrated in figure 2(b), this alignment and the common asymptotic 

frequency of the exact and approximate waves leads to good agreement 

between these waves except near the edges of the potential. 

We may expand the plane wave with eqn. 3 and use the partial wave 

prescription to derive the scattered wave as 

41T T 
A ~, 

~ (k) Y~'m,(a)i h~,(kb)Y~'m,(b 
~, ,a 

( 10) 

for an incident ~=1 photoelectron wave (eqn. (2». The same procedure 

~ 

may be applied to the wave emanating from a and scattering from a point 

~ ~ 

potential at b into the direction of c to give a double scattered wave: 
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L 4'11' T ( 11) 

2,"m" 

It is useful to separate the spherical Hankel function into asymptotic 

and polynomial parts: 

ikr 
i2.h2.(kr) = e

ikr 
d2.(kr); 

where d2,(kr) is given by a series
20 

or, for practical calculations, by a recursion formula: 

i 
dO = 1, d 1 = 1 + kr • (1 4) 

( 12) 

( 1 3) 

In the limit that 2kr » 2,(2,+1), d2,(kr) 1.0. We further define a 

scattering factor 

(15) 

which together with the addition theorem for spherical harmonics: 

( 1 6) 
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allows us to write 

and 

ika 
e - a 

ika 
e - a 

ikb 
r Point _e~_ 

ab ikb 

i kb . t i kr 
rPoint ~ rPo1n e 

ab b bc ikr 

.. 
For a detector at a position IRI »t Ik the last point 

max 

(17 ) 

( 18) 

scattering ractor will converge to the plane wave scattering factor of 

atomic physics: 

and the single-scattered waves calculated at the detector will be 

ika 
e -_. 

a 

and the double-scattered waves are 

ika 
e 
--

a 

B. Homogeneous Wave Model. 

ikb 
rPoint e 

ab --s-
ikIR-~-bl 

fPlane _e ___ ~ __ ___ 
bR ikr 

( 1 9 ) 

(20) 

(21) 
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The motivation and formulation of the homogeneous wave scattering 

model is similar to the point scattering method. The idea is to 

approximate the incident wave over the region of a finite range 

t t ' 1 f ' 19 h ' 1 po en la. I we-notlce that a sp erlca wave reaches to ~ithin 10 

percent of its asymptotic amplitude when kr ~ 2~, and that the angular 

distribution of a spherical wave is nearly constant whenever it has a 

large amplitude, or conversely the angular distribution changes most 

rapidly near nodes where the amplitude is small, then we are led to 

approximate the spherical wave by its asymptotic-limit, the isotropic 

spherical wave, ho(kr): 

(22) 

Since ho(kr)=exP(ikr)/ikr, the homogeneous wave model explicitly 

incorporates the radial decay characteristic of spherical waves but 

allows no other variation in wave amplitude over the potential. In 

particular, the model ignores the amplitude variation of Y~m(r) 

laterally across the potential, the origin of our name "homogeneous 

wave" model. Thus the radial form of the incident wave is rather 

accurately approximated as shown in figure 2(c), but the waves are not 

in phase at the center of the potential. Although not shown by the 

radial plots in figure 2, the homogeneous wave model also incorporates 

the basic curvature characteristic of spherical waves. Thus the phase 

match between the homogeneous wave and the exact incident wave will 

appear as in figure 2(c) for any radial cut through the wave source, but 
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the match between the point scattering wave and the exact wave will be 

worse than figure 2(b) for any cut which does not pass through a. 

The isotropic spherical wave has a simple origin shift addition 

theorem similar to that of a plane wave: 

and we may parallel the development of the pOint scattering equations 

with a different scattering factor 

(24) 

and arrive at the scattered wave amplitude at the detector in the 

homogeneous wave approximation 

(25 ) 

and 

ika ikb ikIR-~-bl 
~ e fOO e fOO e 

wab(R) ~ Y10(a) --a- ab b bR ikR (26) 

(The superscript 00 is retained to parallel the notation of ref. 4). 

McDonnell, et al arrived at similar equations by an entirely different. 

1 
. 21 

route in their original paper on Auger e ectron scatterIng • 



20 

C. Plane Wave Model. 

Both the pOint-scattering and homogeneous wave models approach a 

+ 
plane-wave model for large scattering distances lal, but the distance at 

which these models reach the plane-wave limit depends on different 

parameters. In the point scattering model, the phase and amplitude 

differences between the spherical wave and a plane wave at the 

scattering point disappear as the d~(ka) approach 1.0. This requires 

2ka » ~. (~. +1) where~. is the incident wave angular momentum. For 
ln ln ln 

homogeneous wave scattering we must move the potential far enough away 

to ignore the variation in l/kr across the potential in the direction of 

propagation; this requires 2ka »~ t (~ t+ 1) where ~ t is the 
ou ou. ou 

outgoing wave angular momentum. (Note that these limiting criteria only 

specify the reduction of small atom approximations to the plane-wave 

limit; they are necessary but not sufficient conditions for plane-wave 

accuracy compared to the exact curved wave results). In the limit of 

either model the scattered waves at the detector become 

+ 
ljJ (R) '" 

a 

and 

ika 
e --a 

ika 
e 

a 

fPlane 
aR ikR 

+ + + 
ikb ikIR-a-bl 

fPlane e fPlane _e __ ~~ __ _ 
ab -b- bR ikR 

(27 ) 

(28) 
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It is this "plane-wave" form of the scattering equations that leads to 

the simple single scattering formulas for EXAFS
8 

and ARPEFS.
15 

Neither the point scattering nor homogeneous wave models have 

persuasive advantages over the plane-wave limit in general scattering 

problems. Point scattering models the incident wave well at one pOint, 

without regard for the size of the potential. For pOint scattering to 

apply, we must be able to ignore the variation in 1/kr across the 

potential; from the homogeneous wave equations we can see this requires 

2ka »~ t(~ t+ 1). 
ou ou 

(29) 

Whenever this requirement is fulfilled, we have 2ka » ~. (~. +1) for 
In In 

all < 
~in - ~out and the plane-wave limit will be reached by the incident 

wave. In other words, only if we scatter high angular momentum waves 

off a short range potential where~. »~ t will pOint scattering 
In ou 

significantly improve on the plane wave model. Roughly the converse is 

true for the homogeneous wave formulas. The homogeneous wave method 

considers the size of the potential, but approximates the incident wave. 

To ignore the difference in phase between the incident spherical wave 

and the isotropic homogeneous wave, ho(kr), we must have ~. (~. +1) « 
In In 

2ka. Whenever this requirement is fulfilled, we may ignore wave-front 

curvature for all ~ t ~ ~. . Thus the homogeneous wave model will only 
ou In 

improve on the plane-wave model for scattering low angular momentum 

waves from potentials with large effective radii, potentials which give 

rise to high angular momentum waves. 

Despite these restrictions there are important problems to which 

these approximations apply. For the EXAFS single-scattering geometry, a 

.. 
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complete range of angular momentum waves are backscattered to the 

central atom, but only low angular momenta can couple through the dipole 

matrix element to the initial state; waves striking the central atom 

have ~i »~ t' For the ARPEFS single-scattering problem,.dipole 
n ou 

excitation gives only low angular momentum waves for scattering and, 

since the high angular momentum waves only appear asymptotically, we 

have some cases of ~ t ~ ~. • On the whole we might rank the 
ou In. 

homogeneous wave model ahead of the point scattering or plane-wave 

models more general scattering problems: low angular momentum partial 

waves carry much more weight when the scattered wave is constructed. We 

will also show in section IV that the homogeneous wave model is the zero 

order Taylor series term. 

Our distinction between incident and outgoing angular momenta 

highlights the distinction - commonly overlooked - between the 

asymptotic limit of spherical Hankel functions and the plane wave limit 

of spherical waves. The asymptotic limi t of i ~h~ (kr) is 

hO(kr)=exP(ikr)/ikr and we may invoke this limit whenever 2kr»~(~+1). 

Even if the asymptotic limit is justified, the plane-wave limit may 

still fail to apply: the variation in (l/kr) across the potential may be 

significant if the potential has a large diameter. Conversely, the 

variation in (l/kr) may be neglected for a small diameter potential, 

but, if the incident angular momentum is high, we are not in the 

asymptotic limit of the spherical Hankel function. The plane-wave limit 

incorporates two approximations: the asymptotic limit and a negligible 

diameter potential. 
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D. Hybrid Model. 

Our contention that the point scattering and homogeneous wave 

models have nearly opposite ranges of use would suggest a hybrid 

"renormalized" homogeneous wave method in which the phase and amplitude 

of the incident spherical wave is attached to the isotropic wave before 

scattering. Thus over the region of the potential we would represent 

the incident wave by 

i~h~(kr)Y~m(r) ~ d~(ka)Y~m(a)ho(kr). 

This approximation would agree with the incident wave in radial form 

~ 

(l/kr decay) and in phase and amplitude at a as shown in figure 2(d), 

and the phase agreement would extend to all points with I;I=I~I. While 

such a small atom approximation would give good results for the EXAFS 

and ARPEFS single scattering cases
22

, we have no guarantee of success in 

multiple scattering problems: the criteria for the application of the 

small atom models we have examined thus far are necessary but not 

sufficient conditions for accuracy. The most serious limitation shared 

by these small atom approximations lies in directions not graphed in 

figure 2: none of the models described so far account for variation in 

wave amplitude across the potential due to the angular dependence of the 

spherical wave. 

Rather than explore further the range of validity for these small 

atom approximations, we turn instead to the development of a new fifth 

approximation which allows steady improvement toward the exact curved-

wave result. The development of this Taylor series, small atom 

approximation will comprise the following section; as a prelude we close 
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this section with two topics related to the plane-wave model. The first 

is simply the mathematical reduction of the exact origin-shift addition 

theorem, eqn. 6, to the plane wave limit; the required approximation 

bears upon our discussion above. Second, we attempt to understand the 

formally disconcerting but empirically well-founded success of the plane 

wave model, by listing several contributions to its usefulness. 

E. Formal and Practical Plane-Wave Limits. 

We may arrive at the plane-wave limit by replacing the spherical 

Hankel functions in Nozawa's origin-shift addition theorem by their 

asymptotic forms. We may then move the intermediate sum in equation 6 

inside the Gaunt integral and, using the closure sum for spherical 

harmonics, perform the angle integration to conclude that 

(30 ) 

The addition theorem for spherical harmonics (eqn. 16) and the partial 

wave method then gives eqn. 27. 

We may give the criterion for applying this approximation to 

Nozawa's origin-shift addition theorem as 2.'<.2.'+1) « 2ka where 2.' is 

the angular momentum of the intermediate sum in equation 6. The maximum 

intermediate angular momentum is restricted by the non-zero Gaunt 

integrals, eqn. 8, to be 2.' = 2." + 2. or 2.' = 2.
in 

+ 2.
out 

using our 

notation from above. This sufficient condition for the plane-wave limit 

is much more restrictive than either conditions for the small atom 

.. 
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approximations and would indicate that plane-wave formulas would be 

adequate only for low angular momenta scattering from very short range 

potentials. We turn then to list some contribution to the success of 

2 
the plane wave limit when 2ka is not much greater than (iin + i

out
) • 

Let us now try to understand the success of the plane wave method 

despite the evident theoretical problem. There are five important 

contributions: 

i) The phase difference between the scattered wave and the 

unscattered wave is dominated by their different origins. 

Thus if we measure the phase difference between a 

backscattered wave and an unscattered wave, the phase 

calculated in the plane wave approximation need only be the 

same magnitude as that given by the spherical wave formula.
2 

ii) Spherical Hankel functions reach
19 

to within 10 percent of 

their large kr limit when kr - 2i
max

' 

iii) At large k, the large number of contributing partial waves 

reduces the fractional error made in approximate treatment of 

the highest i waves. In other words, the low i waves have 

reached their asymptotic limit and the high i waves become 

outnumbered. 

iv) It has been discovered empirically from EXAFS analysis that 

the phase difference in the plane wave limit for 

backscattering may be reliably corrected by slight shifts in 

2 
the scattering energy. While discomforting from a 
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theoretical viewpoint, the scattering energy is not measured 

in the x-ray absorption experiment anyway.23 

v) Finally, as discussed in reference 4, curved wave corrections 

are much smaller for backscattering due to cancellation of 

successive partial waves, or equivalently, as illustrated in 

figure 3, a smaller region of the potential contributes to 

backscattering. 

Taken together, these ideas begin to explain the substantial 

success of the plane wave model. To make further progres~ in 

understanding the electron scattering or to enable efficient, accurate 

numerical calculation, especially for forward scattering directions, we 

must seek some approximation between the plane and full spherical wave 

formulas. 
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IV. TS-MQNE APPROXIMATION 

To derive an approximate method beyond those discussed in the 

previous section we return to the exact Gaunt integral summation 

formula, eqn. 6, and ask how the known characteristics of the scattering 

problem might be used to eliminate physically unnecessary aspects of the 

mathematically exact origin-shift addition theorem. Any approximation 

scheme must recognize that we require an expansion with a particular 

form: it must be an angular momentum expansion about the potential 

center. Our solution .is to expand the Fourier transform of the spherical 

wave in a Taylor series about the direction of the origin-shift vector, 

-+ 
a, translate the individual terms of the expansion, and obtain an 

angular momentum series when each term is subjected to the inverse 

Fourier transform. The result is a finite series capable of performing 

every duty of an origin-shift addition theorem, so we have reported its 

. 13 
development separately • The formula is 

ell 

I 4Wi!"j!"(kr')Y!"q(r')N!"qho(ka)H~~(ka) (31) 

!"=q 

where N!q is a normalizing.coefficient for spherical harmonics, R~!) is 

a rotation matrix element
19

, c! contains factorials from the expansion 
pq 

of Legendre polynomials, and Hiq(ka) may be expressed as an integral or 
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various series. The precise definition of the factors is given in ref. 

13. This reference also describes an alternative view of the expansion 

in which the variable q is a magnetic quantum number in a coordinate 

. system rotated to align the scattering and quantization axes. We will 

explore this magnetic quantum number expansion (MQNE) viewpoint in 

section V, but we will use the acronym now to refer to eqn. 31. 

To calculate the wavefield due to scattering of the direct wave, 

-+ 
eqn. 2, from a potential at a point a, we first expand the direct wave 

-+ 
about a using eqn. 31. For 1=1, a first order Taylor expansion is 

exact: 

(32) 

The rotation matrix elements are particularly simple when one of the 

subscripts is zero
19

: 

( 33) 

Note all the magnetic sublevels here refer to the a axis (see ref 13, 

App. B). For 1= 1 , 



1 
N

10
R

OO
(O,0 ~-~ ) 

e::a, xe::a 

and 

, 
N"R'0(O,0 ~-~ ) e::a, xe::a 
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(34) 

, 
N, ,R '0(0,0 ~-~ ) - - e::a, xe::a 

To calculate the scattered wave emanating from the potential at 

center a, we replace i~j~(kb) by T1(k)i~h1(kb) in the origin-shift 

formula. This single-scattered wave can then propagate to our detector 

or scatter again. We first consider the single-scattered wave at our 

detector. 

For a detector at a position I~I » 1:1, the outgoing, scattered 

partial waves have all reached their asymptotic limit. As will be'more 

apparent for the multiple scattering equations, it is convenient to 

define a new scattering factor 

(36 ) 

so that the single-scattered wave may be written 

-+ 

1jJ (R) 
a 

e
ikR eika(l-cos 0

aR
) 

(.2)1/2 
4~ ~ a 

Reference 4 presents this same result in a different notation; Appendix 

A provides the connection. 
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-+ 
Let us now return to the single-scattered wavefield near center a 

and tackle the multiple scattering case. The (exact) Taylor series 

origin shift, equation 32, and the partial wave phase shifts give the 

single-scattered wave in the near field region as 

ika 1 
1 

1-lql 
C

1 -+ e 
2: 2: IjJ (b) =- N1qRqo(0,e€a,~-~x€a) a a 

q=-1 p=O 
pq 

ik 2: 4~ T (k) HPq(ka) N~qi~h~(kb)Y~q(b) (38 ) 

~=Iql 
-+ 2. 

~,a 

-+ 
The dependence on b in each term of this expansion is that of a 

spherical wave, i2.h~(kb)Y~q(b), and as this wave encounters another 

-+ 
potential at position b, we can apply the MQNE formula and partial wave 

phase shifts again to calculate the double scattered wave. If we call 

1jJ!~(R) the wave generated when the (2.,q) spherical wave from; scatters 

-+ -+ 
from b and is detected at R, then we have 

We have separated the partial waves which reach the detector into 

azimuthal, polar, and radial components so that we may recognize the 
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factor in braces as F
OO 

defined above. Summing over all of the (1,q) 
p'q' 

partial waves gives the complete double scattered wave at the detector 

as 

T 

I 
q'=-T 

ika ikb ikIR-~-bl 1 1 Iql e e e 1 - 1 
-a -b --~-+-+- I N1 Rqo(O,e 'Ir-CP ) L C 

ikIR-a-bl q=-1 q ea, xea p=O pq 

T-lq' 1 i q , cp abR . e 

p'=o 

00 ~ A 

Fp'q,(kb,R) (40) 

*{i~ I T1 ~(k) H~q(ka) 4'1r N1qN1q , Rq
1

'q(0,eab ,'Ir-cpeab) Cp
1
'q'} 

1=-1 q' 1 ' 

We have reordered the sums on 1, p', and q' .to isolate the factor in 

braces. In that process we introduced the Taylor series order, T, as 

the limit for the sums on q' and p'. The factor in braces gives the 

+ 
amplitude for waves of order pq to scatter off the potential at a and 

+ 
give waves of order p'q' in the direction of b. Our next step is to 

define most of the factor in braces as a Taylor series spherical wave 

p' q' 00 
scattering factor, Fpq , where Fpq defined above is a special case. 

To this end we break up the rotation matrix into polar and 

azimuthal parts as given by Messiah19 : 

-i'Yq 
e 

For our Euler angles we get 

iqcp 
R 

1 (0 e ...) (-1 ) q e eab 
q'q 'ab,'Ir-~eab =-

(41) 

(42) 
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24 t 
Edmonds gives a formula for r (-e ): his rotation is the inverse 

q'q e:a 

of Messiah's. A symmetry in the rotation matrix allows his formula to 

be used by switching indices: 

where pea, s·) (cos e) is the Jacobi polynomial. . If q' > q we use: 19 
t 

(43) 

( 44) 

to avoid negative quantum numbers in the Jacobi polynomial; similarly if 

q + q' < 0 we use 

(45) 

for the same purpose. 

Removing the azimuthal dependence from the factor in braces in 

equation (40) leads to our scattering factor, 
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We have inserted the value of N
1q 

N
1q

' and mean for Iql) (Iql() to be 

the greater (lesser) of Iql and Iq'l. We may similarly define the 

overlap of the direct wave with angular momenta eigenfunctions in the 

direction of a by 

pq ... ... 1 1 
P (a e:) ::a N RI I (0 e 1f-'" )C 10' 1q q 0 'e:a, ~xe:a pq 

(47) 

We also incorporate the signs from N
1q

, N
1q

" the factor of exp(iq1f), 

and the symmetry relations for the rotation mat"rices into: 

(48) 

as shown in Appendix B. 

The single-scattered wave at the detector then becomes 

1 

L (49) 

q--1 

The double-scattered wave is: 
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+ + + 
ika ikb ikIR-a-bl 

e e e 
~ab(R) = --a- --s- ikR 

1 

1 
q ... -1 

p'q' + A q' iq~€ab pq A A 

F (ka,b)S e P10(a,€) pq q. 
(50) 

-. 

and the triple-scattered wave may be written by inspection. These 

expressions constitute our fifth small atom approximation for the 

multiple scattering of photoelectrons. 
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v. THE TAYLOR SERIES SCATTERING FACTORS 

Convergence of the approximate curved-wave scattering formulae 

derived in the previous section requires the scattering factors 

p' q' + 
F (ka,b) to decrease rapidly as the Taylor indices p,q,p',q' 

pq 

increase. We devote this section to a discussion of these factors. 

The success of plane-wave scattering models does not follow from 

simple convergence arguments, leading us to suspect any purely formal 

criteria for the Taylor series approach. Rather than pursue a general 

account of the convergence we will discuss some of the properties of the 

scattering factors using Ni atom scattering as an illustrative example. 

The scattering factor depends on the four indices p,q,p', and q', 

on the wavenumber-distance product ka, on the scattering angle between a 

and b, 9
ab

, and on the potential through the scattering phase shifts 

Tft (k). We refer to the superscript indices as outgoing wave indices 
lIo,a 

and to the subscript indices as incoming wave indices. The single zero-

00 
order scattering factor, Faa, has been discussed in reference 4 (see 

Appendfx A.); its dependence on angle and energy is qual! tati vely 

similar to the plane-wave scattering factor. As we consider larger 

values of the indices we find that scattering factors with non-zero 

outgoing wave superscripts are large while scattering factors with non-

zero incoming wave subscripts are correspondingly small. When the 

scattered waves are formed by combining these scattering factors, large 

outgoing wave indices are always paired with identical incoming wave 

p'q' ... pq 
indices as the single prime indices in Fpnq,,(kb,C) Fp'q,(ka,b), but this 

behavior makes convergence difficult to discuss. Thus we will rescale 
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the scattering factors so that they may stand alone. Our development of 

this rescaled factor will also serve as our introduction to the nature 

of the scattering factors. 

Our goal for the rescaled scattering factor is .to isolate the 

dominate character of FP'q'whiCh allows it to converge as p and q 
pq 

increase and to split this character between the incoming and outgoing 

waves. The incoming wave indices p and q appear in the integral 

Hiq(ka); the q index also appears in the angle functions, which we 

discuss first. 

The angle dependent terms in the scattering factor are: 

9 I q +q' I 9 I q-q' I 
[cos ~b] [sin ~] (51) 

For the purpose of rescaling the scattering factor we may ignore these 

angle terms: their product always has a magnitude less than, but on the 

same scale as 1.0. In passing, we note that the angle dependence 

requires that 

i) only factors with q-q' contribute to forward (9
ab

=O) 

scattering, 

ii) only factors with q~-q' contribute to backscattering (9ab=~)' 

iii) the angular factors do not change if both q and q' are 

simultaneously negated or if q and q' are switched, 
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iv) the angular factors alternate sign with increasing 1 for 

9>'11'/2. 

Item iii) is a consequence of the symmetry relations of the 

rotation matrix elements and, coupled with the observation that all the 

remaining dependence on q and q' in the scattering factor uses only 

their magnitudes, we have this important relation: 

p'q' + A p'_q' + A 

F (ka,b)QF (ka,b). 
pq p-q 

(52) 

With no strong dependence on q in the angular factors, we must turn 

to Hi~ka) for our rescaling relation. If we use the explicit formula 

from appendix C, ref. 13, we may write: 

0,+ I q I)! (1-1 q I »! ~ 1+ I q' I +p' ) ! 1 

(1-lqIH o.+lql(H (1-lq'l-p'H p'! (2Iql+2P)!! Aqq ,(9ab ) 
(53) 

rhe leading term and the factorial terms containing 1 in this equation 

reiterate an earlier theme from our discussion of the convergence of the 

small atom approximations in section III: the size of these scattering 

factors is determined by 1(1+1)/ka. The product of factorials depending 

on 1 in this form of the scattering factor may be expanded into a 
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polynomial 
2 

in t whose highest power is p'+(lq'I+lql)/2. From these 

results we propose a rescaled scattering factor according to 

( kr )p+lql 12 
~'q' + A 0 
F (ka , b) .. --";"'--,.-~--

pq (kr )p'+lq'1/2 
o 

(54) 

Empirically we find that all the rescaled factors for nearest neighbor 

scattering are of a similar size. (We must also apply this rescaling to 

p'q' 
the photoemission factors, P

lO
' to insure that the scaling always 

cancels when the wavefunctions are constructed.) 

If we estimate the scattering radius by If(e,k)1/2, our rescaled 

scattering factor is roughly proportional as 

(55) 

The first term in this expression contains increasing powers of (ro/a), 

the angle subtended by the radius of the potential at a distance I~I 

from the wave source. Thus if we compare scattering factors at a bond 

+ + 
length of lal and 21al, we will find that first order terms are half as 

large, the second order terms are one-fourth as large and so on. The 

second term may be interpreted as correcting the scattering potential 

radius to account for the scattering angle differences: forward 

scattering angles will have [1~(e,k)1/2]"'ro while backscattering only 

uses the central region of the potential, [If(e,k)112]<<r
o

• Hence the 
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convergence in backscattering is much more rapid. Finally, the last 

term reminds us that the convergence does not improve with energy; it 

may indeed worsen. 

Representati ve examples of second order scattering factors for 

nearest neighbor Ni atom scattering are illustrated in figures 4, 5, and 

6. The more rapid convergence in backscattering is evident by the small 

o 

values of the higher order scattering factors for angles >90 , and a 

first order Taylor series appears adequate for backscattering. Forward 

angles may require higher than second order. 
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VI. DISCUSSION 

In the previous section we have shown that Taylor series terms of 

order t falloff as (1/ka)t where a is the bond length between 

scattering atoms, and we suggested that the size of the Taylor terms is 

t 
governed by (ro/a) • 

In this section we will 

i) discuss the zero order term which survives at larger bond 

lengths, 

ii) give an example of the convergence of the series for a 

particular nearest neighbor scattering, 

iii) describe the magnetic quantum number expansion view of the 

physical nature of the Taylor series small atom approximation, 

and 

iv) describe how this alternative view predicts rapid convergence 

of the Taylor expansion for multiple scattering ARPEFS 

problems. 

We begin with the zero-order Taylor series term. With t = 0, the 

scattering equations from section IV contain only one scattering factor 

for each event: 

F~g (k;,b) - rb 1~0 (21+1)T1(k)d1(ka)P1(cos 9ab )· (56) 

This is exactly equal to the homogeneous wave scattering factor f~~: the 

homogeneous wave model introduced in section III is the zero-order 

Taylor series term. This means that the zero-order term represents the 

scattering of spherical Hankel functions at their asymptotic limit, but 
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it contains the l/kr "variation of ho(kr) radially along the potential. 

Note that the zero-order term is not the plane-wave model, but, as 

plane 
discussed in ref 4, the difference between the plane-wave factor fab 

00 
and fab is small for backscattering angles. Coupled with rapid 

convergence of the Taylor series for backscattering angles, we conclude 

that the plane-wave approximation may be adequate for many 

backscattering problems. 

The same may not be said for scattering angles closer to zero. To 

give some feel for the size of the corrections for forward scattering, 

we have calculated the ARPEFS oscillations for a particularly important 

geometry. We have selected our problem from the experimental study of 

ref 1: we consider S(ls) photoabsorption from c(2x2)S/Ni(100) with both 

the emission and polari zation vectors along the [110] crystallographi c 

direction. We concentrate on only two scattering events, single 

scattering from the Ni atom directly behind the S photoemi tter and 

forward scattering of this backscattered wave through the S emitter. 

The path-length difference between these scattered waves and the direct 

wave are nearly equal at - 4.4A, corresponding to the dominant frequency 

in the experimental measurements. The backscattering angle is 173° 

while the forward angle is 7°. 

The results of these calculations are displayed in Figures 7 and 8 

as 

where 
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~ ~ + 
for a running from the S emitter to the Ni scattering atom and b = -a. 

Figure 7 compares plane~wave calculations with the "exact" spherical 

wave calculation based on the Gaunt integral summation. The 

oscillations in the plane wave case are much larger even though the 

plane wave model slightly underestimates the forward scattering 

amplitude. This means that the most of the discrepancy is the phase 

error made in the plane-wave forward scattering. The forward scattering 

phase shift estimated by the plane-wave model is too small. Thus the 

single scattered and double scattered waves are nearly in phase and 

their sum has an amplitude 170% of the single scattering amplitude. 

With the correct forward-scattering phase-shift, the double-scattered 

wave is - w/2 out of phase with the single scattered wave and the sum 

has a more modest amplitude. 

Figure 8 illustrates the Taylor series model results. We are able 

to display only the zero-order result on this scale: the first-order 

Taylor series cannot be distinguished from the exact calculation. Thus 

at least for this important scattering geometry, the Taylor series is 

converged at first order. Our alternative view of the Taylor model 

which we develop next will help to understand this remarkable 

convergence and will lead into our discussion of more general scattering 

geometries. 

Before leaving figure 8 we note that the phase of the zero order 

(homogeneous wave) result is accurate while the amplitude is too large. 

This means that important differences between the asymptotic limit of 
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the spherical Hankel functions and the plane-wave limit appear in the 

phase of the double scattered wave. We have also calculated (but not 

plotted) these scattering events with the hybrid renormalized 

homogeneous wave model described in section III: we find a curve 

roughly half way between the zero and first order results. 

The surprising success of the first order Taylor expansion has an 

interesting origin which will lead to the third topic of this section, 

the MQNE description of the Taylor expansion. The first-order Taylor 

expansion is accurate because the origin-shift addition theorem does not 

change the magnetic quantum number if the shift is parallel to the z 

aXis
13

• For the scattering geometry we selected, the outgoing 

photoemission wave has m - 0 along the electric veGtor. Since the 

+ 
scattering atom vector is nearly parallel to E, the scattered partial 

waves will also have m - 0, even if they now have 1 from 0 to lmax~ 

Encountering the sulfur atom and scattering into the detector will give 

+ 
double scattered partial waves also with m • 0 along E. Thus to a fair 

approximation we need only m - 0 waves for the entire problem. 

What of a more general geometry? Consider, for example, scattering 

first from the Ni atom directly behind the sulfur atom followed by 

scattering from another nearest neighbor Ni atom. Then the second 

+ + 
scattering vector, b, will no longer lie parallel to a. To use the 

result that m will not change for z axis shifts we must rotate the m = 0 

+ 
partial waves emanating from the Ni atom at a to the zl Ib system. This 

rotation will include all magnetic sublevels -l~m'~l in the zl Ib system 

in proportion to the overlap integral (rotation matrix element) between 



spherical harmonics in the two systems. These manifold sublevels are 

not, however, equally effective in scattering from the second Ni atom. 

As illustrated in Fig. 9, the m-O spherical harmonics overlap the 

potential along the scattering bond length, m = 1 waves overlap the 

potential farther from the axis and so on until some m = T sublevel 

does not overlap the potential at all. Thus only the T lowest magnetic 

suble~els need be overlapped with the m = 0 waves and--by Nozawa's 

result--only the T lowest sublevels will appear on center b as scattered 

waves. For a triple scattering event, these lowest T sublevels will 

need to be rotated to T sublevels along the new scattering axis. Hence 

we identify the rotated-frame magnetic sublevels with the q index in the 

Taylor expansion model. 

We can push this picture farther by comparing the classical orbits 

sketched in Fig. 3 to the incident spherical harmonics in Fig. 9. The 

largest magnetic sublevels only overlap the outer regions of the 

potential, regions which contribute to forward scattering, not 

backscattering. This would suggest, again, that the Taylor series will 

converge much more quickly for backscattering. 

VII. CONCLUSION 

We have explored five small atom approximations. Some specific 

pOints bear summarizing here: 

i) the success of plane wave models relies on backscattering 

geometries, 
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ii) the plane-wave model requires incident waves at their 

asymptotic limit ~ a small diameter potential; it is 

inappropriate for multiple scattering calculations in solids, 

iii) the pOint-scattering and homogeneous-wave models are 

inadequate for multiple scattering in the intermediate energy 

range, at least for near neighbor scattering, 

iV) the homogeneous-wave model is the zero-order Taylor series 

term, 

v) the Taylor series model allows methodical improvement in 

scattering calculations, and it follows from physically 

appealing magnetic quantum number expansion picture of the 

scattering partial waves. 

We have also developed the multiple scattering equations for ARPEFS 

with the Taylor series expansion of the origin-shift addition theorem 

and illustrated the results with a two atom model. 

The most direct extension of this work would be the application of 

the Taylor expansion method to simulatlons of experimentally measured 

ARPEFS curves. In addition to the elastic, multiple scattering 

equations derived here, we must also include important inelastic 

scattering factors and effects such as finite aperture integration 

before Quantitative agreement wi th experiment could be expected. 

Under the appropriate development, the MQNE origin-shift addition 

theorem will also give multiple scattering models for other 

spectroscopies based on electron scattering in the intermediate energy 

range. EXAFS should yield to a low order expansion since the multiple 
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scattered wave must al~ays return to the absorbing atom: forward 

scattering will necessarily be coupled with backscattering as in the 

example in section VI. Electron diffraction in the 100-600 eV range 

should also be amenable to the treatment given here with the direct wave 

replaced by the incident plane wave. The first scattered wave will, of 

course, then be given exactly by the plane wave scattering factor. 

The Taylor series expansion itself deserves further exploration. 

Accurate error bounds would eliminate empirical verification of 

convergence. Alternate parameterization of the scattering factors might 

reduce the computation burden required for the scattering calculations. 

The mag~etic quantum number expansion picture suggests that a variation 

of the equations presented here could be built up from rotation matrices 

and Nozawa's origin-shift formulas. Finally, the formulation of the 

exact multiple scattering equations (matrix inversion method) with the 

Taylor series result should be examined. At least pairwise or colinear 

multiple scattering seems feasible but more complex geometries would 

require detailed study. 
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APPENDIX A. COMPARING NOTATION WITH REF. 4 

We have deduced a formula equivalent to eqn. (37) for the exact 

curved wave scattering of 1-' waves in ref. 4; we demonstrate that 

equivalence here. The single-scattered wave from ref. 4 may be written 

ika 
e -a 

(d,(ka)cos 9 fOO 
Ea aR 

-i cos 9Ea f!~ - ~ sin 9 Ea sin 9aRCOS ~EaRf~~ 

where 

From our new definition we have 

and from Appendix C, ref. 13 

H
OO 

+ H~O 1+1 1 .. .. [2[.;1] d1+1 
+-d 

1 21+1 1-' • 

Using eqn. 89 in Ref. 4, the right side becomes 

HO 0 H'O 
d

1 
3d

1
(ka) 

1 + 1 .. d1 - Tkr - i ;Hka) 
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Working back through the definition of f~ and f~ shows that 

where d1(ka) = + i/ka. Similarly we write out 

Pi.(cos e) 

(2i.+1) [di.-1-di.+1] 

where a factor of i.(1+1) in Hiq 
cancels the last factorial in the 

00 
definition of F01~ The connection between associated Legendre 

polynomials and derivatives of Legendre polynomials: 

m . 
m m d 1(cOS e) 

Pi. (cos e) - sin e 
d(cos e)m 

and the recursion for di. gives 

These close connections demonstrate that i) the differential formula of 

ref. 4 could be used as a basis for a Taylor expansion, ii) the rotation 

matrix approach employed here for approximate origin shift will lead to 

compact exact origin shift formulas, and iii) individual scattering 

factors F
OO 

and by extension FP'q' can be interpreted as specific pq' pq , 

spherical wave corrections as described in ref 4 and 13. Our new 

formulation is recommended for numerical work. 
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APPENDIX B. ON THE SIGN FACTOR S~' 

The sign of the Taylor series scattering factor is a combination of 

the signs in the definition of N
1q

: 

q ~ 0 

q < 0, 

the factor of exp(i~q) from the rotation matrix, and the symmetry 

relations for rotation matrices. Note that the symmetry relations are 

applied depending on the sign of q-q' and q+q'; we have four cases: 

i) q + q' ~ 0, q - q' ~ 0 

r~'q(S) - r~'q(S) 

11) q + q' ~ 0, q-q' < 0 

rl (S) - (-1)q+q'r1 (S) 
q'q qq' 

11i) q + q'< 0, q -q' ~ 0 

1 1 
rq'q(S) - r_q_q,(S) 

iv) q + q' < 0, q - q' < 0 

1 q-q' 
rq'q(S) .. (-1) rq'_q(S) 

In case iii) the factors of (-1)q-q' cancel from successive symmetry 

relations; in cases iii) and iv) the criterion for equation (44) to 

apply changes since equation (45) negates the indices. Surveying these 

cases shows that only when (q-q') < 0 will factors of (-1) be required. 

To summarize these factors we note that 
• 

Iql + q .. 0 if q :a 0 

- 21ql if q > 0 

while 
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I q-q' I - ( q-q ,) = 21 q-q' I if (q-q') S 0 

- 0 

All of the factors may be written then as 

q' q Iq-q'I-(q-q') Iql+q Iq'l+q' 
Sq - (-1) iii , 

or since i
4lq 'l - 1, 

sq' - (-1)q ilq-q'I+lql-lq' I. 
q 

if (q-q t) > o. 

• 
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Figure Captions 

Figure 1. Definition of the vectors used in our scattering equations. 

The electric vector is represented by €. We place the origin 

-+ -+ 

at the photo-emitter, the detector lies along R. Vectors a, 

-+ 

b, and so on run from one scattering atom to the next. 

Figure 2. Schematic illustration of four small-atom approximations 

described in Section III, plotted along the scattering vector 

-+ 
a. Every panel contains, as the dotted curve, a graph of the 

imaginary part of the spherical Hankel function for 1 = 7, k 

-1 
- BA .• The abscissa gives the distance from the wave 

function origin in A. Each panel also contains an arrow 

centered at 2.23A, the S-Ni bond length for c(2x2)S/Ni(100), 

to indicate the extent of a Ni atom potential of effective 

radius O.BA. (a) Plane-wave model, functional dependence 

agrees with spherical wave but has errors in phase and 

amplitude. (b) POint-scattering model, phase and amplitude 

correct at r - 2.23A, errors in both at the edges of the Ni 

potential. (c) Homogeneous-wave model, correct in (1/kr) 

dependence of amplitude, errors in phase, some small errors 

in amplitude at edge of Ni potential. (d) Hybrid, 

renormalized homogeneous-wave method, substantially correct 

over the range of the potential, some error at the small r 

edge of the Ni atom. 
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Figure 3. Schematic semiclassical orbits for an attractive potential. 

Figure 4. 

If the circle represents the effective radius of a screened 

nuclear charge, then particles with large impact parameters 

will sample only the weak outer region of the potential and 

scatter through small (forward) angles. Particles with small 

impact parameters orbit the strong nuclear attraction and 

exit at large (backscattering) angles. The connection to 

wave scattering is made through b .. 11k where b is the impact 

parameter: large 1 partial waves contribute to forward 

scattering and small 1 waves dominate for backscattering. 

-1 -+ 
Taylor series scattering factor amplitude at k = 8A , lal = 

2.23A, as a function of scattering angle, eab~ The 

scattering factors generally have similar shapes whenever 

they agree in Iq-q'l and Iq+q'l; hence we will only plot 

representative examples. We adopt the notation (p'q'lpq). 

(a) solid line (00100), an example of factors with Iq-q'l = 

0, Iq+q'l ~ O. This is the single zero order factor. (b) 

circles (01\10), \q+q'\ - 1, Iq-q'\ .. 1. (c) crosses 

(02\20), Iq+q'l .. 2, Iq-q'l .. 2. Factors are multiplied by 3 

after the break at 60°; the right hand scale applies to this 

region • 

Figure 5. Same as figure 4; note the increased scales. (a) solid line 

(00101), Iq-q'l .. 1, Iq+q'I" 1; (b) circles (01101), Iq-q'l 
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.. 0, \q+q' \ .. 2 (c) crosses (02/01), \q-q' \ = 1 \q+q' \ 3; 

(d) plus symbols (02/02), \q-q'\ .. 0, \q+q'\ .. 4. 

Fi'gure 6. Same as figure 4 •. (a) solid line (11/20) \q-q'l .. 1, Iq+q'l 

:a 1. (b) circles (01/1-1), Iq-q'\ .. 2, Iq+q'\ .. O. (c) 

crosses (02/1-1), Iq-q'l .. 3, Iq+q' I .. 1. (d) plus symbols 

(02/0-2), \q-q'\ - 4, \q+q'\ .. O. 

Figure 7. ARPEFS oscillations calculated by exact Gaunt integral 

summation (thick curve) and plane wave approximation (thin 

curve). These curves simulate the fractional oscillation of 

the S (ls) partial cross-section from c(2x2)S/N1(100) along 

[110], but consider only a single Ni atom scatterer. The 

inset diagram illustrates the three waves which sum to gi ve 

the photoemission final state, 'the direct, single-scattered, 

and double-scattered waves. The backscattering angle is 

173°; the forward angle is 7°. Both curves have been 

2 
multiplied by exp(-0.02k -2.23/.173k) (Debye Waller and 

inelastic attenuation) to give a more realistic amplitude 

comparison. 

Figure 8. Same as figure 7 except comparing the exact Gaunt summation 

to the zero order Taylor series result. The first order 

Taylor result cannot be distinguished from exact, on this 

scale. 

• 
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Schematic illustration of the magnetic quantum number 

expansion interpretation of eqn. (31). A polar plot of the 

four lowest magnetic sublevels of a ~=7 spherical harmonic is 

superimposed upon a circle whose radius represents the 

effective radius rO of a nearest neighbor potential. The 

line connecting the incident wave source and the potential 

origin is used for the spherical harmonic polar axis and only 

the region of angles near the pole is plotted. The angle 

functions have been rescaled to place their first maxima on 

the same radius. The m=O sublevel (solid line) is seen to 

overlap the strong central portion of the potential, while 

the m~1 lobes (dotted line) peaks further from the axis. The 

m~2 lobes (dot-dash lines) only intercept the far edges of 

the potential and the m-3 level (dashed lines) completely 

missed the mark • 
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