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Small but slow world: How network topology and burstiness slow down spreading
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While communication networks show the small-world property of short paths, the spreading dynamics in them
turns out slow. Here, the time evolution of information propagation is followed through communication networks
by using empirical data on contact sequences and the susceptible-infected model. Introducing null models where
event sequences are appropriately shuffled, we are able to distinguish between the contributions of different
impeding effects. The slowing down of spreading is found to be caused mainly by weight-topology correlations
and the bursty activity patterns of individuals.
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Most complex physical, biological, and social networks
show small-world property, where the average shortest path
length is strikingly short compared to the network size [1].
This means that there is at least one short path between
any two nodes that should give rise to rapid transmission
of influence. However, dynamic phenomena on networks
[2], such as spreading of pandemics, electronic viruses,
and information, follow their own pathways, which are not
necessarily topologically efficient [3,4]. Spreading on real
small-world networks turns out to be surprisingly slow, e.g.,
new infections are reported years after the emergence of a new
computer virus or the introduction of an antivirus [5]. Here we
aim at resolving this puzzle. For issues such as strategies and
timings of vaccination, improvement of information diffusion,
and the slow decay of activity of computer viruses, it is crucial
to understand the role of the underlying network and temporal
activity patterns in the spreading dynamics.

The dynamics of spreading is commonly studied with SI,
SIR, or SIS models [6] on static networks or in mean field,
where the letters in the acronyms refer to the different states
(Susceptible, Infectious, or Recovered) of individuals and the
dynamics is defined by changes of these states due to the
influence of others. These models lead to rapid, exponential
growth of the epidemic at early stages of spreading, while
the dynamics at later stages depend on the model and network.
For the SI process, the infection spreads until the whole system
reachable from initial conditions is infected, with exponential
slowing down toward the end. For the SIR process, competing
effects set in and the spreading may remain local or percolate
through the system while the SIS process has more complex
dynamics.

While these results capture some of the qualitative features
of real-world processes, the heterogeneity of the systems limits
their applicability. First, the interactions of real-world systems
span networks by broad distributions of node connections and
mesoscopic features in the form of communities with dense
internal and sparse external connectivity. Second, interaction
intensities vary and are closely coupled to network topology.
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Third, the daily cycle and bursty character of interaction events
give rise to important temporal inhomogeneities.

Some aspects of these features have already been studied.
For static networks, it is known that spatial structure has
an effect on epidemics (see, e.g., [7,8]), and community
structure slows down information diffusion due to trap-
ping in dense regions [9–11]. There is an intimate relation
between inhomogeneous link weights and network topology
in social and communication networks [12,13]: Links within
communities are strong, while links between them are weak.
This Granovetter-type structure enhances the trapping effect
of the communities, leading to additional slowing down of
spreading [13].

The bursty nature of human interactions has received
particular interest and it has turned out that the corresponding
activity patterns are usually non-Poissonian, often power-law
correlated (see [14]). The effect of bursty dynamics on
spreading has been approached using empirical data together
with approximate analytical models [15,16]. In Ref. [15],
computer worm spreading was studied using email logs and the
SI model, and it was found that the non-Poissonian interevent
time distribution leads to slow spreading in the late stages of the
process. Slow spreading was also observed in Ref. [16], where
an internet viral marketing experiment was carried out and
modeled as a branching process in the nonpercolating regime.
It was also argued that on the contrary, in the percolating
regime, broad interevent time distributions should give rise to
faster spreading.

In this Rapid Communication, we study the problem of
spreading dynamics in its full complexity, using time-stamped
event data on human communication networks and the SI
model. We apply null models on these event sequences and
show that spreading slows down due to simultaneous effects
of structural and temporal correlations.

For the event sequences, we have used the following data:
a) Mobile phone data from a European operator (national
market share ∼20%) with ∼3.25 × 108 time-stamped voice
call records over a period of 120 d. We have only retained
links with bidirectional calls within the largest connected
component (LCC) of the aggregated call network (MCN),
yielding N = 4 572 735 nodes, L = 9 055 944 links, and
306 218 217 calls. We define link weights as the number of
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calls between two users. The network is sparse (average degree
〈k〉 = 3.96) showing small-world property with an average
shortest path length of 〈l〉 = 12.31. b) Mobile call data from
the Reality Mining project [19] (RM), where the LCC consists
of 59 users and 93 edges with 2293 calls over ∼9 months.
c) Email logs [20] forming a network with the LCC having
2993 nodes and 28 843 edges for 202 687 events over 83 days.
Here communications are directed and thus the nodes belong to
the strongly connected component (SCC) where all nodes are
reachable from each other, or the IN- or the OUT-component.

We study the SI spreading dynamics with simulations using
the event sequences so that an infected individual infects a
susceptible one at time t , if there is an event between them.
For the events, we use records of the times and participants
of calls, and the times and addresses of emails. Calls are
one-to-one communication and enable bidirectional exchange
of information, while emails may have multiple addresses
and the information flow is directed. Hence for calls, if
either participant is infected he/she infects the susceptible
one, whereas for emails, transmission is from the sender
to the recipient(s). We initiate simulations by infecting a
randomly chosen node at a randomly chosen event with the
spreading quantity (information, rumor, or virus) and set
all other nodes susceptible. Then the spreading dynamics is
simulated by using temporally periodic boundary conditions
(i.e., repeating the event sequence) until the set of reachable
nodes is exhausted. We record the prevalence, i.e., the fraction
of infected nodes 〈I (t)〉/N as a function of time averaging
over 103 initial conditions and the time to full prevalence tf .
For the email network, we start the spreading process from a
node in IN or SCC and iterate the process until all nodes in
SCC and OUT are infected.

To gain insight into the effects of different correlations,
we employ null models where the original event sequences
are randomized. These are defined so that in each null model,
some of the correlations are separately destroyed: community
structure (C), weight-topology correlations (W), bursty event
dynamics on single links (B), and event-event correlations
between links (E). In addition, the overall event frequencies
follow a daily pattern (D), with decreased night-time activity
and some day-time peaks (see inset in Fig. 3) The null models
are as follows, with the letters indicating retained correlations
(Table I):

(i) DCWB (equal-weight link-sequence shuffled): Whole
single-link event sequences are randomly exchanged between
links having the same number of events. Temporal correlations

TABLE I. Correlations retained in different null models. D: daily
pattern, C: community structure, W: weight-topology correlations,
B: bursty single-edge dynamics, E: event-event correlations between
edges. Rightmost column: Mean times to reach 20% prevalence and
the errors of the mean values.

Event Sequence D C W B E 〈t20%〉 (days)

Original
√ √ √ √ √

38.24 ± 0.74
Equal-weight link-seq. shuf.

√ √ √ √
41.20 ± 0.83

Link-sequence shuffled
√ √ √

30.67 ± 0.55
Time shuffled

√ √ √
26.48 ± 0.52

Configuration model
√

17.23 ± 0.22

FIG. 1. (Color online) (Left) Average fraction of infected nodes
〈I (t)/N〉 at each points in time for the original event sequence
(�) and null models: equal-weight link-sequence shuffled DCWB
(�), link-sequence shuffled DCB (�), time-shuffled DCW (�), and
configuration model D (�). (Right) Distribution of full prevalence
times P (tf ) due to randomness in the initial conditions.

between links are destroyed. (For large weights we did binning
with 2–3 weight values.)

(ii) DCB (link-sequence shuffled): Whole single-link event
sequences are randomly exchanged between randomly cho-
sen links. Event-event and weight-topology correlations are
destroyed.

(iii) DCW (time-shuffled): Time stamps of the whole
original event sequence are randomly reshuffled. Temporal
correlations are destroyed.

(iv) D (configuration model): The original aggregated net-
work is rewired according to the configuration model, where
the degree distribution of the nodes and connectedness are
maintained but the topology is uncorrelated. Then, original
single-link event sequences are randomly placed on the links,
and time shuffling as above is performed. All correlations
except seasonalities like the daily cycle are destroyed.

Figure 1 displays the results for the MCN. In all cases
the spreading is slow, with the full prevalence times tf being
several hundred days. It is clear that both topological and
temporal correlations slow down the spreading. It is the fastest
when all correlations except the daily patterns are destroyed
(configuration model, D). Switching on the community struc-
ture and associated weight-topology correlations (DCW) slows
down the spreading strongly, as expected due to bottlenecks
caused by weak links between communities and the broad
distribution of link weights [13,18]. However, comparing this
with the DCB null model indicates that bursty single-edge
dynamics (B) has an even stronger slowing-down effect than
weight-topology correlations (W). Finally, including all except
event-event correlations (DCWB) gives rise to spreading
dynamics very close to the original event sequence (DCWBE).
Here for early times, the DCWB spreading is slightly slower
than the original one (see Table I) since temporal correlations
(E) between adjacent edges have minor accelerating effect
due to easy reachability within the community where the
spreading begins, while for long times bottlenecks appear and
event-event correlations slow the process down.

The slowing down effects can be characterized by the
average times 〈t20%〉 to reach 20% prevalence, see Table I.
The difference between the original and the fastest model is
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FIG. 2. (Color online) Spreading dynamics in the Reality Mining
(left) and email networks (right), for the original event sequence (�)
and null models: DCW (�) and DCWB (�). In the email network,
the spreading process is directed. The maximum prevalence is limited
to the total fraction of the SCC and the OUT component (∼85%).

∼21 days, i.e., a factor �2. Similarly for the 100% prevalence
this factor also �2 (∼342 d), showing that the effects of
correlations are consistent for the duration of the whole process
and for individual runs. As for the effect of the random initial
conditions, the small error of mean values in Table I show
that the mean curves (Fig. 1) characterize the overall behavior
well. The effect of initial conditions are demonstrated in Fig. 1,
where the distributions are clearly separable at full prevalence.

Results for the Reality Mining mobile call network and for
the email logs are shown in Fig. 2, with the DCW and DCWB
null models; the outcome is qualitatively similar with that of
MCN. However, there are certain differences. In the small and
sparse RM network, successive calls to many people within a
short time period by a hub give rise to a steep prevalence rise.
Such behavior is a one-off event and the effect is destroyed
in the null models. In the email network, very high-degree
hubs sending frequent emails give rise to rapid spreading
once they are reached. This effect is conserved in the null
models.

The daily activity pattern, i.e., variation in overall commu-
nication frequency by the hour, is retained in every null model
that is based on randomizing the original event sequence.
In [21], it was suggested that natural periodicities, such as
the daily cycle, are responsible for the fat-tailed waiting time
distributions. In order to evaluate the impact of the daily pattern
on the spreading speed, we carried out simulations where
the aggregated MCN was used as the network. Events were
generated on its links by two Poisson processes that conserve
link weights: a homogeneous Poisson process, and a process
whose instantaneous rate follows the daily pattern as calculated
from the call statistics on hourly basis (see inset in Fig. 3). The
SI dynamics for both cases are shown in Fig. 3. The difference
between the two curves is negligible, demonstrating that the
daily pattern has only a minor impact on the spreading speed.
This, together with the observation that temporal correlations
do have a significant decelerating effect on spreading strongly
indicates that there are important, non-Poissonian correlations
in the system beside the daily type cycles.

The non-Poissonian, bursty character of event sequences is
clearly demonstrated by the fat-tailed distribution of single-
link interevent times for the MCN, see Fig. 4. In order to

FIG. 3. (Color online) Spreading dynamics as obtained from a
Poissonian event-generating model on the aggregated MCN, with
daily pattern (�) and without (�). Link weights were taken into
account and the curve with the daily pattern is comparable with the
DCW null model. Inset: the average daily pattern as observed for the
MCN event sequence with binning by the hour. The continuous line
is to guide the eye.

exclude the possibility that the fat tail in the interevent time
distribution is only due to the broad weight distribution as
suggested in [21], we calculated the distributions for binned
weights and obtained satisfactory scaling with the average
interevent time, same as [17]. We find that the distribution can
be fitted by a power law with exponent 0.7 over 3.5 decades,
followed by a fast decay. The scaling breaks down for small
interevent times, where a peak in the distribution at ∼20 s is
found, which is due to event correlations between links. The
power law indicates non-Poissonian bursty character of the
events. Both the characteristics vanish for the time-shuffled
null model and the interevent time is well described by an

FIG. 4. (Color online) Scaled interevent time distributions for
the MCN. Edges were log-binned by weight and for every second
bin the interevent time distribution of the events occurring in the
corresponding bin is shown, scaled by the average interevent time of
that bin τ ∗ (larger τ ∗ darker the color). Inset: scaled inter-event time
distributions for the original (�) and for the time-shuffled events (�).
An exponential density distribution with average value of 1 is shown
as a light (yellow) line.
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exponential function (see inset of Fig. 4), i.e., the process is
Poissonian.

The effect of burstiness on the spreading speed can be
easily demonstrated with the following single-link calculation.
Let us denote the average time for the infection to spread
through a link (the residual waiting time) by 〈τR〉, and assume
that one of the nodes gets infected at a uniformly chosen
random time. Similarly as in [15,16] we calculate 〈τR〉 for
a given interevent time distribution P (τ ). For simplicity,
we consider how the burstiness introduced by a continuous
power-law distribution of interevent times P (τ ) ∼ τ−α affects
the average infection times when compared to a Poisson
process. If we fix the average interevent time (and thus the
number of events for a long observation period), the ratio
of average infection times is r = 〈τR,power−law〉/〈τR,poisson〉 =

(α−2)2

2(α−1)(α−3) for α > 3. Now r is decreasing with α, r < 1

when α > 2 + √
2 ≈ 3.4, and r goes to infinity at α = 3.

This indicates that the burstiness characterized by power
law distributions with slow decay has a decelerating effect
on spreading with respect to the Poisson process with the
same mean. However, if the decay is fast enough, i.e., the
second moment of the power-law distribution is smaller
than that of the Poisson distribution, we see acceleration.
This mean field type of reasoning has its limitations.

Nevertheless it illustrates the mechanisms of slowing down
because of bursts: the residual waiting time increases because
the chance for long waiting times after getting infected
increases.

In conclusion, we have studied the effects of different
topological and temporal correlations on spreading in complex
communication networks. Using time-stamped event data
and appropriately prepared null models we have managed
to quantitatively distinguish between different contributions
to the slowing down of spreading. We have shown that the
main contributions are (i) the community structure and its
correlation with link weights and (ii) the inhomogeneous and
bursty activity patterns on the links. Somewhat surprisingly,
the daily pattern and event correlations between links seem to
play only a minor role in the overall spreading speed. Finally,
we believe that our null models can be generally applied to
investigate the effects of temporal and structural correlations
on dynamic processes on networks.
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