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Abstract. We study concentration properties of random vectors of the form
AX, where X = (X1, . . . , Xn) has independent coordinates and A is a given
matrix. We show that the distribution of AX is well spread in space whenever
the distributions of Xi are well spread on the line. Specifically, assume that the
probability that Xi falls in any given interval of length t is at most p. Then the
probability that AX falls in any given ball of radius t‖A‖HS is at most (Cp)0.9 r(A),
where r(A) denotes the stable rank of A.

1. Introduction

Concentration properties of high dimensional distributions have been extensively
studied in probability theory. In this paper we are interested in small ball probabil-
ities, which describe the spread of a distribution in space. Small ball probabilities
have been extensively studied for stochastic processes (see [11]), sums of independent
random variables (see [19, 17]) and log-concave measures (see [1, Chapter 5]). Nev-
ertheless, there remain surprisingly basic questions that have not been previously
addressed.

The main object of our study is a random vector X = (X1, . . . , Xn) in Rn with
independent coordinates Xi. Given a fixed m × n matrix A, we study the concen-
tration properties of the random vector AX. We are interested in results of the
following type:

If the distributions of Xi are well spread on the line, then the distri-
bution of AX is well spread in space.

Special cases of interest are marginals of X which arise when A is an orthogonal
projection, and sums of independent random variables which correspond to m = 1.
The problem of describing small ball probabilities even in these two special cases
is nontrivial and useful for applications. In particular, a recent interest in this
problem was spurred by applications in random matrix theory; see [19, 17] for sums
of random variables and [16] for higher dimensional marginals.

This discussion is non-trivial even for continuous distributions, and we shall start
from this special case.

1.1. Continuous distributions. Our first main result is about distributions with
independent continuous coordinates. It states that any d-dimensional marginal of
such distribution has density bounded by O(1)d, as long as the densities of the
coordinates are bounded by O(1).
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Theorem 1.1 (Densities of projections). Let X = (X1, . . . , Xn) where Xi are real-
valued independent random variables. Assume that the densities of Xi are bounded
by K almost everywhere. Let P be the orthogonal projection in Rn onto a d-
dimensional subspace. Then the density of the random vector PX is bounded by
(CK)d almost everywhere.

Here and throughout the paper, C,C1, c, c1, . . . denote positive absolute constants.

Theorem 1.1 is trivial in dimension d = n, since the product density is bounded
by Kn. A remarkable non-trivial case of Theorem 1.1 is in dimension d = 1, where
it holds with optimal constant C =

√
2. This partial case is worth to be stated

separately.

Theorem 1.2 (Densities of sums). Let X1, . . . , Xn be real-valued independent ran-
dom variables whose densities are bounded by K almost everywhere. Let a1, . . . , an
be real numbers with

∑n
j=1 a

2
j = 1. Then the density of

∑n
j=1 ajXj is bounded by√

2K almost everywhere.

Proof. Theorem 1.2 follows from a combination of two known results. For simplicity,
by rescaling we can assume that K = 1. A theorem or Rogozin [15] states that
the worst case (maximal possible density of the sum) is achieved where Xi are
uniformly distributed in [−1/2, 1/2], in other words where X = (X1, . . . , Xn) is
uniformly distributed in the cube [−1/2, 1/2]n. In this case, the density of the sum∑n

i=1 aiXi is the volume of the section of the cube by the hyperplane that contains
the origin and is orthogonal to the vector a = (a1, . . . , an). Now, a theorem of
Ball [2] states that the maximal volume of such section equals

√
2; it is achieved

by a = 1√
2
(1, 1, 0, . . . , 0). Therefore, the maximal possible value of the density of∑

aiXi is
√

2, and it is achieved by the sum 1√
2
(X1+X2) where X1, X2 are uniformly

distributed in [−1/2, 1/2]. �

1.2. General distributions. Using a simple smoothing argument from [4], Theo-
rem 1.1 can be extended for general, not necessarily continuous, distributions. The
spread of general distributions is conveniently measured by the concentration func-
tion. For a random vector Z taking values in a Rn, the concentration function is
defined as

L(Z, t) = max
u∈Rn

P {‖Z − u‖2 ≤ t} , t ≥ 0. (1.1)

Thus the concentration function controls the small ball probabilities of the distribu-
tion of Z. The study of concentration functions of sums of independent random
variables originates from the works of Lévy [10], Kolmogorov [9], Rogozin [14],
Esseen [6] and Halasz [8]. Recent developments in this area highlighted connec-
tions with Littlewood-Offord problem and applications to random matrix theory,
see [19, 17].

Corollary 1.3 (Concentration function of projections). Consider a random vector
X = (X1, . . . , Xn) where Xi are real-valued independent random variables. Let
t, p ≥ 0 be such that

L(Xi, t) ≤ p for all i = 1, . . . , n.

Let P be an orthogonal projection in Rn onto a d-dimensional subspace. Then

L(PX, t
√
d) ≤ (Cp)d.
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This result can be regarded as a tensorization property of the concentration func-
tion. It will be deduced from Theorem 1.1 in Section 2.

1.3. Anisotropic distributions. Finally, we study concentration of anisotropic
high-dimensional distributions, which take the form AX for a fixed matrix A. The
key exponent that controls the behavior of the concentration function of AX is the
stable rank of A. We define it as

r(A) =

⌊
‖A‖2HS

‖A‖2

⌋
(1.2)

where ‖·‖HS denotes the Hilbert-Schmidt norm.1 Note that for any non-zero matrix,
1 ≤ r(A) ≤ rank(A).

Theorem 1.4 (Concentration function of anisotropic distributions). Consider a
random vector X = (X1, . . . , Xn) where Xi are real-valued independent random
variables. Let t, p ≥ 0 be such that

L(Xi, t) ≤ p for all i = 1, . . . , n.

Let A be an m× n matrix and ε ∈ (0, 1). Then

L
(
AX, t‖A‖HS

)
≤ (Cε p)

(1−ε) r(A),

where Cε depends only on ε.

A more precise version of this result is Theorem 8.1 and Corollary 8.5 below.
It will be deduced from Corollary 1.3 by replacing A by a dyadic sum of spectral
projections.

Remark 1.5 (Scaling). To understand Theorem 1.4 better, note that E ‖AX‖22 =
‖A‖2HS if all Xi have zero means and unit variances. This explains the scaling factor
‖A‖HS in Theorem 1.4. Further, if A is an orthogonal projection of rank d, then

‖A‖HS =
√
d and r(A) = d, which recovers Corollary 1.3 in this case up to ε in

the exponent. Moreover, Theorem 8.1 and Corollary 8.6 below will allow precise
recovery, without any loss of ε.

Remark 1.6 (Continuous distributions). In the particular case of continuous distri-
butions, Theorem 1.4 states the following. Suppose the densities of Xi are bounded
by K. Then obviously L(Xi, t) ≤ Kt for any t ≥ 0, so Theorem 1.4 yields

L(AX, t‖A‖HS) ≤ (Cε t)
(1−ε) r(A) , t ≥ 0. (1.3)

A similar inequality was proved by Paouris [12] for random vectors X which satisfy
three conditions: (a) X is isotropic, i.e. all one-dimensional marginals of X have unit
variance; (b) the distribution of X is log-concave; (c) all one-dimensional marginals
are uniformly sub-gaussian.2 The inequality of Paouris states in this case that

L(AX, t‖A‖HS) ≤
(
Ct
)c r(A)

, t ≥ 0. (1.4)

Here C is an absolute constant and c ∈ (0, 1) depends only on the bound on the sub-
gaussian norms. The distributions for which Paouris’ inequality (1.4) applies are

1This definition differs slightly from the traditional definition of stable rank, in which one does
not take the floor function, i.e. where r(A) = ‖A‖2HS / ‖A‖

2.
2Recall that a random variable Z is sub-gaussian if P{|Z| > t} ≤ 2 exp(−t2/M2) for all t ≥ 0.

The smallest M ≥ 0 here can be taken as a definition of the sub-gaussian norm of Z; see [20].
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not required to have independent coordinates. On the other hand, the log-concavity
assumption for (1.4) is much stronger than a uniform bound on the coordinate
densities in (1.3).

Remark 1.7 (Large deviations). It is worthwhile to state here a related large devi-
ation bound for AX from [18]. If Xi are independent, uniformly sub-gaussian, and
have zero means and unit variances, then

P
{∣∣‖AX‖2 − ‖A‖HS

∣∣ ≥ t‖A‖HS

}
≤ 2e−ct

2r(A), t ≥ 0.

Here c > 0 depends only on the bound on the sub-gaussian norms of Xi.

1.4. The method. Let us outline the proof of the key Theorem 1.1, which implies
all other results in this paper.

A natural strategy would be to extend to higher dimensions the simple one-
dimensional argument leading to Theorem 1.2, which was a combination of Ball’s
and Rogozin’s theorems. A higher-dimensional version of Ball’s theorem is indeed
available [3]; it states that the maximal volume of a section of the cube by a subspace
of codimension d is (

√
2)d. However, we are unaware of any higher-dimensional

versions of Rogozin’s theorem [15].
An alternative approach to the special case of Theorem 1.1 in dimension d = 1

(and, as a consequence, to Corollary 1.3 in dimension d = 1) was developed in
an unpublished manuscript of Ball and Nazarov [4]. Although it does not achieve
the optimal constant

√
2 that appears in Theorem 1.2, this approach avoids the

delicate combinatorial arguments that appear in the proof of Rogozin’s theorem.
The method of Ball and Nazarov is Fourier-theoretic; its crucial steps go back to
Halasz [7, 8] and Ball [2].

In this paper, we prove Theorem 1.1 by generalizing the method of Ball and
Nazarov [4] to higher dimensions using Brascamp-Lieb inequality. For educational
purposes, we will start by presenting a version of Ball-Nazarov’s argument in dimen-
sion d = 1 in Sections 3 and 4. The higher-dimensional argument will be presented
in Sections 5–7.

There turned out to be an unexpected difference between dimension d = 1
and higher dimensions, which presents us with an an extra challenge. The one-
dimensional method works well under assumption that all coefficients ai are small,
e.g. |ai| ≤ 1/2. The opposite case where there is a large coefficient ai0 , is trivial; it
can be treated by conditioning on all Xi except Xi0 .

In higher dimensions, this latter case is no longer trivial. It corresponds to the
situation where some ‖Pei0‖2 is large (here ei denote the coordinate basis vectors).
The power of one random variable Xi0 is not enough to yield Theorem 1.1; such

argument would lead to a weaker bound (CK
√
d)d instead of (CK)d.

In Section 6 we develop an alternative way to remove the terms with large ‖Pei‖2
from the sum. It is based on a careful tensorization argument for small ball proba-
bilities.

2. Deduction of Corollary 1.3 from Theorem 1.1

We begin by recording a couple of elementary properties of concentration func-
tions.
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Proposition 2.1 (Regularity of concentration function). Let Z be a random variable
taking values in a d-dimensional subspace of Rn. Then for every M ≥ 1 and t ≥ 0,
we have

L(Z, t) ≤ L(Z,Mt) ≤ (3M)d · L(Z, t).

Proof. The lower estimate is trivial. The upper estimate follows once we recall that
a ballot radius Mt in Rd can be covered by (3M)d balls of radius t. �

Throughout this paper, it will be convenient to work with the following equiva-
lent definition of density. For a random vector Z taking values in a d-dimensional
subspace E of Rn, the density can be defined as

fZ(u) = lim sup
t→0+

1

|B(t)|
P {‖Z − u‖2 ≤ t} , u ∈ E, (2.1)

where |B(t)| denotes the volume of a Euclidean ball with radius t in Rd. Lebesgue
differentiation theorem states that for random variable Z with absolutely continuous
distribution, fZ(u) equals the actual density of Z almost everywhere.

The following elementary observation connects densities and concentration func-
tions.

Proposition 2.2 (Concentration function and densities). Let Z be a random vari-
able taking values in a d-dimensional subspace of Rn. Then the following assertions
are equivalent:

(i) The density of Z is bounded by Kd almost everywhere;
(ii) The concentration function of Z satisfies

L(Z, t
√
d) ≤ (Mt)d for all t ≥ 0.

Here K and M depend only on each other. In the implication (i) ⇒ (ii), we have
M ≤ CK where C is an absolute constant. In the implication (ii) ⇒ (i), we have
K ≤M .

This proposition follows from the known bound td ≤ |B(t
√
d)| ≤ (Ct)d (see e.g.

formula (1.18) in [13]). �

Now we are ready to deduce Corollary 1.3 from Theorem 1.1. The proof is a
higher-dimensional version of the smoothing argument of Ball and Nazarov [4].

Proof of Corollary 1.3. We can assume by approximation that t > 0; then by rescal-
ing (replacing X with X/t) we can assume that t = 1. Furthermore, translating

X if necessary, we reduce the problem to bounding P{‖PX‖2 ≤
√
d}. Consider in-

dependent random variables Yi uniformly distributed in [−1/2, 1/2], which are also
jointly independent of X. We are seeking to replace X by X ′ := X+Y . By triangle
inequality and independence, we have

P
{
‖PX ′‖2 ≤ 2

√
d
}
≥ P

{
‖PX‖2 ≤

√
d and ‖PY ‖2 ≤

√
d
}

= P
{
‖PX‖2 ≤

√
d
}

P
{
‖PY ‖2 ≤

√
d
}
.

An easy computation yields E ‖PY ‖22 = d/12, so Markov’s inequality implies that

P{‖PY ‖2 ≤
√
d} ≥ 11/12. It follows that

P
{
‖PX‖2 ≤

√
d
}
≤ 12

11
P
{
‖PX ′‖2 ≤ 2

√
d
}
. (2.2)
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Note that X ′ = X+Y has independent coordinates whose densities can be computed
as follows:

fX′i(u) = P {|Xi − u| ≤ 1/2} ≤ L(Xi, 1/2).

Applying Theorem 1.1, we find that the density of PX ′ is bounded by (CL)d, where
L = maxi L(Xi, 1/2). Then Proposition 2.2 yields that

P
{
‖PX ′‖2 ≤ 2

√
d
}
≤ L(PX ′, 2

√
d) ≤ (C1L)d.

Substituting this into (2.2), we complete the proof. �

Remark 2.3 (Flexible scaling in Corollary 1.3). Using regularity of concentration
function described in Proposition 2.1, one can state the conclusion of Corollary 1.3
in a more flexible way:

L(PX,Mt
√
d) ≤ (CMp)d, M ≥ 1.

We will use this observation later.

3. Decay of characteristic functions

We will now begin preparing our way for the proof of Theorem 1.1. Our argument
will use the following tail bound for the characteristic function

φX(t) = E eitX

of a random variable X with bounded density. The estimate and its proof below
are essentially due to Ball and Nazarov [4].

Lemma 3.1 (Decay of characteristic functions). Let X be a random variable whose
density is bounded by K. Then the non-increasing rearrangement of the character-
istic function of X satisfies

|φX |∗(t) ≤

{
1− c(t/K)2, 0 < t < 2πK√

2πK/t, t ≥ 2πK.

Proof. The estimate for large t will follow from Plancherel’s identity. The estimate
for small t will be based on a regularity argument going back to Halasz [7].

1. Plancherel. By replacing X with KX we can assume that K = 1. Let fX(·)
denote the density of X. Thus φX(t) =

∫∞
−∞ fX(x)eitx dx = f̂X(−t/2π), according

to the standard definition of the Fourier transform

f̂(t) =

∫ ∞
−∞

f(x)e−2πitx dx. (3.1)

By Plancherel’s identity and using that ‖pX‖L1 = 1 and ‖pX‖L∞ ≤ K = 1, we
obtain

‖φX‖L2 =
√

2π‖pX‖L2 ≤
√

2π‖pX‖L1 ‖pX‖L∞ ≤
√

2π.

Chebychev’s inequality then yields

|φX |∗(t) ≤
√

2π

t
, t > 0. (3.2)

This proves the second part of the claimed estimate. It remains to prove the first
part.
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2. Symmetrization. Let X ′ denote an independent copy of X. Then

|φX(t)|2 = E eitX E eitX = E eitX E e−itX
′

= E eit(X−X
′)

= φX̃(t), where X̃ := X −X ′.

Further, by symmetry of the distribution of X̃, we have

φX̃(t) = E cos(t|X|) = 1− 2E sin2
(1

2
t|X̃|

)
=: 1− ψ(t).

We are going to prove a bound of the form

λ{τ : ψ(τ) ≤ s2} ≤ Cs, 0 < s ≤ 1/2 (3.3)

where λ denotes the Lebesgue measure on R. Comnined with the identity |φX(t)|2 =
1− ψ(t), this bound would imply

|φX |∗(Cs) ≤
√

1− s2 ≤ 1− s2/2, 0 < s ≤ 1/2.

Substituting t = Cs, we would obtain the desired estimate

|φX |∗(t) ≤ 1− s2/2C2, 0 < s ≤ C/2,

which would conclude the proof (provided C is chosen large enough so that C/2 ≥
2π).

3. Regularity. First we observe that (3.3) holds for some fixed constant value
of s. This follows from the identity |φX(τ)|2 = 1− ψ(τ) and inequality (3.2):

λ
{
τ : ψ(τ) ≤ 1

4

}
= λ{τ : |φX(τ)| ≥

√
3/4} ≤ 8π/3 ≤ 9. (3.4)

Next, the definition of ψ(·) and the inequality | sin(mx)| ≤ m| sinx| valid for x ∈ R
and m ∈ N imply that

ψ(mt) ≤ m2ψ(t), t > 0, m ∈ N.

Therefore

λ
{
τ : ψ(τ) ≤ 1

4m2

}
≤ λ

{
τ : ψ(mτ) ≤ 1

4

}
=

1

m
λ
{
τ : ψ(τ) ≤ 1

4

}
≤ 9

m
, (3.5)

where in the last step we used (3.4). This establishes (3.3) for the discrete set of
values t = 1

2m , m ∈ N. We can extend this to arbitrary t > 0 in a standard way, by

applying (3.5) for m ∈ N such that t ∈ ( 1
4m ,

1
2m ]. This proves (3.3) and completes

the proof of Lemma 3.1. �

4. Theorem 1.1 in dimension one. Densities of sums.

Now we are going to give a “soft” proof of a version of Theorem 1.2 due to Ball
and Nazarov [4]. Their argument establishes Theorem 1.1 in dimension d = 1. Let
us state this result separately.

Theorem 4.1 (Densities of sums). Let X1, . . . , Xn be real-valued independent ran-
dom variables whose densities are bounded by K almost everywhere. Let a1, . . . , an
be real numbers with

∑n
j=1 a

2
j = 1. Then the density of

∑n
j=1 ajXj is bounded by

CK almost everywhere.
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Proof. By replacing Xj with KXj we can assume that K = 1. By replacing Xj with
−Xj when necessary we can assume that all aj ≥ 0. We can further assume that
aj > 0 by dropping all zero terms from the sum. If there exists j0 with aj0 > 1/2,
then the conclusion follows by conditioning on all Xj except Xj0 . Thus we can
assume that

0 < aj <
1

2
for all j.

Finally, by translatingXj if necessary we reduce the problem to bounding the density
of S =

∑
j ajXj at the origin.

We may assume that φXj ∈ L1 by adding to Xj an independent normal random
variable with an arbitrarily small variance. Fourier inversion formula associated
with the Fourier transform (3.1) yields that the density of S at the origin (defined
using (2.1)) can be reconstructed from its Fourier transform as

fS(0) =

∫
R
f̂S(x) dx =

∫
R
φS(2πx) dx ≤

∫
R
|φS(x)| dx =: I. (4.1)

By independence, we have φS(x) =
∏
j φXj (ajt), so

I =

∫
R

∏
j

|φXj (ajx)| dx.

We use the generalized Hölder’s inequality with exponents 1/a2i whose reciprocals
sum to 1 by assumption. It yields

I ≤
∏
j

(∫
R
|φXj (ajx)|1/a

2
j dx

)a2j
. (4.2)

The value of the integrals will not change if we replace the functions |φXj | by their
non-increasing rearrangements |φXj |∗. After change of variable, we obtain

I ≤
∏
j

( 1

aj

∫ ∞
0
|φXj |∗(x)1/a

2
j dx

)a2j
.

We use Lemma 3.1 to bound the integrals

Ij :=

∫ ∞
0
|φXj |∗(x)1/a

2
j dx ≤

∫ 2π

0
(1− cx2)1/a

2
j dx+

∫ ∞
2π

(2π/x)1/(2a
2
j ) dx.

Bounding 1 − cx2 by e−cx
2
, we see that the first integral (over [0, 2π]) is bounded

by Caj . The second integral (over [2π,∞)) is bounded by

2π

1/(2a2j )− 1
≤ 8πa2j ,

where we used that aj ≤ 1/2. Therefore

Ij ≤ Caj + 8πa2j ≤ 2Caj

provided that constant C is chosen large enough. Hence

I ≤
∏
j

(2C)a
2
j = (2C)

∑
a2j = 2C.

Substituting this into (4.1) completes the proof. �
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5. Toward Theorem 1.1 in higher dimensions. The case of small Pej.

Our proof of Theorem 1.1 will go differently depending on whether all vectors Pej
are small or some Pej are large. In the first case, we proceed with a high-dimensional
version of the argument from Section 4, where Hölder’s inequality will be replaced by
Brascamp-Lieb’s inequality. In the second case, we will remove the large vectors Pej
one by one, using a new precise tensorization property of concentration functions.

In this section, we treat the case where all vectors Pej are small. Theorem 1.1
can be formulated in this case as follows.

Proposition 5.1. Let X be a random vector and P be a projection which satisfy
the assumptions of Theorem 1.1. Assume that

‖Pej‖2 ≤ 1/2 for all j = 1, . . . , n.

Then the density of the random vector PX is bounded by (CK)d almost everywhere.

The proof will be based on Brascamp-Lieb’s inequality.

Theorem 5.2 (Brascamp-Lieb [5], see [3]). Let u1, . . . , un ∈ Rd be unit vectors and
c1, . . . , cn > 0 be real numbers satisfying

n∑
i=1

cjuju
T
j = Id.

Let f1, . . . , fn : R→ [0,∞) be integrable functions. Then∫
Rn

n∏
j=1

fj(〈x, uj〉)cj dx ≤
n∏
j=1

(∫
R
fj(t) dt

)cj
.

Proof of Proposition 5.1. The singular value decomposition of P yields the existence
of a d× n matrix R satisfying

P = RTR, RRT = Id.

It follows that ‖Px‖2 = ‖Rx‖2 for all x ∈ Rd. This allows us to replace P by R
in the statement of the proposition. Moreover, by replacing Xj with KXj we can
assume that K = 1. Finally, translating X if necessary we reduce the problem to
bounding the density of RX at the origin.

As in the proof of Theorem 4.1, Fourier inversion formula associated with the
Fourier transform in n dimensions yields that the density of RX at the origin (de-
fined using (2.1)) can be reconstructed from its Fourier transform as

fRX(0) =

∫
Rd

f̂RX(x) dx =

∫
Rd

φRX(2πx) dx ≤
∫
Rd

|φRX(x)| dx (5.1)

where

φRX(x) = E exp
(
i〈x,RX〉

)
(5.2)

is the characteristic function of RX. Therefore, to complete the proof, it suffices to
bound the integral in the right hand side of (5.1) by Cd.

In order to represent φRX(x) more conveniently for application of Brascamp-Lieb
inequality, we denote

aj := ‖Rej‖2, uj :=
Rej
‖Rej‖2

.
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Then R =
∑n

j=1 ajuje
T
j , so the identity RRT = Id can be written as

n∑
j=1

a2juju
T
j = Id. (5.3)

Moreover, we have 〈x,RX〉 =
∑n

i=1 aj〈x, uj〉Xj . Substituting this into (5.2) and
using independence, we obtain

φRX(x) =
n∏
j=1

E exp
(
iaj〈x, uj〉Xj

)
.

Define the functions f1, . . . , fn : R→ [0,∞) as

fj(t) :=
∣∣E exp(iajtXj)

∣∣∣1/a2j =
∣∣φXj (ajt)

∣∣1/a2j .
Recalling (5.3), we apply Brascamp-Lieb inequality for these functions and obtain∫

Rd

|φRX(x)| dx =

∫
Rd

n∏
j=1

fj
(
〈x, uj〉

)a2j dx
≤

n∏
j=1

(∫
R
fj(t) dt

)a2j
=

n∏
j=1

(∫
R

∣∣φXj (ajt)
∣∣1/a2j tz)a2j . (5.4)

We arrived at the same quantity as we encountered in one-dimensional argument in
(4.2). Following that argument, which uses the assumption that all aj ≤ 1/2, we
bound the product the quantity above by

(2C)
∑n

j=1 a
2
j .

Recalling that aj = ‖Rej‖2 and , we find that
∑n

j=1 a
2
j =

∑n
j=1 ‖Rej‖22 = tr(RRT) =

tr(Id) = d. Thus the right hand side of (5.4) is bounded by (2C)d. The proof of
Proposition 5.1 is complete. �

6. Toward Theorem 1.1 in higher dimensions. Removal of large Pej.

Next we turn to the case where not all vectors Pei are small. In this case, we
will remove the large vectors Pei one by one. The non-trivial task is how not to
lose power at each step. This will be achieved with the help of the following precise
tensorization property of small ball probabilities.

Lemma 6.1 (Tensorization). Let Z1, Z2 ≥ 0 be random variables and M1,M2, p ≥ 0
be real numbers. Assume that

(i) P {Z1 ≤ t | Z2} ≤M1t almost surely in Z2 for all t ≥ 0;
(ii) P {Z2 ≤ t} ≤M2t

p for all t ≥ 0.

Then

P
{√

Z2
1 + Z2

2 ≤ t
}
≤ CM1M2√

p+ 1
tp+1 for all t ≥ 0.

Remark 6.2. This lemma will be used later in an inductive argument. To make
the inductive step, two features will be critical: (a) the term of order

√
p in the

denominator of the probability estimate; (b) the possibility of choosing different
values for the parameters M1 and M2.
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Proof. Denoting s = t2, we compute the probability by iterative integration in
(Z2

1 , Z
2
2 ) plane:

P
{
Z2
1 + Z2

2 ≤ s
}

=

∫ s

0
P
{
Z1 ≤ (s− x)1/2 | Z2

2 = x
}
dF2(x) (6.1)

where F2(x) = P
{
Z2
2 ≤ x

}
is the cumulative distribution function of Z2

2 . Using
hypothesis (i) of the lemma, we can bound the right hand side of (6.1) by

M1

∫ s

0
(s− x)1/2 dF2(x) =

M1

2

∫ s

0
F2(x)(s− x)−1/2 dx,

where the last equation follows by integration by parts. Hypothesis (ii) of the lemma

says that F2(x) ≤M2 x
p/2, so the expression above is bounded by

M1M2

2

∫ s

0
xp/2(s− x)−1/2 dx =

M1M2

2
s

p+1
2

∫ 1

0
up/2(1− u)−1/2 du

where the last equation follows by substitution x = su.
The integral in the right hand side is the value of beta function

B
(p

2
+ 1,

1

2

)
.

Bounding this value is standard. One can use the fact that

B(x, y) ∼ Γ(y)x−y as x→∞, y fixed

which follows from the identity B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and Stirling’s approx-
imation. (Here f(x) ∼ g(x) means that f(x)/g(x)→ 1.) It follows that

B
(p

2
+ 1,

1

2

)
∼ Γ

(1

2

)(p
2

+ 1
)−1/2

as p→∞.

Therefore the ratio of the left and right hand sides is bounded in p. Hence there
exists an absolute constant C such that

B
(p

2
+ 1,

1

2

)
≤ C√

p+ 1
for all p ≥ 0.

We have proved that

P
{
Z2
1 + Z2

2 ≤ s
}
≤ M1M2

2
s

p+1
2

C√
p+ 1

.

Substituting s = t2 finishes the proof. �

Corollary 6.3 (Tensorization, continued). Let Z1, Z2 ≥ 0 be random variables and
K1,K2 ≥ 0, d > 1 be real numbers. Assume that

(i) P {Z1 ≤ t | Z2} ≤ K1t almost surely in Z2 for all t ≥ 0;
(ii) P

{
Z2 ≤ t

√
d− 1

}
≤ (K2t)

d−1 for all t ≥ 0.

Then

P
{√

Z2
1 + Z2

2 ≤ t
√
d

}
≤ (K2t)

d for all t ≥ 0,

provided that K1 ≤ cK2 with a suitably small absolute constant c.
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Proof. Random variables Z1, Z2 satisfy the assumptions of Lemma 6.1 with

M1 = K1, M2 =
( K2√

d− 1

)d−1
, p = d− 1.

The conclusion of that lemma is that

P
{√

Z2
1 + Z2

2 ≤ t
√
d

}
≤ CK1

( K2√
d− 1

)d−1 1√
d

(t
√
d)d.

Using the hypothesis that K1 ≤ cK2, we bound the right hand side by

Cc(K2t)
d
( d

d− 1

) d−1
2 ≤ 3Cc(K2t)

d.

If we choose c = 1/(3C) then the right hand side gets bounded by (K2t)
d, as

claimed. �

Proposition 6.4 (Removal of large Pei). Let X be a random vector satisfying the
assumptions of Theorem 1.1, and let P be an orthogonal projection in Rn onto a
d-dimensional subspace. Let ν > 0, and assume that there exists i ∈ {1, . . . , n} such
that

‖Pei‖2 ≥ ν.
Define Q to be the orthogonal projection in Rn such that

ker(Q) = span{ker(P ), P ei}.
Let M ≥ C0 where C0 is an absolute constant. If

P
{
‖QX‖2 ≤ t

√
d− 1

}
≤ (MKt/ν)d−1 for all t ≥ 0, (6.2)

then
P
{
‖PX‖2 ≤ t

√
d
}
≤ (MKt/ν)d for all t ≥ 0.

Proof. Without loss of generality, we can assume that i = 1.
Let us first record some straightforward properties of the projection Q. First,

Q− P is the orthogonal projection onto span(Pe1), so it has the form

(P −Q)x =
( n∑
j=1

ajxj

)
Pe1 for x = (x1, . . . , xn) ∈ Rn, (6.3)

where aj are fixed numbers (independent of x). Observe that QP = P by definition,
so (P −Q)e1 = (P −Q)Pe1 = Pe1. Thus

a1 = 1. (6.4)

Further, let us write (6.3) as

Px =
( n∑
j=1

ajxj

)
Pe1 +Qx.

Since Pe1 is orthogonal to the image of Q, the two vectors in the right side are
orthogonal. Thus

‖Px‖22 =
( n∑
j=1

ajxj

)2
‖Pe1‖22 + ‖Qx‖22. (6.5)

Furthermore, note that
Qx does not depend on x1 (6.6)



13

since Qx = Q(
∑n

i=1 xjej) =
∑n

i=1 xjQej and Qe1 = QPe1 = 0 by definition of Q.
Now let us estimate ‖PX‖2 for a random vector X. We express ‖PX‖22 using

(6.5) and (6.4) as

‖PX‖22 =
(
X1 +

n∑
j=2

ajXj

)2
‖Pe1‖22 + ‖QX‖22

=: Z2
1 + Z2

2 .

and try to apply Corollary 6.3. Let first us check the hypotheses of that corollary.
Since by (6.6) Z2 is determined by X2, . . . , Xn (and is independent of X1), and
‖Pei‖2 ≥ ν by a hypothesis of the lemma, we have

P {Z1 ≤ t | Z2} ≤ max
X2,...,Xn

P

∣∣∣X1 +
n∑
j=2

ajXj

∣∣∣ ≤ t/ν ∣∣∣ X2, . . . , Xn


≤ max

u∈R
P {|X1 − u| ≤ t/ν} ≤ Kt/ν.

The last inequality follows since the density of X1 is bounded by K. This verifies
hypothesis (i) of Corollary 6.3 with K1 = K/ν. Hypothesis (ii) follows immediately
from (6.2), with K2 = MK/ν. If M ≥ 1/c =: C0 then K1 ≤ cK2 as required in
Corollary 6.3. It yields

P
{√

Z2
1 + Z2

2 ≤ t
√
d

}
≤ (MKt/ν)d for all t ≥ 0.

This completes the proof. �

7. Theorem 1.1 in higher dimensions: completion of the proof

Now we are ready to prove Theorem 1.1. Replacing Xj with KXj we can assume
that K = 1. By Proposition 2.2, it suffices to bound the concentration function as
follows:

L(PX, t
√
d) ≤ (Ct)d, t ≥ 0,

where C is a sufficiently large absolute constant. Translating X if necessary, we can
reduce the problem to showing that

P
{
‖PX‖2 ≤ t

√
d
}
≤ (Ct)d, t ≥ 0. (7.1)

We will prove this by induction on d.
The case d = 1 follows from Theorem 4.1.
Assume that the statement (7.1) holds in dimension d− 1 ∈ N, so one has

P
{
‖QX‖2 ≤ t

√
d− 1

}
≤ (Ct)d−1, t ≥ 0 (7.2)

for the projection Q onto any (d− 1)-dimensional subspace of Rn. We would like to
make an induction step, i.e. prove (7.1) in dimension d.

If ‖Pei‖2 < 1/2 for all i ∈ [n], then (7.1) follows from Proposition 5.1 together
with Proposition 2.2. Alternatively, if there exists i ∈ [n] such that ‖Pei‖2 ≥ 1/2,
we can apply Proposition 6.4 with M = C/2. Note that by choosing C a sufficiently
large absolute constant, we can satisfy the requirement M ≥ C0 appearing in that
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proposition. Moreover, since the rank of Q is d−1, the assumption (6.2) is also satis-
fied due to the induction hypothesis (7.2) and the choice of M . Then an application
of Proposition 6.4 yields (7.1). This completes the proof of Theorem 1.1. �

8. Theorem 1.4. Concentration of anisotropic distributions.

In this section we prove a more precise version of Theorem 1.4 for random vectors
of the form AX, where A is a fixed m× n matrix.

The singular values of A arranged in a non-increasing order are denoted by sj(A),
j = 1, . . . ,m ∧ n. To simplify the notation, we set sj(A) = 0 for j > m ∧ n, and we
will do the same for singular vectors of A.

The definition of the stable rank of A from (1.2) reads as

r(A) =

⌊
‖A‖2HS

‖A‖2

⌋
=

⌊∑∞
j=1 sj(A)2

s1(A)2

⌋
.

To emphasize the difference between the essential rank and the rank, we set

δ(A) =

∑∞
j=r(A)+1 sj(A)2∑∞

j=1 sj(A)2
. (8.1)

Thus 0 ≤ δ(A) ≤ 1. Note that the numerator in (8.1) is the square of the distance
from A to the set of matrices of rank at most r(A) in the Hilbert-Schmidt metric,
while the denominator equals ‖A‖2HS. In particular, δ(A) = 0 if and only if A is an
orthogonal projection up to an isometry; in this case r(A) = rank(A).

Theorem 8.1. Consider a random vector X = (X1, . . . , Xn) where Xi are real-
valued independent random variables. Let t, p ≥ 0 be such that

L(Xi, t) ≤ p for all i = 1, . . . , n.

Then for every m× n matrix A and for every M ≥ 1 we have

L(AX,Mt‖A‖HS) ≤
(
CMp/

√
δ(A)

)r(A)
. (8.2)

provided δ(A) > 0. Moreover, if δ(A) < 0.4, then

L(AX,Mt‖A‖HS) ≤ (CMp)r0(A) , (8.3)

where r0(A) = d(1− 2δ(A))r(A)e.

Remark 8.2 (Orthogonal projections). For orthogonal projections we have δ(A) = 0,
r0(A) = r(A) = rank(A), so the second part of Theorem 8.1 recovers Corollary 1.3.

Remark 8.3 (Stability). Note the d·e instead of b·c in the definition of r0(A). This
offers some stability of the concentration function. Indeed, a small perturbation of a
d-dimensional orthogonal projection will not change the exponent r0(A) = r(A) = d
in the small ball probability.

Remark 8.4 (Flexible scaling). The parameter M offers some flexible scaling, which
may be useful in applications. For example, knowing that L(Xi, t) are all small,
Theorem 8.1 allows one to bound L(AX, 10t‖A‖HS) rather than just L(AX, t‖A‖HS).
Note that such result would not trivially follow by applying Remark 2.3.
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Proof of Theorem 8.1. We will first prove an inequality that is more general than
(8.2). Denote

Sr(A)2 =
∞∑

j=r+1

sj(A)2, r = 0, 1, 2, . . .

Then, for every r, we claim that

L(AX,MtSr) ≤ (CMp)r. (8.4)

This inequality would imply (8.2) by rescaling, since Sr(A) =
√
δ(A)‖A‖HS.

Before we prove (8.4), let us make some helpful reductions. First, by replacing A
with A/‖A‖HS and X with X/t we can assume that ‖A‖ = 1 and t = 1. We can
also assume that the vector u appearing the definition (1.1) of the concentration
function L(AX,MtSr) equals zero; this is obvious by first projecting u onto the
image of A and then appropriately translating X. With these reductions, the claim
(8.4) becomes

P {‖AX‖2 ≤MSr(A)} ≤ (CMp)r. (8.5)

Let A =
∑∞

j=1 sj(A)ujv
T
j be the singular value decomposition of A. For l =

0, 1, 2, . . ., consider the spectral projections Pl defined as

P0 =
r∑
j=1

vjv
T
j and Pl =

2lr∑
j=2l−1r+1

vjv
T
j , l = 1, 2, . . .

Note that rank(P0) = r and rank(Pl) = 2l−1r for l = 1, 2, . . .
We shall bound ‖AX‖2 below and Sr(A) above and then compare the two esti-

mates. First, using the monotonicity of the singular values, we have

‖AX‖22 =
∞∑
j=1

sj(A)2〈X, vj〉2 ≥
∞∑
l=0

s2lr(A)2 ‖PlX‖22 .

Next, again by monotonicity,

Sr(A)2 ≤
∞∑
l=0

2lr · s2lr(A)2.

Comparing these two estimates term by term, we obtain

P {‖AX‖2 < MSr(A)} ≤
∞∑
l=0

P
{
‖PlX‖22 < M2 2lr

}
. (8.6)

Applying Corollary 1.3 (see Remark 2.3) and noting that 2lr ≤ 2 rank(Pl), we find
that

P
{
‖PlX‖22 < M2 2lr

}
≤ (C0Mp)2

lr, l = 0, 1, 2, . . . (8.7)

where C0 is an absolute constant. We will shortly conclude that (8.5) holds with
C = 10C0. Without loss of generality we can assume that CMp ≤ 1, so C0Mp ≤
1/10. Thus upon substituting (8.7) into (8.6) we obtain a convergent series whose
sum is bounded by (10C0Mp)r. This proves (8.5).

We now turn to proving (8.3). As before, we can assume that ‖A‖ = 1 and t = 1
and reduce our task to showing that

P {‖AX‖2 ≤M‖A‖HS} ≤ (CMp)r0(A). (8.8)



16 MARK RUDELSON AND ROMAN VERSHYNIN

For shortness, denote r = r(A) = b‖A‖2HSc and δ = δ(A). Set k = b(1 − 2δ)rc.
We claim that

sk+1(A) ≥ 1

2
. (8.9)

Assume the contrary. By definition of δ and r, we have
r∑
j=1

sj(A)2 = (1− δ)‖A‖2HS ≥ (1− δ)r. (8.10)

On the other hand, by our assumption and monotonicity, sj(A) are bounded by
‖A‖ = 1 for all j, and by 1/2 for j ≥ k + 1. Thus

r∑
j=1

sj(A)2 ≤
k∑
j=1

12 +
r∑

j=k+1

(1

2

)2
= k + (r − k)

1

4
. (8.11)

Since the expression in the right hand side increases in k and k ≤ (1− 2δ)r, we can
further bound the sum in (8.11) by (1 − 2δ)r + 2δr · 14 . But this is smaller than
(1− δ)r, the lower bound for the same sum in (8.10). This contradiction establishes
our claim (8.9).

Similarly to the first part of the proof, we shall bound ‖AX‖2 below and Sr(A)
above and then compare the two estimates. For the lower bound, we consider the
spectral projection

Qk+1 =
k+1∑
j=1

vjv
T
j

and using (8.9), we bound

‖AX‖22 ≥ sk+1(A)2‖Qk+1X‖22 ≥
1

4
‖Qk+1X‖22.

For the upper bound, we note that since δ ≤ 0.4 by assumption and r = b‖A‖2HSc ≥
1, we have

‖A‖2HS ≤ 2r ≤ 10(1− 2δ)r ≤ 10(k + 1)

Applying Corollary 1.3 (see Remark 2.3) and recalling that rank(Qk) = k + 1, we
conclude that

P {‖AX‖2 ≤M‖A‖HS} ≤ P
{
‖Qk+1X‖22 ≤ 40M2(k + 1)

}
≤ (CMp)k+1.

It remains to note that k+ 1 ≥ r0(A) by definition. This establishes (8.8) whenever
CMp ≤ 1. The case when CMp > 1 is trivial. Theorem 8.1 is proved. �

Theorem 8.1 implies the following more precise version of Theorem 1.4.

Corollary 8.5. Consider a random vector X = (X1, . . . , Xn) where Xi are real-
valued independent random variables. Let t, p ≥ 0 be such that

L(Xi, t) ≤ p for all i = 1, . . . , n.

Then for every m× n matrix A, every M ≥ 1 and every ε ∈ (0, 1) we have

L(AX,Mt‖A‖HS) ≤ (CεMp)d(1−ε)r(A)e .

Here Cε = C/
√
ε and C is an absolute constant.

Proof. The result follows from Theorem 8.1 where we apply estimate (8.2) whenever
δ(A) ≥ ε/2 and (8.3) otherwise. �
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In the case when the densities of Xi are uniformly bounded by K > 0, Corol-
lary 8.5 yields

L(AX, t‖A‖HS) ≤
(
CKt√
ε

)d(1−ε)r(A)e
for all t, ε > 0. (8.12)

Applying this estimate with ε = 1
2r(A) and τ = t

√
r(A), we derive a bound on the

Levy concentration function, which is lossless in terms of power of the small ball
radius. Such bound may be useful for estimating the negative moments of the norm
of AX.

Corollary 8.6. Let X = (X1, . . . , Xn) be a vector with independent random coor-
dinates. Assume that the densities on X1, . . . , Xn are bounded by K. Let A be an
m× n matrix. Then for any τ > 0,

L(AX, τ ‖A‖) ≤ (CKτ)r(A) .
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