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Abstract Small complete arcs and caps in Galois spaces over finite fields Fq with
characteristic greater than three are constructed from singular cubic curves. For m
a divisor of q + 1 or q − 1, complete plane arcs of size approximately q/m are
obtained, provided that (m, 6) = 1 and m < 1

4 q1/4. If in addition m = m1m2 with
(m1, m2) = 1, then complete caps in affine spaces of dimension N ≡ 0 (mod 4)

with roughly m1+m2
m q N/2 points are described. These results substantially widen the

spectrum of qs for which complete arcs in AG(2, q) of size approximately q3/4 can
be constructed. Complete caps in AG(N , q) with roughly q(4N−1)/8 points are also
provided. For infinitely many qs, these caps are the smallest known complete caps in
AG(N , q), N ≡ 0 (mod 4).
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1 Introduction

In an (affine or projective) space over a finite field, a cap is a set of points, no three
of which are collinear. A cap is said to be complete if it is maximal with respect to
set-theoretical inclusion. Plane caps are usually called arcs.

Arcs and caps have played an important role in Finite Geometry since the pioneering
work by B. Segre [23]. These objects are relevant also in Coding Theory, being the
geometrical counterpart of distinguished types of error-correcting and covering linear
codes. In this direction, an important issue is to ask for explicit constructions of small
complete caps in Galois spaces. In fact, complete caps correspond to quasi-perfect
linear codes with covering radius 2, so that the smaller is the size of the cap, the better
is the density of the covering code; see e.g., [14].

The trivial lower bound for the size of a complete cap in a Galois space of dimension
N and order q is √

2q(N−1)/2. (1)

If q is even and N is odd, then such bound is substantially sharp; see [21]. Otherwise,
all known infinite families of complete caps have size far from (1); see the survey
papers [17,18] and the more recent works [1,4,5,7,8,12–14]. For q odd and N = 2,
the smallest explicit constructions go back to the late 80’s, when Szőnyi described
complete plane arcs of size approximately (q − 1)/m for any divisor m of q − 1
smaller than 1

C q1/4, with C a constant independent of q and greater than 1 [27,28] 1.
The aim of this paper is twofold: on the one hand, we substantially widen the

spectrum of q for which complete arcs in AG(2, q) of size approximately q3/4 can
actually be constructed; on the other hand, we provide new complete caps in AG(N , q)

with roughly q(4N−1)/8 points. To this end, both plane cubics with a node and plane
cubics with an isolated double point are investigated. Our main achievements here are
Theorems 2, 3, and 6. For a divisor m of q + 1 or q − 1 such that (m, 6) = 1 and
m ≤ 4

√
q/4, we explicitly describe a complete arc of size approximately m + q+1

m ; if in
addition m admits a non-trivial factorization m = m1m2 with (m1, m2) = 1, we also
provide complete caps with roughly m1+m2

m q N/2 points in affine spaces AG(N , q)

with dimension N ≡ 0 (mod 4).
Let X be an irreducible plane cubic defined over the finite field with q elements

Fq with at least one Fq -rational inflection point. It was first noted by Zirilli [31] that a
non-trivial coset A of the group of the non-singular Fq -rational points of X is a plane
arc, provided that the index m of A is not divisible by 3. Since then, plane arcs in
cubics have been thoroughly investigated, and complete caps have been obtained by
recursive constructions from these arcs; see [1,4,9,11,19,26–30].

For every q = ph with p > 3, there are exactly three projectively non-equivalent
singular (irreducible) plane cubics with at least one Fq -rational inflection point; see
e.g. [6,16]. Complete caps from singular cubics with a cusp were recently constructed
by the same authors in [1]. The present paper can be considered a sequel of [1], in

1 The condition of m being a divisor of q − 1 was not originally required in [28], but it is
actually needed in order for the proof of a key lemma by Voloch to be correct; see Remark 4
in [4].
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the sense that here, we deal with the two other projectively distinct singular cubics.
The complete caps obtained here are significantly smaller than those constructed in
[1], which have size roughly 2pβq(4N−1)/8, with β ∈ [1/8, 1] (see [1, Theorem 6.2]).
Also, the proofs here rely on deeper concepts from the theory of Function Fields
and need original techniques, especially for the case of a cubic with an isolated dou-
ble point. In fact, despite Zirilli’s paper [31] dating back to 1973, no results about
arcs and caps from cubics with an isolated double point have appeared in the liter-
ature so far. One of the problems that comes up when dealing with these cubics is
that the natural parametrization of the points of A, arising from the natural isomor-
phism between the group of the non-singular Fq -rational points and the subgroup of
order q + 1 of the multiplicative group of Fq2 , involves polynomial functions defined
over Fq2 but not over Fq . This makes a straightforward application of the classical
method by Segre [22] and Lombardo Radice [20] for proving that a point P off X
is collinear with two points in A impossible; in fact, such method needs that the
algebraic curve C describing the collinearity with P and two generic points in A is
defined over Fq . A key point of the paper is to overcome such a difficulty by finding
a curve which is birationally equivalent to C, but is defined over Fq ; see Lemmas 14
and 15.

The paper is organized as follows. In Sect. 2, we briefly review some standard facts
on bicovering arcs, curves, and algebraic function fields. In Sect. 3 we investigate
a family of algebraic curves which play a crucial role for the investigation of the
bicovering properties of a coset A, in both the nodal and the isolated-double-point
cases. Bicovering arcs from nodal cubics are constructed in Sect. 4, where the main
result is Theorem 1. We first prove that under our assumptions on m, each point P
not on X is bicovered by the secants of A (see Propositon 10); the case where P
lies in X is dealt with in Proposition 11. In Sect. 5, we discuss the complete caps
in AG(N , q) that can be constructed from the bicovering arcs of Theorem 1. The
isolated-double-point case is investigated in Sects. 6 and 7. After proving the already
mentioned key Lemmas 14 and 15, we show that almost each point P not on X is
bicovered by the secants of A in Propositions 16, 17, and 19; the case where P lies
in X is dealt with in Proposition 20. The proof of our main results is completed in
Sect. 7. Finally, Sect. 8 contains a brief discussion about the possibility of constructing
complete caps for N ≡ 0 (mod 4) when m is a prime; we show that Theorems 2 and
6 remain substantially valid for m a prime, provided that a suitable factorization of
m + 5 exists.

We remark that the methods of the present paper could be used for other investiga-
tions involving rational curves, that is, curves that can be parametrized by polynomial
or rational functions. A plane quartic Q with a triple point is one of such curves. For
instance, it seems that the problem of constructing subsets of points on Q, where no
four points are collinear, and proving their maximality with respect to set-theoretical
inclusion, could be addressed with the tools from Function Field theory used in this
paper.

The following table summarizes a number of existence results for complete caps
constructed from plane cubic curves, including those obtained in this paper. In Table
1, N denotes the dimension of the Galois space and p the characteristic of the ground
field.
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Table 1 Small complete caps in Galois spaces from cubic curves

p N Size ≤ Conditions Reference

>2 2 q−1
m + m

m | q − 1

m ≤ 1
C

4√q, C > 1
[4,27,28]

>3 2 q+1
m + m

m | q + 1

m ≤ 1√
6

4√q

(m, 6) = 1,
(

m,
q+1

m

)
= 1

Theorem 3

>3 ≡4 0 2pβq7/8q
N−2

2

q = ph , h > 8

β = logp q
8 − � � logp q

4 �−1
2 	

[1]

>3 ≡4 0 s
(⌊

q−2
√

q+1
m

⌋
+ 31

)
q

N−2
2

m | q − 1, s ≤ m/3

m prime, 7 < m < 1
8

4√q
[4]

>3 ≡4 0 m1+m2
m1m2

q N/2

m1m2 | q − 1

m1m2 ≤ 1
3.5

4√q

(mi , 6) = 1, (m1, m2) = 1

Theorem 2

>3 ≡4 0
(

m1+m2
m1m2

(q + 1) + 3
)

q
N−2

2

m1m2 | q + 1

m1m2 ≤ 1
4

4√q

(mi , 6) = 1, (m1, m2) = 1

Theorem 6

>3 ≡4 0 ∼
(

m2+(3/2)m1
m1m2

)
q N/2

m prime, m | q2 − 1

m1m2 = m + 5

m1 > 7 odd, m2 > 4

m ≤ 1
4

4√q

Sect. 8

The results of the present paper were originally the object of two separate preprints,
available at [2,3], to which we will sometimes refer for technical or straightforward
parts of proofs. We will also refer to [1] for some of the preliminary notions.

2 Preliminaries

Let q be an odd prime power, and let Fq denote the finite field with q elements.
Throughout the paper, K will denote the algebraic closure of Fq . For the preliminary
notions not recalled in this section, we refer to [1, Sect. 2].

2.1 Complete caps from bicovering arcs

Let A be a complete arc in AG(2, q). A point P ∈ AG(2, q)\A is said to be bicovered
by A if there exist P1, P2, P3, P4 ∈ A such that P is both external to the segment P1 P2
and internal to the segment P3 P4. If every P ∈ AG(2, q)\A is bicovered by A, then
A is said to be a bicovering arc. If there exists precisely one point Q ∈ AG(2, q)\A
which is not bicovered by A, then A is said to be almost bicovering, and Q is called
the center of A.

123



J Algebr Comb (2015) 41:185–216 189

For a positive integer N ≡ 0 (mod 4), let q ′ = q
N−2

2 . Points in AG(N , q) can be
identified with vectors of Fq ′ ×Fq ′ ×Fq ×Fq . A key tool in this paper is the following
result from [12].

Proposition 1 Let τ be a non-square in Fq . If A is a bicovering k-arc, then

CA = {(α, α2, u, v) ∈ AG(N , q) | α ∈ Fq ′ , (u, v) ∈ A}

is a complete cap in AG(N , q) of size kq(N−2)/2. If A is almost bicovering with
center Q = (x0, y0), then either C = CA ∪ {(α, α2 − τ, x0, y0) | α ∈ Fq ′ } or

C = CA ∪ {(α, α2 − τ 2, x0, y0) | α ∈ Fq ′ } is a complete cap in AG(N , q) of size

(k + 1)q(N−2)/2. The former case occurs precisely when Q is external to every secant
of A through Q.

2.2 Extensions of function fields

Let F be a function field over K. If F ′ is a finite extension of F , then a place γ ′
of F ′ is said to be lying over a place γ of F , if γ ⊂ γ ′. This holds precisely when
γ = γ ′ ∩ F . In this paper, e

(
γ ′|γ )

will denote the ramification index of γ ′ over γ .
A finite extension F ′ of a function field F is said to be unramified if e(γ ′|γ ) = 1 for
every γ ′ place of F ′ and every γ place of F with γ ′ lying over γ . Throughout the
paper, we will refer to the following result a number of times.

Proposition 2 ([25, Proposition 3.7.3]) Let F be an algebraic function field over K,
and let m > 1 be an integer relatively prime to the characteristic of K. Suppose
that u ∈ F is an element satisfying u �= ωe for all ω ∈ F and e|m, e > 1. Let
F ′ = F(y) with ym = u. Then,

(i) for γ ′ a place of F ′ lying over a place γ of F, we have e(γ ′|γ ) = m
rγ

where

rγ := (m, vγ (u)) > 0 (2)

is the greatest common divisor of m and vγ (u);
(ii) if g (resp. g′) denotes the genus of F (resp. F ′) as a function field over K, then

g′ = 1 + m

⎛
⎝g − 1 + 1

2

∑
γ

(
1 − rγ

m

)⎞
⎠ ,

where γ ranges over the places of F and rγ is defined by (2).

An extension such as F ′ in Proposition 2 is said to be a Kummer extension of F .
A curve C is said to be defined over Fq if the ideal of C is generated by polynomials

with coefficients in Fq . In this case, Fq(C) denotes the subfield of K(C) consisting
of the rational functions defined over Fq . A place of K(C) is said to be Fq -rational
if it is fixed by the Frobenius map on K(C). The center of an Fq -rational place is an
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Fq -rational point of C; conversely, if P is a simple Fq -rational point of C, then the only
place centered at P is Fq -rational. The following result is a corollary to Proposition 2.

Proposition 3 Let C be an irreducible plane curve of genus g defined over Fq . Let
u ∈ Fq(C) be a non-square in K(C). Then, the Kummer extension K(C)(w), with
w2 = u, is the function field of some irreducible curve defined over Fq of genus

g′ = 2g − 1 + M

2
,

where M is the number of places of K(C) with odd valuation of u.

The function field K(C)(w) as in Proposition 3 is said to be a double cover of K(C)

(and similarly the corresponding irreducible curve defined over Fq is called a double
cover of C).

2.3 The Hasse–Weil bound

Proposition 4 (Hasse–Weil Bound, Theorem 5.2.3 in [25]) The number Nq of Fq-
rational places of the function field K(C) of a curve C defined over Fq with genus g
satisfies |Nq − (q + 1)| ≤ 2g

√
q.

3 A family of curves over a finite field

Throughout this section, q = ph for some prime p > 3. Let m be a proper divisor of
q − 1 with (m, 6) = 1. Also, t is a non-zero element in Fq which is not an m-th power
in Fq . For a, b ∈ Fq with ab �= (a − 1)3, let P = (a, b) ∈ AG(2, q). A crucial role
for the investigation of the bicovering properties of a coset of the group associated to
a singular non-cuspidal cubic is played by the curve

CP : fa,b,t,m(X, Y ) = 0, (3)

where

fa,b,t,m(X, Y ) = a(t3 X2mY m + t3 XmY 2m − 3t2 XmY m + 1)

−bt2 XmY m − t4 X2mY 2m + 3t2 XmY m − t Xm − tY m .
(4)

In [27,28], it is claimed without proof that CP is absolutely irreducible of genus
less than or equal to some absolute constant times m2. The proof does not seem to be
straightforward. In particular, Segre’s criterion ([22]; see also [24, Lemma 8]) cannot
be applied. Actually, for a3 = −1 and b = 1−(a−1)3, the polynomial fa,b,t,m(X, Y )

is reducible; in fact,

fa,b,t,m(X, Y ) = −(a2 + t2 XmY m − atY m)(a2 + t2 XmY m − at Xm).

The first result of this section is the existence of an absolutely irreducible component
of CP defined over Fq . We distinguish a number of cases.
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3.1 a3 = −1 and b = 1 − (a − 1)3

If both a3 = −1 and b = 1 − (a − 1)3 hold, then the component of CP with equation
a2 + t2 XmY m − at Xm = 0 is a generalized Fermat curve over Fq (see [10]). As
proven in [10], such component is absolutely irreducible with genus less than m2.

Proposition 5 Assume that a3 = −1 and b = 1 − (a − 1)3. Then, the curve CP

has an irreducible component defined over Fq of genus less than m2, with equation
a2 + t2 XmY m − at Xm = 0.

3.2 a �= 0 and either a3 �= −1 or b �= 1 − (a − 1)3

Lemma 1 Assume that ab �= (a−1)3. Then the plane quartic curve QP : gP(X, Y ) =
0 with

gP(X, Y ) = a(t3 X2Y + t3 XY 2 − 3t2 XY + 1) − bt2 XY
−t4 X2Y 2 + 3t2 XY − t X − tY

is absolutely irreducible.

Proof The claim can be proved by standard arguments. Details can be found in the
preliminary version of the present paper ([2, Lemma 1]). ��

Let ū and z̄ denote the rational functions of K(QP ) associated to the affine coordi-
nates X and Y , respectively. Then

a
(

t3ū2 z̄ + t3ū z̄2 − 3t2ū z̄ + 1
)

− bt2ū z̄ − t4ū2 z̄2 + 3t2ū z̄ − t ū − t z̄ = 0. (5)

By the proof of Lemma 1, as given in the preliminary version of the present paper [2],
both X∞ and Y∞ are ordinary double points of QP ; hence, they both are the center of
two linear places of K(ū, z̄).

Lemma 2 Let γ1 be the linear place of K(ū, z̄) centered at X∞ with tangent Y = a/t ,
and γ2 the linear place of K(ū, z̄) centered at X∞ with tangent Y = 0. Then

vγ1(ū) = −1, vγ1(z̄) = 0,

and

vγ2(ū) = −1, vγ2(z̄) > 0.

Proof We keep the notation of Section 2.3 in [1]. Here, the roles of x̄ and ȳ are played
by ū and z̄, respectively. Then

vγ1(z̄ − a/t) + eγ1 = j2(γ1), (6)

vγ1 (ū) + eγ1 = 0, (7)

vγ1(z̄) + eγ1 = 1. (8)
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From here, one can easily deduce that vγ1(z̄) = 0. In fact, if vγ1(z̄) > 0, then vγ1(z̄ −
a/t) = 0, and hence eγ1 = j2(γ1); also, (8) implies j2(γ1) = 1, a contradiction. On
the other hand, if vγ1(z̄) < 0, then vγ1(z̄ − a/t) = vγ1(z̄); hence, (6) and (8) yield
that j2(γ1) = 1, a contradiction. From (8), it follows that eγ1 = 1; then vγ1(ū) = −1
is obtained from (7).

As far as γ2 is concerned, note that

vγ2(z̄ − a/t) + eγ2 = 1, (9)

vγ2 (ū) + eγ2 = 0, (10)

vγ2(z̄) + eγ2 = j2(γ2). (11)

Then, the assertion about γ2 can be easily obtained from j2(γ2) > 1. ��
As QP is left invariant by the transformation X �→ Y , Y �→ X , the following result

is obtained at once.

Lemma 3 Let γ3 be the linear place of K(ū, z̄) centered at Y∞ with tangent X = a/t ,
and γ4 the linear place of K(ū, z̄) centered at Y∞ with tangent X = 0. Then

vγ3(ū) = 0, vγ3(z̄) = −1,

and

vγ4(ū) > 0, vγ4(z̄) = −1.

Let Q1 = (0, a/t) and Q2 = (a/t, 0). It is easily seen that both Q1 and Q2 are
simple points of QP , and hence they both are the center of precisely one linear place
of K(ū, z̄).

Lemma 4 Let γ5 be the place of K(ū, z̄) centered at Q1, and γ6 the place centered
at Q2. Then

div(ū) = γ4 + γ5 − γ1 − γ2,

and

div(z̄) = γ2 + γ6 − γ3 − γ4.

Proof Clearly, γ5 is a zero of ū, whereas γ6 is a zero of z̄. From (5), the number of
zeros (and poles) of either ū or z̄ is 2. Then, the assertion follows from Lemmas 2 and
3. ��

We now consider the extension K(ū, z̄)(ȳ) of K(ū, z̄) defined by the equation
ȳm = z̄. Clearly, K(ū, z̄, ȳ) = K(ū, ȳ) holds. By Lemma 4, K(ū, ȳ) is a Kummer
extension of K(ū, z̄). For a place γ of K(ū, z̄), let rγ = gcd(m, vγ (z̄)). Then by
Lemma 4, we have
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{
rγ = 1, if γ ∈ {γ2, γ3, γ4, γ6},
rγ = m, otherwise.

By Proposition 2, the genus of K(ū, ȳ) is equal to 2m − 1 + m(g − 1), where g
denotes the genus of QP . Since QP is a quartic with two double points, g ≤ 1 holds,
and hence the genus of K(ū, z̄, ȳ) is less than or equal to 2m − 1. Also, the places of
K(ū, z̄) which ramify in the extension K(ū, ȳ) : K(ū, z̄) are precisely γ2, γ3, γ4, γ6;
their ramification index is m. For i ∈ {2, 3, 4, 6} let γ̄i be the only place of K(ū, ȳ)

lying over γi ; also, let γ̄ 1
1 , . . . , γ̄ m

1 be the places of K(ū, ȳ) lying over γ1, and let
γ̄ 1

5 , . . . , γ̄ m
5 be the places of K(ū, ȳ) lying over γ5. Taking into account Lemma 4, the

divisor of ū in K(ū, ȳ) can be easily computed.

Lemma 5 In K(ū, ȳ),

div(ū) = mγ̄4 +
m∑

i=1

γ̄ i
5 − mγ̄2 −

m∑
i=1

γ̄ i
1 .

We can now apply Proposition 2, together with Lemma 5, in order to deduce that
the extension K(ū, ȳ)(x̄) = K(ȳ, x̄) of K(ū, ȳ) defined by the equation x̄m = ū is a
Kummer extension of K(ū, ȳ) of genus

1 + m
(

g′ − 1 + 1

2

(
1 − 1

m

)
2m

)
,

where g′ is the genus of K(ū, ȳ). Taking into account that g′ ≤ 2m − 1, the following
result is obtained.

Lemma 6 The genus of K(x̄, ȳ) is at most 3m2 − 3m + 1.

Proposition 6 Assume that a �= 0 and either a3 �= −1 or b �= 1 − (a − 1)3. Then,
the curve CP is an absolutely irreducible curve defined over Fq with genus less than
or equal to 3m2 − 3m + 1.

Proof Suppose that fa,b,t,m(X, Y ) admits a non-trivial factorization

fa,b,t,m(X, Y ) = g1(X, Y )m1 · · · gs(X, Y )ms .

By construction, fa,b,t,m(x̄, ȳ) = 0 holds, and hence there exists i0 ∈ {1, . . . , s} such
that gi0(x̄, ȳ) = 0. Clearly, either degX (gi0) < 2m or degY (gi0) < 2m holds. To
get a contradiction, it is then enough to show that the extensions K(x̄, ȳ) : K(x̄) and
K(x̄, ȳ) : K(ȳ) have both degree 2m.
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From the diagram,
K(x̄, ȳ)

m

m

m

2 2

m

���������

K(ū, z̄)

K(x̄)

����

�
�

�
��

K(ū, z̄, ȳ) = K(ū, ȳ)

K(ȳ)

K(ū)
��������� ���������

K(z̄)

it follows that [K(x̄, ȳ) : K(ū)] = [K(x̄, ȳ) : K(z̄)] = 2m2; hence, both [K(x̄, ȳ) :
K(ȳ)] = 2m and [K(x̄, ȳ) : K(x̄)] = 2m hold.

Then K(x̄, ȳ) is the function field of CP , and the assertion on the genus follows
from Lemma 6. ��

3.3 a = 0

Lemma 7 The plane quartic curve QP with equation

−bt2 XY − t4 X2Y 2 + 3t2 XY − t X − tY = 0

is absolutely irreducible of genus g ≤ 1.

Proof The claim can be proved by standard arguments. Details can be found in the
preliminary version of the present paper ([2, Lemma 7]). ��

Let K(ū, z̄) be the function field of QP . Here, ū and z̄ are rational functions on QP

such that

−bt2ū z̄ − t4ū2 z̄2 + 3t2ū z̄ − t ū − t z̄ = 0.

Letγ1 be the only place of K(ū, z̄) centered at the (simple) point ofQP with coordinates
(0, 0). From the proof of Lemma 7, as given in [2], there is precisely one place of
K(ū, z̄), say γ2, centered at Y∞. As QP is left invariant by the transformation X �→ Y ,
Y �→ X , the same holds for X∞; we denote by γ3 the only place of K(ū, z̄) centered
at X∞. Arguing as in the proofs of Lemmas 2, 3, and 4, the divisors of both ū and z̄
can be computed.

Lemma 8 In K(ū, z̄),

div(ū) = γ1 + γ2 − 2γ3, div(z̄) = γ1 + γ3 − 2γ2.
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In order to prove that CP is absolutely irreducible, the same arguments as in Sect. 3.2
can be used. Let K(ū, z̄)(ȳ) be the extension of K(ū, z̄) defined by the equation ȳm = z̄.
Clearly, K(ū, z̄, ȳ) = K(ū, ȳ) holds. By Lemma 8, K(ū, ȳ) is a Kummer extension
of K(ū, z̄). As m is odd, by Lemma 8, we have that

{
rγ = 1, if γ ∈ {γ1, γ2, γ3},
rγ = m, otherwise.

By Proposition 2, the genus of K(ū, ȳ) is equal to

g′ = m(g − 1) + 3m − 1

2
, (12)

where g ∈ {0, 1} denotes the genus of QP . Also, the places of K(ū, z̄) which ramify
in the extension K(ū, ȳ) : K(ū, z̄) are precisely γ1, γ2, γ3; their ramification index
is m. For i ∈ {1, 2, 3}, let γ̄i be the only place of K(ū, ȳ) lying over γi . Taking into
account Lemma 8, the divisors of both ū and ȳ in K(ū, ȳ) can be easily computed.

Lemma 9 In K(ū, ȳ),

div(ū) = mγ̄1 + mγ̄2 − 2mγ̄3, div(ȳ) = γ̄1 + γ̄3 − 2γ̄2.

We now consider the extension K(ū, ȳ)(x̄) = K(ȳ, x̄) of K(ū, ȳ) such that x̄m = ū.
In order to apply Proposition 2, we need to determine whether the rational function ū
is an e-th power in K(ū, ȳ), for some divisor e of m.

Lemma 10 The rational function ū is not an e-th power in K(ū, ȳ) for any divisor
e > 1 of m.

Proof Assume that ū = v̄e, with e a non-trivial divisor of m. Then

div(v̄) = m

e
γ̄1 + m

e
γ̄2 − 2m

e
γ̄3.

Consider the rational function v̄ ȳi for −m
e ≤ i ≤ (m

e − 1
)
/2. The pole divisor of v̄ ȳi

is
( 2m

e − i
)
γ̄3, which shows that the Weierstrass semigroup H(γ̄3) at γ̄3 contains

3m

2e
+ 1

2
,

3m

2e
+ 3

2
, . . . ,

3m

e
,

and hence every integer greater than or equal to 3m
2e + 1

2 . As g′ is equal to the number
of gaps in H(γ̄3), we have

g′ ≤ 3m

2e
− 1

2
;

by (12), this can only happen when both e = 3 and g′ = (m − 1)/2 hold. This is
impossible as (m, 6) = 1 is assumed. ��
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Arguing as in the proofs of Lemma 6 and Proposition 6, the following result is obtained.

Proposition 7 Assume that a = 0. Then, the curve CP is an absolutely irreducible

curve defined over Fq with genus less than or equal to 3m2−3m+2
2 .

3.4 Some double covers of CP

In the three-dimensional space over K, fix an affine coordinate system (X, Y, W ) and
for any c ∈ K, c �= 0, let YP be the curve defined by

YP :
{

W 2 = c(a − t Xm)(a − tY m)

fa,b,t,m(X, Y ) = 0
.

The existence of a suitable Fq -rational point of YP will guarantee that P is bicovered
by the arc comprising the points of a coset of index m in the abelian group of the
non-singular Fq -rational points of a nodal cubic; see Sect. 4.

Proposition 8 Let a, b ∈ Fq be such that ab �= (a − 1)3. For each c ∈ Fq , c �= 0, the
space curve YP has an irreducible component defined over Fq with genus less than
or equal to 6m2 − 4m + 1.

Proof We distinguish a number of cases.
Case 1: a3 = −1 and b = 1 − (a − 1)3.
Notation here is as in Sect. 3.1. The function field of an Fq -rational irreducible

component C of CP is K(x̄, ȳ) with

a2 + t2 x̄m ȳm − at x̄m = 0.

By the results on generalized Fermat curves presented in [10], the genus of C is
(m2 − 3m + 2)/2; also, there are m places, say γ 1

1 , . . . , γ m
1 of K(x̄, ȳ) centered at

X∞, and m places, say γ 1
2 , . . . , γ m

2 of K(x̄, ȳ) centered at Y∞. Let γ 1
3 , . . . , γ m

3 denote
the places centered at the m simple affine points of C with coordinates (v, 0) with
vm = a/t . We have

div(x̄) = γ 1
2 + · · · + γ m

2 − (γ 1
1 + · · · + γ m

1 ),

div(ȳ) = γ 1
3 + · · · + γ m

3 − (γ 1
2 + · · · + γ m

2 ).

Then, it is easy to see that

div(a − t x̄m) = m(γ 1
3 + · · · + γ m

3 ) − m(γ 1
1 + · · · + γ m

1 ),

div(a − t ȳm) = m(γ 1
1 + · · · + γ m

1 ) − m(γ 1
2 + · · · + γ m

2 ),

whence

div
(
(a − t x̄m)(a − t ȳm)

) = m(γ 1
3 + · · · + γ m

3 ) − m(γ 1
2 + · · · + γ m

2 ).
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As m is odd, this yields that (a − t x̄m)(a − t ȳm) is not a square in K(x̄, ȳ). By
Proposition 3, for each c ∈ Fq , c �= 0, the space curve with equations

{
W 2 = c(a − t Xm)(a − tY m)

a2 + t2 XmY m − at Xm = 0

has an irreducible component defined over Fq with genus m2 − 2m + 1. The claim
then follows as such curve is contained in YP as well.

Case 2: a �= 0 and either a3 �= −1 or b �= 1 − (a − 1)3.
We keep the notation of Sect. 3.2. By Lemma 5, the only places of K(ū, ȳ) which

ramify in the extension K(x̄, ȳ) : K(ū, ȳ) are γ̄ 1
1 , . . . , γ̄ m

1 and γ̄ 1
5 , . . . , γ̄ m

5 ; their
common ramification index is m. Therefore, for each j = 1, . . . , 6, the ramification
index of γ j in the extension K(x̄, ȳ) over K(ū, z̄) is equal to m, and no other place

of K(ū, z̄) is ramified. For j = 1, . . . , 6, let ¯̄γ 1
j , . . . ,

¯̄γ m
j denote the places of K(x̄, ȳ)

lying over the place γ j of K(ū, z̄).
From Eqs. (6)–(11), together with Lemma 4, we deduce that in K(ū, z̄),

div(a − t z̄) = div(z̄ − a/t) = γ1 + γ5 − γ3 − γ4

holds; similarly,

div(a − t ū) = div(ū − a/t) = γ3 + γ6 − γ1 − γ2.

This implies that in K(x̄, ȳ),

div
(
(a − t x̄m)(a − t ȳm)

) = m
( m∑

i=1

( ¯̄γ i
5 + ¯̄γ i

6 − ¯̄γ i
4 − ¯̄γ i

2)
)

(13)

holds. As m is odd, this yields that (a − t x̄m)(a − t ȳm) is not a square in K(x̄, ȳ).
By Proposition 3 for each c ∈ Fq , c �= 0, the curve YP has an irreducible component
defined over Fq with genus at most 6m2 − 4m + 1.

Case 3: a = 0. We keep the notation of Sect. 3.3. The curve CP is absolutely
irreducible, and for each i ∈ {1, 2, 3}, the ramification index of γi in the extension
K(x̄, ȳ) over K(ū, z̄) is equal to m. By Lemma 8, the divisor of ū z̄ in K(ū, z̄) is
2γ1−γ2−γ3. Hence, in K(x̄, ȳ), the rational function t2 x̄m ȳm = t2ū z̄ has m zeros with
multiplicity 2m (the places of K(x̄, ȳ) lying over γ1) and 2m poles with multiplicity
m (the places lying over γ2 and γ3). As m is odd and a = 0, this yields that (a −
t x̄m)(a − t ȳm) is not a square in K(x̄, ȳ). Also, by Proposition 3, for each c ∈ Fq ,
c �= 0, the curve YP has an irreducible component defined over Fq with genus at most
3m2 − 2m + 1. ��

4 Bicovering arcs from nodal cubics

Let X be a singular plane cubic defined over Fq with a node and at least one Fq -rational
inflection, and let G denote the set of non-singular Fq -rational points of X . Then, a
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canonical equation for X is XY = (X −1)3. If the neutral element of the group (G,⊕)

is chosen to be the affine point (1, 0), then (G,⊕) is isomorphic to (F∗
q , ·) via the map

v �→ (v, (v − 1)3/v).
Let K be the subgroup of G of index m with (m, 6) = 1, and let Pt = (t, (t −1)3/t)

be a point in G\K . Then, the coset Kt = K ⊕ Pt is an arc. In order to investigate
the bicovering properties of the arc Kt it is useful to write Kt in an algebraically
parametrized form:

Kt =
{(

twm,
(twm − 1)3

twm

)
| w ∈ F

∗
q

}
.

For a point P = (a, b) in AG(2, q)\X , let fa,b,t,m(X, Y ) be as in (4).

Proposition 9 An affine point P = (a, b) in AG(2, q)\X is collinear with two distinct
points in Kt if and only if there exist x̃, ỹ ∈ F

∗
q with x̃m �= ỹm such that fa,b,t,m(x̃, ỹ) =

0.

Proof The claim follows by straightforward computation. Details can be found in the
preliminary version of the present paper ([2, Proposition 10]). ��
Proposition 10 If

q + 1 − (12m2 − 8m + 2)
√

q ≥ 8m2 + 8m + 1, (14)

then every point P in AG(2, q) off X is bicovered by Kt .

Proof We only deal with the case where a �= 0 and either a3 �= −1 or b �= 1−(a−1)3,
the proofs for the other cases being analogous. Fix a non-zero element c in Fq and let
YP be as in Proposition 8. Let K(x̄, ȳ, w̄) be the function field of YP , so that

{
w̄2 = c(a − t x̄m)(a − t ȳm)

fa,b,t,m(x̄, ȳ) = 0
.

We argue as in the proof of Theorem 4.5 in [1]. Let E be the set of places γ of
K(x̄, ȳ, w̄) for which at least one of the following holds:

(1) γ is either a zero or a pole of x̄ ;
(2) γ is either a zero or a pole of ȳ;
(3) γ is either a zero or a pole of w̄;
(4) γ is a zero of x̄m − ȳm .

We are going to show that the size of E is at most 8m2 + 8m. It has already been
noticed in the proof of Proposition 8, Case 2, that the only places of K(ū, z̄) that
ramify in K(x̄, ȳ) are the places γ j for j = 1, . . . , 6, and their common ramification
index is m. Also, by (13), the degree-2 extension K(x̄, ȳ, w̄) over K(x̄, ȳ) ramifies
precisely at the places of K(x̄, ȳ) lying over γ2, γ4, γ5, γ6. Let � j be the set of places
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of K(x̄, ȳ, w̄) lying over γ j . Note that |�1| = |�3| = 2m and |� j | = m for each j in
{2, 4, 5, 6}. From Lemma 4, we have that in K(x̄, ȳ, w̄),

div(x̄) =
∑

γ∈�4∪�5

2γ −
∑

γ∈�2

2γ −
∑

γ∈�1

γ,

div(ȳ) =
∑

γ∈�2∪�6

2γ −
∑

γ∈�4

2γ −
∑

γ∈�3

γ.

Also, by (13),

div(w̄) = m
( ∑

γ∈�5∪�6

γ −
∑

γ∈�2∪�4

γ
)
.

As regards x̄m − ȳm = ū − z̄, it is easily seen that in K(ū, z̄), the rational function ū − z̄
has at most 4 distinct zeros; hence, the set E ′ of the zeros of x̄m − ȳm in K(x̄, ȳ, w̄)

has size at most 8m2. Clearly, any place of E is contained either in E ′ or in � j for
some j = 1, . . . , 6, whence |E | ≤ 8m2 + 8m.

Our assumption on q and m, together with the Hasse-Weil bound, ensure the exis-
tence of at least 8m2 + 8m + 1 Fq -rational places of K(x̄, ȳ, w̄); hence, there exists
at least one Fq -rational place γc of K(x̄, ȳ, w̄) not in E . Let

x̃ = x̄(γc), ỹ = ȳ(γc), w̃ = w̄(γc).

Note that Pc = (x̃, ỹ) is an Fq -rational affine point of the curve with equation
fa,b,t,m(X, Y ) = 0. Therefore, by Proposition 9, P is collinear with two distinct
points

P1,c =
(

t x̃m,
(t x̃m − 1)3

t x̃m

)
, P2,c =

(
t ỹm,

(t ỹm − 1)3

t ỹm

)
∈ Kt .

If c is chosen to be a square, then P is external to P1,c P2,c; on the other hand, if c is
not a square, then P is internal to P1,c P2,c. This proves the assertion. ��

As m > 2, the coset Kt cannot bicover all the Fq -rational affine points in X .
Therefore, unions of distinct cosets need to be considered.

Proposition 11 Let Kt ′ be a coset of K such that Kt ∪ Kt ′ is an arc. Let P0 be an
Fq-rational affine point of X not belonging to Kt ∪ Kt ′ but collinear with a point of
Kt and a point of Kt ′ . If (14) holds, then P0 is bicovered by Kt ∪ Kt ′ .

Proof Let P0 = (u0, (u0 − 1)3/u0) with u0 �= 0. Note that when P ranges over Kt ,
then the point Q = �(P0 ⊕ P) is collinear with P0 and ranges over Kt ′ . Recall that
P belongs to Kt if and only if

P =
(

t xm,
(t xm − 1)3

t xm

)
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for some x ∈ F
∗
q . In this case,

Q =
( 1

u0t xm
,
(1 − u0t xm)3

(u0t xm)2

)
.

Let x̄ be a transcendental element over K. In order to determine whether P0 is bicovered
by Kt ∪ Kt ′ we need to investigate whether the following rational function is a non-
square in K(x̄):

η(x̄) = (u0 − t x̄m)
(

u0 − 1

u0t xm

)
= (u0 − t x̄m)(u2

0t x̄m − 1)

u0t x̄m
.

Let γ0 and γ∞ be the zero and the pole of x̄ in K(x̄), respectively. Note that both γ0 and
γ∞ are poles of η(x̄) of multiplicity m, since γ∞ is a pole of order m of (u0 − t x̄m),
(u2

0t x̄m − 1), and u0t x̄m ; hence, vγ∞(η(x̄)) = −m − m − (−m) = −m. Also, γ0 is
a zero of u0t x̄m of multiplicity m. As m is odd, η(x̄) is not a square in K(x̄). Then
Proposition 3 applies to cη(x̄) for each c ∈ F

∗
q . Since η(x̄) has exactly two poles, and

the number of its zeros is at most 2m, the genus of the Kummer extension K(x̄, w̄) of
K(x̄) with w̄2 = cη(x̄) is at most m.

Our assumption on q, together with the Hasse-Weil bound, yield the existence of
an Fq -rational place γc of K(x̄, w̄) which is not a zero or a pole of w̄. Let x̃ = x̄(γc),
w̃ = w̄(γc). Therefore, P0 is collinear with two distinct points

P(c) =
(

t x̃m,
(x̃m − 1)3)

t x̃m

)
∈ Kt , Q(c) =

(
1

u0t x̃m
,
(1 − u0t x̃m)3

(u0t x̃m)2

)
∈ Kt ′ .

If c is chosen to be a square, then P0 is external to P(c)Q(c); on the other hand, if c
is not a square, then P0 is internal to P(c)Q(c). ��

In order to construct bicovering arcs contained in X , the notion of a maximal-3-
independent subset of a finite abelian group G is needed, as given in [30]. A subset M
of G is said to be maximal 3-independent if

(a) x1 + x2 + x3 �= 0 for all x1, x2, x3 ∈ M , and
(b) for each y ∈ G\M there exist x1, x2 ∈ M with x1 + x2 + y = 0.

If in (b) x1 �= x2 can be assumed, then M is said to be good. Now, let M be a maximal
3-independent subset of the factor group G/K containing Kt . Then, the union S of the
cosets of K corresponding to M is a good maximal 3-independent subset of (G,⊕);
see [30, Lemma 1]. In geometrical terms, since three points in G are collinear if and
only if their sum is equal to the neutral element, S is an arc whose secants cover all
the points in G. By Propositions 10 and 11, if K is large enough with respect to q,
then S is a bicovering arc as well, and the following result holds.

Theorem 1 Let m be a proper divisor of q − 1 such that (m, 6) = 1 and (14) holds.
Let K be a subgroup of G of index m. For M a maximal 3-independent subset of the
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factor group G/K , the point set

S =
⋃

Kti ∈M

Kti

is a bicovering arc in AG(2, q) of size #M · q−1
m .

5 Complete caps from nodal cubics

We use Theorem 1, together with Proposition 1, in order to construct small complete
caps in affine spaces AG(N , q). Note that (14) holds when

√
q ≥ 6m2 − 4m + 1 +

√
36m4 − 48m3 + 36m2 + 1,

which is clearly implied by m ≤ 4√q
3.5 .

Corollary 1 Let m be a proper divisor of q − 1 such that (m, 6) = 1 and m ≤ 4√q
3.5 .

Assume that the cyclic group of order m admits a maximal 3-independent subset of
size s. Then,

(i) there exists a bicovering arc in AG(2, q) of size s(q−1)
m ;

(ii) for N ≡ 0 (mod 4), N ≥ 4, there exists a complete cap in AG(N , q) of size

s(q − 1)

m
q

N−2
2 .

In the case where a group G is the direct product of two groups G1, G2 of order at
least 4, neither of which elementary 3-abelian, there exists a maximal 3-independent
subset of G of size less than or equal to (#G1) + (#G2); see [27]. Then, Theorem 2
below follows at once from Corollary 1.

Theorem 2 Let q = ph with p > 3 a prime, and let m be a proper divisor of q − 1

such that (m, 6) = 1 and m ≤ 4√q
3.5 . Assume that m = m1m2 with (m1, m2) = 1. Then,

(i) there exists a bicovering arc in AG(2, q) of size less than or equal to

(m1 + m2)(q − 1)

m1m2
;

(ii) for N ≡ 0 (mod 4), N ≥ 4, there exists a complete cap in AG(N , q) of size less
than or equal to

(m1 + m2)(q − 1)

m1m2
q

N−2
2 .
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5.1 Comparison with previous results

We distinguish two possibilities for the integer h such that q = ph .

5.1.1 h ≤ 8

The best previously known general construction of complete caps in AG(N , q) is that
given in [4], providing complete caps of size approximately q N/2/3. It is often possible
to choose m1 and m2 as in Theorem 2 in such a way that the value (m1 + m2)/m1m2
is significantly smaller than 1/3.

This happens for instance for all q = ph such that p − 1 has a composite divisor
m < 4

√
p/3.5 with (m, 6) = 1.

For p > 3 generic, when h = 8 a possible choice for m is m = (p2 − 1)/(2s3k),
where 2s ≥ 4 is the highest power of 2 which divides p2 − 1, and similarly 3k ≥ 3 is
the highest power of 3 which divides p2 − 1.

Assume first that 3 divides p − 1, so that (3, p + 1) = 1. Then m = m1m2, where
m1 = (p − 1)/(2s1 3k) and m2 = (p + 1)/2s2 with s1 + s2 = s. Then, Theorem 2
provides complete caps in AG(N , q) of size approximately at most

(2s2 + 2s1 3k)q
N
2 − 1

8 .

If 3 divides p + 1, then a similar bound can be obtained.

5.1.2 h > 8

The smallest known complete caps in AG(N , q) have size approximately

2q N/2/p�(�h/4�−1)/2	;

see [1, Theorem 6.2]. Theorem 2 provides an improvement on such bound whenever
it is possible to choose m1 and m2 so that

(m1 + m2)/m1m2 < 2/p�(�h/4�−1)/2	. (15)

This certainly happens for instance when h ≡ 0 (mod 8) and p is large enough.
Let 2s ≥ 4 be the highest power of 2 which divides 4

√
q − 1, and similarly 3k ≥ 3 the

highest power of 3 which divides 4
√

q − 1. Then, it is easy to see that one can choose
m1 and m2 so that

m1 + m2

m1m2
∼ (2s2 + 2s1 3k)q− 1

8 ,

with s1 + s2 = s. On the other hand, 2/p�(�h/4�−1)/2	 = 2pq− 1
8 .

Another family of qs for which (15) happens is q = p12, with p ≡ 1 (mod 12)

and (p2 + 1)/2 a composite integer. Assume that (p2 + 1)/2 = v1v2 with v1, v2 >
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1 and v1 < v2. Then, choosing m1 = v1(p + 1)/2 and m2 = v2, we have that
(m1 + m2)/m1m2 < 2/p.

6 Cubics with an isolated double point

Throughout this section, we fix an element β in Fq2\Fq such that β2 ∈ Fq . Let X be
the plane cubic with equation

Y (X2 − β2) = 1.

The point Y∞ is an isolated double point with tangents X = ±β, and X∞ is an
inflection point with tangent Y = 0. We choose X∞ as the neutral element of the
abelian group (X \{Y∞},⊕) of the non-singular points of X .

6.1 Further properties of the algebraic curves of Sect. 3

Assume that m is a proper divisor of q + 1 with (m, 6) = 1. Also, t̄ is a non-zero
element in Fq2 which is not an m-th power in Fq2 .

Let A, B ∈ Fq2 be such that

AB �= (A − 1)3, A �= 0, either A3 �= −1 or B �= 1 − (A − 1)3. (16)

From the results of Sect. 3, the curve with equation f A,B,t̄,m(X, Y ) = 0 is absolutely
irreducible of genus g ≤ 3m2−3m+1. Also, the following results hold for its function
field K(x̄, ȳ) and for the subfield K(ū, z̄), where ū = x̄m and z̄ = ȳm .

Proposition 12 In K(ū, z̄), there exist six places γ j , j = 1, . . . , 6, such that

div(ū) = γ4 + γ5 − γ1 − γ2, div(z̄) = γ2 + γ6 − γ3 − γ4.

Proposition 13 For each j = 1, . . . , 6, the ramification index of γ j in the extension
K(x̄, ȳ) over K(ū, z̄) is equal to m, and no other place of K(ū, z̄) is ramified.

For j = 1, . . . , 6, let ¯̄γ 1
j , . . . ,

¯̄γ m
j denote the places of K(x̄, ȳ) lying over the place

γ j of K(ū, z̄).

Proposition 14 In K(x̄, ȳ),

div
(
(A − t̄ x̄m)(A − t̄ ȳm)

) = m

(
m∑

i=1

( ¯̄γ i
5 + ¯̄γ i

6 − ¯̄γ i
4 − ¯̄γ i

2)

)
.

In order to investigate the bicovering properties of a coset of index m in the abelian
group of the non-singular Fq -rational points of X , we need to establish whether

(A − t̄ x̄m)(A − t̄ ȳm)

(1 − t̄ x̄m)(1 − t̄ ȳm)
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is a square in K(x̄, ȳ).

Proposition 15 Assume that A and B satisfy conditions (16). For d ∈ K, d �= 0, let

η = d
(A − t̄ x̄m)(A − t̄ ȳm)

(1 − t̄ x̄m)(1 − t̄ ȳm)
.

If A �= 1, then

(i) the divisor of η is

m
m∑

i=1

( ¯̄γ i
5 + ¯̄γ i

6 + ¯̄γ i
1 + ¯̄γ i

3

)
− ¯̄D,

where ¯̄D is a divisor of degree 4m2 whose support consists of places not lying
over any place in {γ j | j = 1, . . . , 6};

(ii) the function field K(x̄, ȳ, w̄) with w̄2 = η is a Kummer extension of K(x̄, ȳ);
(iii) the genus of the function field K(x̄, ȳ, w̄) is less than or equal to 8m2 − 4m + 1.

Proof By Proposition 12, from A �= 1, it is easy to deduce that the divisor of 1 − t̄ ū
in K(ū, z̄) is

−γ1 − γ2 + D1,

where D1 is the degree-2 divisor of the zeros of 1 − t̄ ū. Similarly,

div(1 − t̄ z̄) = −γ3 − γ4 + D2,

and hence in K(ū, z̄), we have

div((1 − t̄ ū)(1 − t̄ z̄)) = −γ1 − γ2 − γ3 − γ4 + D,

where D is a divisor of degree 4 whose support is disjoint from {γi | i = 1, . . . , 6}.
Therefore, by Proposition 13,

div((1 − t̄ x̄m)(1 − t̄ ȳm)) = m
m∑

i=1

(
− ¯̄γ i

1 − ¯̄γ i
2 − ¯̄γ i

3 − ¯̄γ i
4

)
+ ¯̄D,

where ¯̄D is a divisor of degree 4m2 whose support is disjoint from the set of places
lying over {γi | i = 1, . . . , 6}. Then by Proposition 14, the divisor of η is

m
m∑

i=1

( ¯̄γ i
5 + ¯̄γ i

6 + ¯̄γ i
1 + ¯̄γ i

3) − ¯̄D.

This proves (i). As η is not a square in K(x̄, ȳ), assertion (ii) holds as well. Finally,
Proposition 2 yields (iii). ��
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6.2 Covering properties of certain subsets of X

For v ∈ K\{0, 1}, let Qv be the point on X with affine coordinates
(

v+1
v−1β,

(v−1)2

4vβ2

)
.

Also, let Q0 = Y∞ and Q1 = X∞. Such a parametrization actually defines an
isomorphism between (X \{Y∞},⊕) and the multiplicative group of K. In fact, it is
straightforward to check that for v,w ∈ K

∗,

Qv ⊕ Qw = Qvw. (17)

The (q + 1) non-singular Fq -rational points of X form a cyclic subgroup G of
(X \{Y∞},⊕). It is easily seen that

G = {Q u+β
u−β

| u ∈ Fq} ∪ {X∞}.

For a divisor m of q + 1, the group G has precisely one subgroup K of index m,
consisting of the m-th powers in G. By (17),

K = {
Q

(
u+β
u−β

)m | u ∈ Fq
} ∪ {X∞}.

Let T = Qt̄ be a point in G\K and let Kt̄ be the coset K ⊕ T . Then

Kt̄ = {
Qt̄( u+β

u−β
)m | u ∈ Fq

} ∪ {Qt̄ }. (18)

Throughout this section, a and b are fixed elements in Fq with b(a2 − β2) �= 1,
and P is the point in AG(2, q)\X with affine coordinates (a, b). We also assume that
(m, 6) = 1. Let

ga,b(X, Y ) := bX2Y 2 − (bβ2 + 1)(X2 + Y 2) − XY + a(X + Y ) + β2(bβ2 + 1),

and

La,b,t̄,m(X, Y ) = (t̄ Xm − 1)2(t̄Y m − 1)2ga,b

(
β

t̄ Xm + 1

t̄ Xm − 1
, β

t̄Y m + 1

t̄Y m − 1

)
.

Lemma 11 Let (x, y) be an affine point of the curve La,b,t̄,m(X, Y ) = 0. If

(t̄ xm − 1)(t̄ ym − 1)(xm − ym) �= 0,

then P is collinear with Qt̄xm and Qt̄ ym .

Proof The proof is a straightforward computation. For the details, see the preliminary
version of the present paper ([3, Lemma 11]). ��

The curve with equation La,b,t̄,m(X, Y ) = 0 actually belongs to the family
described in Sect. 6.1.
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Lemma 12 Let

A = a + β

a − β
, B = 8bβ3

a − β
.

Then

La,b,t̄,m(X, Y ) = −2β(a − β) f A,B,t̄,m(X, Y ),

where f A,B,t̄,m is defined as in (4).

Proof The proof is a straightforward computation. ��
Henceforth,

√−3 will denote a fixed square root of −3 in Fq2 .

Lemma 13 If

(a, b) /∈
{(

0,− 9

8β2

)
,
(
β
√−3, 0

)
,
(
−β

√−3, 0
)}

, (19)

then La,b,t̄,m(X, Y ) = 0 is an absolutely irreducible curve with genus less than or
equal to 3m2 − 3m + 1.

Proof For A, B as in Lemma 12, let CA,B,t̄,m be as in (3). By Lemma 12, the curve
La,b,t̄,m(X, Y ) = 0 is actually CA,B,t̄,m . Note that m divides q2 −1 and that each coef-
ficient of f A,B,t̄,m(X, Y ) lies in Fq2 . Then, the curve CA,B,t̄,m is absolutely irreducible
of genus g ≤ 3m2 − 3m + 1, provided that none of the following holds:

(1) AB = (A − 1)3;
(2) A = 0;
(3) A3 = −1 and B = 1 − (A − 1)3.

Case (1) cannot occur as b(a2 − β2) �= 1. Also, a ∈ Fq implies a + β �= 0, which
rules out (2). Assume then that (3) holds. Then, A3 = −1 implies a(a2 + 3β2) = 0.
From B = 1 − (A − 1)3, we deduce

b = 3
a2 + 3β2

8β2(βa − β2)
.

Then, either (a, b) = (0,− 9
8β2 ) or (a, b) = (±β

√−3, 0), a contradiction. ��

Remark 1 Let q = ps with p > 3 a prime. Then, −3 is a non-square in Fq if and only
if s is odd and p ≡ 2 (mod 3); see e.g. [11, Lemma 4.5].

In order to show that if (19) holds, then P is collinear with two points in Kt̄ , we need
to ensure the existence of a point (x, y) of the curve with equation La,b,t̄,m(X, Y ) = 0
such that Qt̄xm and Qt̄ ym are distinct points in Kt̄ . To this end, it is useful to consider
a curve which is birationally equivalent to La,b,t̄,m(X, Y ) = 0 but defined over Fq .
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Let

Ma,b,t̄,m(R, V ) := (R − β)2m(V − β)2m La,b,t̄,m

(
R + β

R − β
,

V + β

V − β

)
= 0.

Lemma 14 If (19) holds, then Ma,b,t̄,m(R, V ) = 0 is an absolutely irreducible curve
birationally equivalent to La,b,t̄,m(X, Y ) = 0.

Proof Let K(x̄, ȳ) be the function field of the curve La,b,t̄,m(X, Y ) = 0, so that
La,b,t̄,m(x̄, ȳ) = 0. Both the degrees of the extensions K(x̄, ȳ) : K(x̄) and K(x̄, ȳ) :
K(ȳ) are equal to 2m. Let

r̄ := β
x̄ + 1

x̄ − 1
, v̄ := β

ȳ + 1

ȳ − 1
.

Then Ma,b,t̄,m(r̄ , v̄) = 0. As

x̄ = r̄ + β

r̄ − β
, ȳ = v̄ + β

v̄ − β
,

we have

K(x̄, ȳ) = K(r̄ , v̄), K(x̄) = K(r̄), K(ȳ) = K(v̄).

Therefore, both the degrees of the extensions K(r̄ , v̄) : K(r̄) and K(r̄ , v̄) : K(v̄) are
equal to 2m. As the degrees of Ma,b,t̄,m(R, V ) in both R and V are also equal to 2m,
the polynomial Ma,b,t̄,m(R, V ) cannot be reducible. ��
Lemma 15 The curve with equation Ma,b,t̄,m(R, V ) = 0 is defined over Fq .

Proof We are going to show that up to a scalar factor in K
∗, the coefficients of

Ma,b,t̄,m(R, V ) lie in Fq . Consider the following polynomials in Fq2 [Z ]:

θ1(Z) = (Z + β)m + (Z − β)m, θ2(Z) = 1

β

(
(Z + β)m − (Z − β)m)

.

Let

t = β
t̄ + 1

t̄ − 1
.

As both t and β2 belong to Fq , the polynomials

h(Z) = tθ1(Z) + β2θ2(Z), l(Z) = θ1(Z) + tθ2(Z) (20)

actually lie in Fq [Z ]. Taking into account that t = β t̄+1
t̄−1 , a straightforward computation

gives

t̄

(
Z + β

Z − β

)m

=
h(Z)
l(Z)

+ β

h(Z)
l(Z)

− β
. (21)
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Whence,

t̄

(
Z + β

Z − β

)m

+ 1 = 2h(Z)

h(Z) − βl(Z)
and t̄

(
Z + β

Z − β

)m

− 1 = 2βl(Z)

h(Z) − βl(Z)
.

We then have that Ma,b,t̄,m(R, V ) coincides with

(R − β)2m(V − β)2m
(

2βl(R)

h(R) − βl(R)

)2 (
2βl(V )

h(V ) − βl(V )

)2

ga,b

(
h(R)

l(R)
,

h(V )

l(V )

)
.

From

h(Z) − βl(Z) = 2(t − β)(Z − β)m,

we obtain

Ma,b,t̄,m(R, V ) = β4

(t − β)4 l(R)2l(V )2ga,b

(
h(R)

l(R)
,

h(V )

l(V )

)
,

whence the assertion. ��
Remark 2 By the proof of Lemma 11, for any z ∈ Fq , the X -coordinate of the point
Qt̄( z+β

z−β
)m is u = β(t̄( z+β

z−β
)m + 1)/(t̄( z+β

z−β
)m − 1). Then, by (21), u = h(z)

l(z) holds, with

h(Z) and l(Z) as in (20).

Remark 3 If (r, v) is an Fq -rational affine point of the curve with equation
Ma,b,t̄,m(R, V ) = 0, such that

(
r + β

r − β

)m

�=
(

v + β

v − β

)m

,

then P = (a, b) is collinear with Qt̄( r+β
r−β

)m and Qt̄( v+β
v−β

)m , which are two distinct points

in Kt̄ by (18).

Proposition 16 Let P = (a, b) be a point in AG(2, q) off X . Assume that (19) holds.
If

q + 1 − (6m2 − 6m + 2)
√

q ≥ 4m2 + 8m + 1,

then P is collinear with two distinct points of Kt̄ .

Proof Let K(r̄ , v̄) be the function field of the curve Ma,b,t̄,m(R, V ) = 0, so that
Ma,b,t̄,m(r̄ , v̄) = 0 holds. Let E be the set of places γ of K(r̄ , v̄) for which at least
one of the following holds:

(1) γ is a pole of either r̄ or v̄;

(2) γ is a pole of either
(

r̄+β
r̄−β

)
or

(
v̄+β
v̄−β

)
;
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(3) γ is a zero of
(

r̄+β
r̄−β

)m −
(

v̄+β
v̄−β

)m
.

As both degrees of the extensions K(r̄ , v̄) : K(r̄) and K(r̄ , v̄) : K(v̄) are equal to 2m,
the number of places satisfying (1) is at most 4m. According to the proof of Lemma
14, we have that

x̄ = r̄ + β

r̄ − β
, ȳ = v̄ + β

v̄ − β

satisfy f A,B,t̄,m(x̄, ȳ) = 0. Therefore, by Propositions 12 and 13 the number places
satisfying (2) is 4m. It is easily seen that in K(ū, z̄), the rational function ū − z̄ has
at most 4 distinct zeros; hence, the set of poles of x̄m − ȳm in K(x̄, ȳ) has size less
than or equal to 4m2. This shows that E comprises at most 4m2 + 8m places. Our
assumption on q and m, together with the Hasse-Weil bound, ensure the existence of
at least 4m2 + 8m + 1 Fq -rational places of K(r̄ , v̄); hence, there exists at least one
Fq -rational place γ0 of K(r̄ , v̄) not in E . Let r̃ = r̄(γ0) and ṽ = v̄(γ0). By Remark 3,
P = (a, b) is collinear with Q

t̄( r̃+β
r̃−β

)m and Q
t̄( ṽ+β

ṽ−β
)m , which are two distinct points in

Kt̄ . ��
The following technical variant of Proposition 16 will also be needed.

Proposition 17 Let P = (a, b) be a point in AG(2, q) off X . Assume that (19) holds.
If

q + 1 − (6m2 − 6m + 2)
√

q ≥ 8m2 + 8m + 1, (22)

then P is collinear with two distinct points of Kt̄\{T }.
Proof One can argue as in the proof of Proposition 16. We need to ensure that neither
Q

t̄( r̃+β
r̃−β

)m or Q
t̄( ṽ+β

ṽ−β
)m coincides with T . As T = Qt̄ , this is equivalent to γ0 not being

a zero of either (
r̄+β
r̄−β

)m −1 or (
v̄+β
v̄−β

)m −1 in the function field K(r̄ , v̄). By Proposition
12, in K(ū, z̄), both rational functions ū − 1 and z̄ − 1 have at most two distinct zeros.
Therefore, there are at most 4m2 places that need to be ruled out. ��

If (19) is not satisfied, then P is not collinear with any two points of Kt̄ . Actually,
a stronger statement holds.

Proposition 18 Let a, b ∈ Fq be such that

(a, b) ∈
{(

0,− 9

8β2

)
,
(
β
√−3, 0

)
,
(
−β

√−3, 0
)}

.

Then, the point P = (a, b) is not collinear with any two Fq-rational affine points of
X .

Proof The claim follows by standard arguments. For the details, see the preliminary
version of the present paper ([3, Proposition 21]). ��
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In order to investigate the bicovering properties of the arc Kt̄ , according to Remarks
2 and 3, we need to consider the rational function

(
a − h(r̄)

l(r̄)

)(
a − h(v̄)

l(v̄)

)
in the function

field of Ma,b,t̄,m(R, V ) = 0.

Lemma 16 Let P = (a, b) be a point in AG(2, q) off X satisfying (19). Let K(r̄ , v̄)

be the function field of the curve Ma,b,t̄,m(R, V ) = 0, so that Ma,b,t̄,m(r̄ , v̄) = 0.

Then, the rational function
(
a − h(r̄)

l(r̄)

)(
a − h(v̄)

l(v̄)

)
is not a square in K(r̄ , v̄).

Proof Let x̄ and ȳ be as in the proof of Proposition 16, so that K(r̄ , v̄) = K(x̄, ȳ)

with f A,B,t̄,m(x̄, ȳ) = 0. By straightforward computation,

(
a − h(r̄)

l(r̄)

)(
a − h(v̄)

l(v̄)

)
= 4β2(t̄ x̄m − A)(t̄ ȳm − A)

(A − 1)2(t̄ x̄m − 1)(t̄ ȳm − 1)
.

Then, the assertion follows from Proposition 15. ��
Proposition 19 Let P = (a, b) be a point in AG(2, q) off X . Assume that (19) holds.
If

q + 1 − (16m2 − 8m + 2)
√

q ≥ 16m2 + 24m + 1, (23)

then P is bicovered by the points of Kt̄ .

Proof Let K(r̄ , v̄) be the function field of the curve Ma,b,t̄,m(R, V ) = 0, so that
Ma,b,t̄,m(r̄ , v̄) = 0. By Proposition 15 and Lemma 16, for every c ∈ F

∗
q the equation

w̄2 = c
(

a − h(r̄)

l(r̄)

)(
a − h(v̄)

l(v̄)

)

defines a Kummer extension K(r̄ , v̄, w̄) of K(r̄ , v̄) with genus less than or equal to
8m2 − 4m + 1. Let E be as in the proof of Proposition 16, and let E ′ be the set
of places of K(r̄ , v̄, w̄) that either lie over a place in E or over a zero or a pole of(
a − h(r̄)

l(r̄)

)(
a − h(v̄)

l(v̄)

)
. By Proposition 15, together with the proof of Proposition 16, an

upper bound for the size of E ′ is 16m2 + 24m. Our assumption on q and m, together
with the Hasse-Weil bound, ensure the existence of at least 16m2+24m+1 Fq -rational
places of K(r̄ , v̄, w̄); hence, there exists at least one Fq -rational place γc of K(r̄ , v̄, w̄)

not in E ′. Let

r̃ = r̄(γc), ṽ = v̄(γc), w̃ = w̄(γc).

Note that Pc = (r̃ , ṽ) is an Fq -rational affine point of the curve with equation
Ma,b,t̄,m(R, V ) = 0. Therefore, by Remark 3, P is collinear with two distinct points

P1,c = Q
t̄
(

r̃+β
r̃−β

)m , P2,c = Q
t̄
(

ṽ+β
ṽ−β

)m ∈ Kt̄ .

If c is chosen to be a square, then P is external to P1,c P2,c; on the other hand, if c is
not a square, then P is internal to P1,c P2,c. This proves the assertion. ��
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In the final part of this section, we deal with points in X .

Proposition 20 Let Kt̄ ′ be a coset of K such that Kt̄ ∪ Kt̄ ′ is an arc. For u ∈ Fq , let
Pu = (u, 1

u2−β2 ) be an Fq-rational affine point of X not belonging to Kt̄ ∪ Kt̄ ′ but
collinear with a point of Kt̄ and a point of Kt̄ ′ .

(i) If u �= 0 and (23) holds, then Pu is bicovered by Kt̄ ∪ Kt̄ ′ .
(ii) The point P0 = (0,− 1

β2 ) is not bicovered by Kt̄ ∪Kt̄ ′ . It is internal (resp. external)
to every segment cut out on Kt̄ ∪ Kt̄ ′ by a line through P0 when q ≡ 1 (mod 4)

(resp. q ≡ 3 (mod 4)).

Proof Note that when P ranges over Kt̄ , then the point Q = �(Pu ⊕ P) ranges
over Kt̄ ′ and is collinear with Pu and P . Recall that P belongs to Kt̄ if and only if
P = (e, 1

e2−β2 ) with

e = β
t̄
(

x+β
x−β

)m + 1

t̄
(

x+β
x−β

)m − 1

for some x ∈ Fq . In this case, Q = (s(e), 1
s(e)2−β2 ) with s(e) = − ue+β2

u+e .
For an element x̄ transcendental over K let

e(x̄) = β
t̄
(

x̄+β
x̄−β

)m + 1

t̄
(

x̄+β
x̄−β

)m − 1
= β t̄(x̄ + β)m + β(x̄ − β)m

t̄(x̄ + β)m − (x̄ − β)m
∈ K(x̄).

Note that e(x̄) is defined over Fq . In order to determine whether Pu is bicovered by
Kt̄ ∪ Kt̄ ′ , we need to investigate whether the following rational function is a square in
K(x̄):

η(x̄) = (u − e(x̄))(u − s(e(x̄))) = u − e(x̄)

u + e(x̄)
(u2 + 2ue(x̄) + β2).

Let γ be a zero of t̄( x̄+β
x̄−β

)m − 1 in K(x̄). Note that since (m, p) = 1, the polynomial
t Zm − 1 has no multiple roots in K[Z ]. Then, the valuation vγ (e(x̄)) of e(x̄) at γ is
−1. If in addition u �= 0, then vγ (η(x̄)) = vγ (e(x̄)) = −1, whence η(x̄) is not a
square in K(x̄) and Proposition 3 applies to cη(x̄) for each c ∈ F

∗
q . Since the number

of poles of η(x̄) is at most 2m, the genus of the Kummer extension K(x̄, w̄) of K(x̄)

with w̄2 = cη(x̄) is at most 2m − 1.
Our assumption on q, together with the Hasse-Weil bound, yield the existence of

an Fq -rational place γc of K(x̄, w̄) which is not a zero nor a pole of w̄. Let x̃ = x̄(γc),
w̃ = w̄(γc),

ẽ = β
t̄
(

x̃+β
x̃−β

)m + 1

t̄
(

x̃+β
x̃−β

)m − 1
and s(ẽ) = −uẽ + β2

u + ẽ
.
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Therefore, if u �= 0, then Pu is collinear with two distinct points

P(c) =
(

ẽ,
1

ẽ2 − β2

)
∈ Kt̄ Q(c) =

(
s(ẽ),

1

s(ẽ)2 − β2

)
∈ Kt̄ ′ .

If c is chosen to be a square, then Pu is external to P(c)Q(c); on the other hand, if c
is not a square, then Pu is internal to P(c)Q(c).

Assume now that u = 0. First note that P0 coincides with Q−1, and hence belongs
to K . Therefore, as m is odd, P0 cannot be collinear with any two points from the

same coset of K . Assume then that P0 is collinear with P =
(

e, 1
e2−β2

)
∈ Kt̄ and

Q =
(

s(e), 1
s(e)2−β2

)
∈ Kt̄ ′ . It is straightforward to check that (u − e)(u − s(e)) =

e · s(e) = −β2. Since β2 is not a square in Fq , the assertion follows from the well-
known fact that −1 is a square in Fq precisely when q ≡ 1 (mod 4). ��

7 Complete arcs and complete caps from cubics with an isolated double point

Throughout this section, q = ps with p a prime, p > 3. Also, X , G, m, K , and Kt̄
are as in Sect. 6. For direct products of abelian groups of order at least 4, an explicit
construction of good maximal 3-independent subsets was provided by Szőnyi; see e.g.
[27, Example 1.2]. If m and (q + 1)/m are coprime, such a construction applies to G.

Proposition 21 Assume that m and (q + 1)/m are coprime. Let H be the subgroup
of G of order m, so that G is the direct product of K and H. Fix two elements R ∈ K
and R′ ∈ H of order greater than 3, and let T = R′ � 2R. Then

A = Kt̄\{T }
⋃

(H ⊕ R)\{�2R′ ⊕ R}

is a good maximal 3-independent subset of G.

Let E denote the set of points P in AG(2, q)\X whose affine coordinates (a, b) do
not satisfy (19). By Remark 1, the size of E is 3 precisely when s is odd and p ≡ 2
(mod 3); otherwise, E consists of the point with coordinates (0,− 9

8β2 ).

7.1 Small complete arcs in AG(2, q)

Let A be as in Proposition 21. We use Propositions 17, 18, and 21 in order to construct

small complete arcs in Galois planes. Note that (22) is implied by m ≤ 4√q√
6

.

Theorem 3 Let q = ps with p > 3 a prime. Let m be a divisor of q + 1 such that

(m, 6) = 1 and (m,
q+1

m ) = 1. If m ≤ 4√q√
6

, then

– if either s is even or p ≡ 1 (mod 3), the set A ∪ E is a complete arc in AG(2, q)

of size m + q+1
m − 2;

– if s is odd and p ≡ 2 (mod 3), the set A∪E contains a complete arc in AG(2, q)

of size at most m + q+1
m .
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7.2 Small complete caps in AG(N , q), N ≡ 0 (mod 4)

Let M be a maximal 3-independent subset of the factor group G/K containing Kt̄ .
Then, the union S of the cosets of K corresponding to M is a good maximal 3-
independent subset of G; see [30, Lemma 1]. It has already been noticed that S is an
arc whose secants cover all the points in G. Note also that K is disjoint from S, and
hence the point P0 = (0,− 1

β2 ) does not belong to S.
If either s is even or p ≡ 1 (mod 3), by Propositions 18, 19, and 20, then S ∪

{(0,− 9
8β2 )} is an almost bicovering arc with center P0, provided that m is small

enough with respect to q.

Theorem 4 Let q = ps with p > 3 a prime, and assume that either s is even or p ≡ 1
(mod 3). Let m be a proper divisor of q + 1 such that (m, 6) = 1 and (23) holds. Let
K be the subgroup of G of index m. For M a maximal 3-independent subset of the
factor group G/K , the point set

B =
⎛
⎝ ⋃

Kt̄i
∈M

Kt̄i

⎞
⎠⋃

E (24)

is an almost bicovering arc in AG(2, q) with center P0 = (0,− 1
β2 ). The size of B is

#M · q+1
m + 1.

When s is odd and p ≡ 2 (mod 3), a further condition on M is needed in order to
ensure that B as in (24) is an almost bicovering arc. Note that by Proposition 18, there
is precisely one point in G collinear with any two points in E .

Theorem 5 Let q = ps with p > 3 a prime. Assume that s is odd and p ≡ 2
(mod 3). Let m be a proper divisor of q + 1 such that (m, 6) = 1 and (23) holds.
Let K be the subgroup of G of index m. Let Q1 denote the only point in G collinear
with (0,− 9

8β2 ) and (β
√−3, 0); similarly, let Q2 ∈ G be collinear with (0,− 9

8β2 )

and (−β
√−3, 0). For M a maximal 3-independent subset of the factor group G/K

not containing K ⊕ Q1 nor K ⊕ Q2, the point set

B =
⎛
⎝ ⋃

Kt̄i
∈M

Kt̄i

⎞
⎠ ⋃

E

is an almost bicovering arc in AG(2, q) with center P0 = (0,− 1
β2 ). The size of B is

#M · q+1
m + 3.

We use Theorems 4 and 5, together with Proposition 1, in order to construct small
complete caps in affine spaces AG(N , q). Assume that m = m1m2 with (m1, m2) = 1.
Then, the factor group G/K is the direct product of two subgroups of order m1 > 4
and m2 > 4, and the aforementioned construction by Szőnyi [27, Example 1.2] of a
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maximal 3-independent set M of size m1 + m2 − 3 applies. It is easily seen that M
can be chosen in such a way that it does not contain any two fixed cosets of K . As

(23) is implied by m ≤ 4√q
4 , the following result holds.

Theorem 6 Let q = ph with p > 3 a prime, and let m be a proper divisor of q + 1

such that (m, 6) = 1 and m ≤ 4√q
4 . Assume that m = m1m2 with (m1, m2) = 1. Then

for N ≡ 0 (mod 4), N ≥ 4, there exists a complete cap in AG(N , q) of size less than
or equal to

(
(m1 + m2 − 3) · q + 1

m
+ 3

)
q

N−2
2 .

8 The case where m is a prime

By Corollary 1, Theorem 4, and Theorem 5, when q is large enough with respect to
m, bicovering arcs of size roughly sq/m can be constructed provided that a maximal-
3-independent subset of size s in the cyclic group Cm of order m exists. In both
Theorems 2 and 6, m is assumed to be a composite integer in order to apply the explicit
construction of maximal 3-independent subsets provided by Szőnyi [27, Example 1.2].
As to the prime case, it was shown in [30] that if m > 7 is a prime, then there exists
a maximal 3-independent subset of size s ≤ (m + 1)/3 in Cm ; this gives rise to
bicovering arcs of size less than q/3 and complete caps of size less than 1

3 q N/2. In
[15], maximal sets M in Cm with the property that x1 + x2 + x3 �= 0 for pairwise
distinct x1, x2, x3 ∈ M are constructed. The following result based on [15, Theorem
3.4] can be proved by straightforward computation.

Proposition 22 Let m > 3 be a prime. For an odd divisor m′ ≥ 7 of m + 5, let
k = (m + 5)/m′ > 4. Then

{1, . . . , k − 2} ∪ {lk − 2 | l = 2, . . . , m′ − 2} ∪ {lk − 3 | l = 2, . . . ,
m′ − 1

2
}

is a maximal-3-independent subset of the cyclic group Z/(m).

Now let m > 3 be a prime divisor of q2 − 1 such that m ≤ 4√q
4 , and assume that

m + 5 = m1m2 for m1 ≥ 7 odd and m2 > 4. Then, by Proposition 22, together with
Corollary 1, Theorem 4, and Theorem 5, complete caps in AG(N , q) with approxi-
mately

(
m2 + (3/2)m1

m1m2

)
q N/2

points can be constructed. This shows that, apart from the constant 3/2, Theorems 2
and 6 remain valid for m a prime, and m1, m2 suitable divisors of m + 5.
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27. Szőnyi, T.: Arcs in cubic curves and 3-independent subsets of abelian groups. In: Combinatorics (Eger,

1987), Colloq. Math. Soc. János Bolyai, vol 52, pp. 499–508. North-Holland, Amsterdam (1988)
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