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Abstract

Let{R;, 0 <t < 1} be a symmetria-stable Riemann—Liouville process with Hurst paramétes 0. Consider a translation
invariant, 8-self-similar, andp-pseudo-additive functional semi-norm ||. We show that ifH > 8 +1/p andy = (H — 8 —
1/p)~1 then

lime? logP[||R| < e]=—-K e [—00, 0),
8w€ gP[IIR] < €] [—00,0)

with K finite in the Gaussian case= 2. If « < 2, we prove thafC is finite whenR is continuous and? > 8+ 1/p + 1/c.
We also show that under the above assumptions,

lime” logP[||X|| < e] = -K € (=00, 0),
lim " log [I1X] <e] (—00,0)

whereX is the lineara-stable fractional motion with Hurst parametére (0, 1) (if « = 2, thenX is the classical fractional
Brownian motion). These general results cover many cases previously studied in the literature, and also prove the existence of
new small deviation constants, both in Gaussian and non-Gaussian frameworks.

0 2004 Elsevier SAS. All rights reserved.

Résumé
Soit{R;, 0<t < 1} un processus de Riemann-Liouvitestable symétrique avec parametre de Hifst 0. Considérons

une semi-norme fonctionnellg- || invariante par translatiorg-autosimilaire etp-pseudo-additive. Nous montrons que si
H>B+1/pety=(H—p—1/p) Lalors

lime? logP[||R|| < ¢] = —K € [—00,0),
lim " log [IR] <e] € [—o0,0)
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avecKk finie dans le cas gaussien= 2. Lorsquex < 2, nous montrons qu€ est finie quandR est continueH > g+ 1/p +
1/a. Nous montrons aussi que sous ces hypothéses

lim ¥ logP[[| X|| < &] = —K € (—00,0),

el0
ou X est le mouvement fractionnaire linéairestable avec parameétre de Hufste (0, 1) (lorsquex = 2, X est le mouvement
brownien fractionnaire usuel). Ces résultats généraux recouvrent de nombreux cas précédemment étudiés dans la littérature ¢

prouvent I'existence de nouvelles constantes de petites déviations, aussi bien dans le cadre gaussien que non gaussien.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Let X be a random process whose sample paths belong to some functional norme@’spadp. The inves-
tigation of the small deviations (or small ball probabilities)dfleals with the asymptotics of

PlIIXII <e]

whene | 0, and has proved to be a difficult problem with increasing number of applications in Probability, Analy-
sis, Complexity. . etc. We refer to the recent surveys [26,27] for a detailed account on this subject.

In the literature, this problem is usually studied for a particular class of processes and under a particular norm.
It remains a great challenge to find some principle describing small deviations for general classes of processes anc
norms, rather than investigate the problem case by case.

The unique successful attempt in this direction was made by W. Stolz [41,42], who obtained estimates

—o0 < |im¢i51f e’ logP[ || X || < e] < limsupe” logP[ || X|| < ¢] <O, (1)
€ el0

where{X,;, 0<t <1} is a Brownian motion (or more generally a continuous Gaussian process with covariance
function similar to that of fractional Brownian motion), apd finite positive parameter depending on the behavior

of the (semi-)norm) - || on linear combinations of Schauder functions. A lot of classical semi-norms fell into Stolz’s
scopeL ,-norms, Holder and Sobolev semi-norms, Besov nornedc., and his estimates provided a general point

of view on many previously studied situations (see the references quoted in [41,42]).

The next important issue is tlexistence of the limin (1), and this is the matter of the present paper. Our main
result says that if| - || is a translation invariant3-self-similar andp-superadditive functional semi-norm — see
Definition 1 for more details about these notions, &Rd 0 < ¢ < 1} is a symmetriex-stable Riemann-Liouville
process with Hurst parametéfr > 8 + 1/p (R can be viewed as a fractionally integrated symmetritable Lévy
process, see Section 2 for a precise definition), then

i y <egl=_ _
E%s logP[||R|| < &] =—K €[—00,0) 2

with the ratey = (H — 8 —1/p)~L. From the technical point of view, the main ingredient of the proof is a stochastic
superadditive inequality which is based upon the extrapolation-homogendityani is then easy to combine with
an exponential Tauberian theorem and the standard subadditivity arguments.

Our framework has two secondary, but non-negligible advantages with respect tdpt2{zaussiarstable
processes are included, as well as smooth Gaussian ones-tikges integrated Brownian motion.
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A special effort is needed to prove that the consténn (2) is finite. In order to get the suitable lower bound
on the small deviation probabilities, we use roughly the same method as in [41,42], except that we deddmpose
along Daubechies’ wavelet bases, since Schauder system is hot smooth enoudh bdemes too large.

In the last part of this paper, we extend the above results to a class of self-similar processes with long range
dependence, the so-called unilateral linear fractional stable motions. These processes can be viewed as a possib
generalization of fractional Brownian motion with an underlying stable noise. Thanks to a nice argument essentially
due to Li and Linde [23], the problem is reduced to a study of the Schauder decomposition of the associated long
memory process.

We conclude this article with a brief survey of concrete results. It seems that our theorems contain everything
that is known about the existence of finite small deviation constants for continuous fractional processes under
translation-invariant semi-norms. Last but not least, some constants appearing in our results seem to be new, bott
in Gaussian and non-Gaussian situations.

Still, a major drawback of the above wavelet methods is that they exclude discontinuous processes. As a rule,
proving lower bound probabilities for processes with jumps requires completely different discretization techniques
[32,44], and we have no idea how to adapt our approach to this case.

2. Preliminaries
2.1. Parametrization(s, p)-semi-norms

Let 7 be the set of all closed bounded intervalskof ConsiderF a linear space of functions frofR to R
and, for eachl € Z, let F; be a linear space of functions frohto R such thatf; € F; for every f € F, where f;
stands for the restriction of to /.

We define a semi-norm - || on F as a family{|| - ||;, I € Z} of functionals mapping?; to R such that
IAfIlr=1Afllrand]l f+gllr < I fll7+liglls foreveryh e R, f, g € F;. We will use the notatiof 11, = || f7 11
forevery f € F, I € Z. In the remainder of this paper we will assume thaf satisfies the following assumptions,
which are verified by all the classical semi-norms:

(A) -l <+ 1ls foreveryl, J € T such thatl c J. (Contractivity)
B) I flli—c=11fC¢—c)|; foreveryf e F, I € Z andc € R. (Translation-invariance)

Definition 1. Let 8 € R, p € (0, +oco] and|| - | be a contractive and translation-invariant semi-nornfFoiWe say
that|| - || is anupper(B, p)-semi-nornif it satisfies the following properties:

©) IfeH = Pl fll; forevery f € F, I € T andc > 0. (8-self-similarity)
(D) Foreveryag<---<a,eRandf e F

{nfn[ao,an] AN o+ NG o pYP i p <o,

Z(
. -superadditivit
1 f la.a1 = sun(llfllf;o‘aﬂ, cees Ilfllf;n_l,an]) if p=+o0. (p-sup )
In the following we will denote byJ(8, p) the set of uppets, p)-semi-norms, and sét for the union of all
U(B, p)’s.

Remarks. (a) Of course it suffices to take= 2 in the definition ofp-superadditivity. We wrote the property in
this form in order to make it symmetric with thesubadditivity and the corresponding lowg, p)-semi-norms,
which will appear just below.
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(b) From the inequalitya + b)? > a? + b? for everya, b > 0 andq > 1, it follows thatU(B, p) c U(B, p’)
whenevery’ > p.

(c) In the definition of uppe(s, p)-semi-norm, one can ask for the possible values of the paranmgeterd p.
By self-similarity and translation-invariance, it is easy to see thatgtF and O< ||1||[0,1] < co (Wherel stands
for the unit function), then necessarpy+ 1/ p < 0. However, the examples (c)—(f) below show that this inequality
is no longer true wheneveit||;o,1; = 0.

We stress that most of the usual semi-norms belond.t the following examples we always assume that
F={fIIfll1 <oo, 1 €I}

Examples. (a) The supremum semi-norm, which is given by

Ifllr = Suldf(t)|

for everyl € Z, belongs tdJ(0, +00).
(b) TheL ,-semi-norm,p > 1, which is given by

1/p
= </|f(s>|”ds)
1

for everyl € Z, belongs tdJ(—1/p, p).
(c) Then-Hoélder semi-norm, & n < 1, which is given by
Lf (1) = f(s)]
I fllr= sup 0= 7@l
s<tel |t - S|)7
for every I € Z, belongs toU(n, +00). In particular, the oscillation semi-norny & 0) belongs toU(0, 4+o0).
Similarly, the Calder6n—Zygmund semi-norm
12/ ((t +5)/2) — f(s) = f(D)]
I fllr = sup A / / !
s<tel (t—ys)
belongs taJ(1, +00), and then-Lipschitz semi-normy > 1, which is given by

@) — fM(s)
17y = sup L0 =S W]
s<tel |t - S|77
wheren < n <n + 1 (and by its Calderén—Zygmund analogueijee n), belongs tdJ(n, +00).
(d) The (strong)p-variation semi-normp > 1, which is given by

1/p
||f||1=< sup Z|f<rl>— (ti— 1>|”)

p<--<the l 1

for everyl € Z, belongs tdJ(0, p).
(e) The(n, p)-Sobolev semi-normp > 1 and 0< n + 1/p < 1, which is given by

1f @) = f(s) e
1= (//( HOTN) dsar)
foreveryl € Z, belongs tdJ(n — 1/p, p).
(f) The (n, p, g)-Besov semi-norny > 0 andp, ¢ > 1, which is given by

1]
D)
171 = (/(w"’l,(nt f)) 7t>
0
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for everyl € Z, where

1/p
wp.1(t, f) = SUD</|f(x—h) —f(x)|pdx) ,
I

Ih|<t

In={xel|x—hel}and|l| stands for the Lebesgue measurd pbelongs taJ(n — 1/p, +o0). Notice that
the usualn, p, ¢)-Besov semi-norm, where the,-semi-norm is added in the definition (see e.qg. [13]), dusts
belong toU sinceL ,-semi-norms have a different self-similarity index.

It follows from Remark (b) above that the concept of upggrp)-semi-norm is not sharp enough for our further
purposes. Namely, the parametewhich appears in our main Theorem 4 is not uniquely defined. Therefore, we
need some kind of inverse property to (D), in order to work with a familgisfoint sets of semi-norms. L@t}}
(resp.C}'() denote the class of all-times continuously differentiable (resp. continuous) functions with compact
support. For technical reasons, we make the following assumptiofis jan

(E) C% C F. (¢-smooth-finiteness)
(F) Foreveryl € Z andf, f, € Fi,

fu— funiformlyonl = | f|l; <limsup| f,ll;. (Lower semi-continuity)
Remark. Clearly, ¢-smooth-finiteness yieldsf ||; < +oo for every f of classCt and everyl € 7.

Semi-continuity and-smooth-finiteness (with appropriatedepending on the semi-norm) are verified by all
classical semi-norms.

Definition 2. Let 8 € R, p € (0, +00] and|| - || be a contractive, translation-invariaftsmooth-finite, lower semi-
continuous ang-self-similar semi-norm or¥. We say that| - || is alower (8, p)-semi-normif it satisfies the
following property:

(G) There existg”, > 0 such that for everyp < --- <a, e Randf e Cf; verifying f(ap) =--- = f(ay) =0,

1 Ntag.ant < CopUlf I apy + -+ NFNG, 0P i p <00, o
dn , n—1,0n . -superadditivit
{ 17 Nt < Coo SURFllaguazts - I F il sy i p=-oo. PSP Y)

In the following we will denote by (8, p) the set of lower 8, p)-semi-norms, and sét for the union of the
L (B, p)'s. We will say that] - || is a(B, p)-semi-nornif it belongs toN(8, p) = U(B, p) "L (B, p) and analogously
we will setN for the union ofN(B, p)’s.

Remarks. (a) Since the constar@, may be larger than 1, it is not enough to take= 2 in the definition of
p-subadditivity, contrary tgp-superadditivity.

(b) From the inequalitfag + - - - +a,)? < ad + - -- +aj for everya, ..., a, >0 and 0< g < 1, it follows that
L(B, p) CL(B, p') wheneverp’ < p.

(c) Again, one can ask for the possible values of the paramgtarsd p in the definition of a lowel(p, 8)-
semi-norm. By self-similarity and translation-invariance, it is easy to see that when the inequalities in (G) hold for
the functionf = 1 and for all partitions (assuming of course that 7 ) and if 0< ||1l;0,1) < oo, then necessarily
B + 1/p > 0. This inequality is actually true for all available examples, but we were unable to prove it in full
generality.

(d) The supplementary assumptigitag) = --- = f(a,) = 0 makes sense, because in some cassab-
additivity inequalities fail on more general functions (e.g. fevariation norm and for Hélder norm).
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Notice that each of the above examples (a)—(d) belonds tand hence tdN. Actually in each case we had
chosen the smallest possible parametdre. we could have writtefi- || e L(8, p) aswell ag| - || e U(B, p). This
fact is trivial for examples (a) and (b) where we can ta@ke= 1. In examples (c) and (d) we can takg, = 2 and
C, =217 (as soon ap > 1), respectively. (Notice that in both cases the condifitn) = - -- = f(a,) =0is
essential.)

However,(n, p, ¢)-Besov andn, p)-Sobolev semi-norms do not belongltg because in these cases the con-
stantC,, may depend on the subdivisiag < - - - < a,. These two examples are important in certain contexts, and
this is why we would like to introduce a weaker definition, which will be given in terms of the evaluatipn|of
along specific families of functions.

If ¢ e Nandy e C%, we introduced = {Yjn, n€Z, j=> 0}, the two-parametric subset Gj; defined by

Yin(t) =¥ (2 (t — n))

foreveryneZ, j >0, reR.

Definition 3. Let 8 € R, p € (0, +o0] and|| - | be a lower semi-continuoug;smooth-finite semi-norm of. We
say that| - | is alower (8, p)-semi-norm in the wide senwéth respect ta/, if it satisfies the following property:

(é) There existL, > 0 such that for every > 0, arbitraryxy, ..., x,, € R, and arbitraryny, ..., n, € N such
that the supports of the functiogg; ,,, 1 <i <m} have disjoint interiors,

pzﬁfgzg”zl lx; |)HYPif p <400,

//\ //\

I Y7 XV jn; 0,1
[ Zm 1Xi Ip]n, ”[0 1]

Similarly we will denote by (8, p) the set of lowek 8, p)-semi-norms in the wide sense, andiséor the union
of theL (B, p)’s. Analogously, we defindl(8, p) = U(B, p) N L(B, p) and seN for the union of theN (B, p)’s.

Remarks. (a) In the sequely will be either a family of sufficiently smooth wavelet functions, or the Schauder
system or{0, 1].

(b) Condition G) means, in particular, that (G) holds for linear combinations of specific functions with the same
“frequency”, and it is a well-known condition to obtain lower bounds for small deviation probabilities in a Gaussian
framework [41,42]. Actually we will use it for the same purposes, but sometimes in a more general context, see
Section 4.

(c) At first sight, neither translation-invariance nor self-similarity are required in the definitidn(®fp).
Actually, working with a specific family of functions allows us to combine these necessary properties in the single
inequality given by G).

(d) Again we can prove that(B, p) Cc L (B, p’) whenever’ < p.

(e) It is a bit tedious but not difficult to see that the p, ¢)-Besov semi-norm belongs (5, +0c) and that
the (1, p, ¢)-Sobolev semi-norm belongs M(n — 1/ p, p), both with respect to the Schauder system.

Notation. In the following we will mainly consider functions restricted[@ 1]. By minor abuse of notations, and
for the sake of brevity, we will sétf || = || f ll;0,1) for every f € F, although such statements liki-“|| € U(B, p)”
or“| -]l e L(B, p)” will always refer to the family| - || ={l| - ll;, I € Z}. By C we will always mean a positive
finite constant independent of the involved parameters, and whose value may change from line to line.



M. Lifshits, T. Simon / Ann. |. H. Poincaré — PR 41 (2005) 725-752 731

2.2. Riemann-Liouville processes and their associated linear fractional stable motions

Let{Z;, t > 0} be a symmetriee-stable process with index e (0, 2], i.e. Z is a Lévy process whose charac-
teristic function is given by

E[eiAZ,] — e—l‘Ma

for everyr > 0 anda € R. It is well known and easy to see that for evéfy= 0 the following stochastic integral:
t
R = /(r —s)Yeqz,,
0

is well-defined for every > 0. We setR}! = 0 and cal{R}?, > 0} the Riemann—Liouville procegg abridged
form: RLP) with Hurst parametef. This latter terminology is motivated by the followirg-self-similarity prop-
erty of RY: for everyc > 0

(RE 1 >0y L (cHRH t >0}

ct?

When no confusion is possible, we will drop the subscHpand writeR = R* for the sake of brevity. Notice that
R has no stationary increments, unlgés= 1/«. Instead of thisR has some kind of extrapolation-homogeneity,
which will be important in the sequel: namely, if we set

t
Ru,= f(t — Y 7,
a

for everyt > a > 0, then the following equality in law holds:

d
{Ra,a—Ha t> 0} = {Rh > O}

Moreover, R has an equally important independence property‘?ai,ff = R; — R4, then for everya > 0 the
processe$R, .+, t > 0} and {Iéa,uﬂ, t > 0} are independent. These three properties follow easily from self-
similarity, stationarity and independence of the increments.of

Of course,Z itself is an RLP with Hurst parametéf = 1/«. Notice also that up to normalization constants,
the family of Riemann-Liouville processes

{RY, H >max0, 1/a — 1}}

is closed with respect to time-integration. In particular, thimes integrated Brownian motion is an RLP with
parameters =2 andH =m + 1/2.

The Riemann-Liouville process is closely relateo{Kf, t > 0}, the so-calledinear stable fractional mo-
tion (in abridged form: LFSM) with Hurst parametéf. X can be defined through the following (independent)
decompositionx” = R# + M# whereM{! =0 and

+00
MtH = / ((t + )1 _ sH_l/a) dZ,
0
for everyr > 0, Z being an independent copy &f We callM*! thelong memory procesin abridged form: LMP)
associated t& 7. We use the notion of “long memory” in a non-standard sense here (long memory is nowadays

commonly related to a certain range Hf), since it perfectly reflects the unboundedness of the support of the
corresponding kernel, contrary to that of RLP.
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Notice that the stochastic integral definibgf? diverges a.s. atoo as soon a#f > 1. Hence X can be defined
only for H € (0, 1). Again, when no confusion is possible, we will drop the subsddignd writeX = X (resp.
M = M™) for the sake of brevity.

X is alsoH -self-similar and its increments are stationary:

(Xopr— Xy, 1 2002 (X, 120}

for everys > 0, andX is a so-calledd -sssi procesdNe refer to the monographs [18,36] for an extensive account on
these latter processes. Notice that in the Gaussianacase, X coincides with the canonical fractional Brownian
motion, up to some numerical factor (see Proposition 7.2.6 in [36]). Moreover, an alternative definikioraof
then be given through the following (“well-balanced”) decomposition:

+00
X, = f(|r+s|H—1/2—|s|H—1/2)B(ds>,

—0o0
whereB is the usual white noise (see Exercise 7.2 in [36]). When2, the corresponding integral
+00
%, = / (1t + s = — || 1Y) 7 (as) @3)

—0o0

also makes sense, whereis the so-called symmetrie-stable noise. Howevel is no more equivalent t&
(see Theorem 7.4.5 in [36]). Actually, many other “bilaterAl*sssix-stable processes can be constructed, which
are all non-equivalent except in the Gaussian case (see Definition 7.4.1 and Theorem 7.4.5 in [36]). Hence, our
unilateral LFSM process is jusine possible stable generalization of fractional Brownian motion. However, we
will restrict our study to this unilateral process, even though our results can probably be adapted to some other
situations.
Notice that the proces¥ is smoothon (0, +00), so thatX and R exhibit similar local properties. In particular
it is well known (see Chapters 9—-12 in [36]) that(resp.X) admits a continuous version if and only if

a=2 or H=>1/a.

In Section 6 we will give some other local propertiesfand X, related to the examples of semi-norms (a)—
(f) listed above. We finally refer to [30] for a more thorough comparison betweamd X, in the context of
econometric applications.

3. Existence of the small deviation constant for RLP
We can now state the main result of this paper.
Theorem 4.Let || - | € U(B, p) and R be an RLP with Hurst parametdif. Assume thatl > 8 + 1/p and set

y = (H — B —1/p)~L. Then there exist& € (0, +o0] such that
lime¥ logP[||R| <e|=-K. 4
lim &7 log [IRI <e] 4)

Remarks. (a) It is interesting to note that the stability indexdoes not directly show up in the expression of the
small deviation rate.

(b) This result says nothing about the finiteness of the conktamhich is of course a very important feature. To
this aim, one needs to show a lower bound for small deviation probabilities with appropriate order — see Section 4.
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While a priori nothing indicates that the orderof small deviation probabilities we propose in Theorem 4 is the
right one, it is indeed correct fall available examples, as soonas chosen as small as possible — see Section 6.

The next two paragraphs are devoted to the proof of Theorem 4 and we fix once and for all aggupper
semi-norm|| - ||, and an RLPR with Hurst parameteH > 8 + 1/p. We begin with proving a kind of stochastic
superadditivity property, which will be our crucial argument.

3.1. Stochastic superadditivity

Let X andY be two real-valued random variables. We say ttia$ stochastically largethanY if and only if
P{X <r}<P{Y <r}
for everyr € R, and we write in this cas&X > Y. If X andY are positive, then clearl¥ > Y entails that
Elexp—AX] < E[exp—AY]
foreveryr >0
Proposition 5. Suppose thap < co. Let R1, R be two independent copies Bfand sely = p(H — 8) > 0. Then
for everya,b >0
(@a+D)?IR|" = a||R1|l” + b7 R2| .

Proof. Fix a,b > 0 and set =a + b. We first use the-superadditivity ofj| - || and get
IR ey = IR o + IRIE,
By self-similarity for both|| - || andR, we also have
d _ _
RN ¢ = e R(e™ )1l oy = " PP IRl 1 = 7 IRI1P
and, similarly,
IR Za?ReI? and [RIf ;< b7 Rell”.
Putting everything together, we now see that it is enough to show
IR oy + IRIE, ¢ = IR oy + 1RGN, - ()

because of the translation-invariance||of|| and the extrapolation-homogeneity Bf Here and throughout this
section,R, denotes the proce$®, ., ¢ > a}. For everya > 0, setG, for theo-field generated byZ;, 0 < s < a}
andP, for the conditional probability with respect &,. We clearly have

PIIR{g,0) + RN ) < 7] =E[PallIRIlf; o <7 = [IRIlfg 4]

=E[Pa[IRa + Rallf, o <7 = IRIy 4]]

for everyr € R. SinceR, is a conditionally Gaussian process undigr(see [36, pp. 153-154]), we can apply
Anderson’s inequality undé?, and get (recall thak,, is G,-measurable)

Pa[”Ra + Ra”Fa,C] <r— ”R”FO,a]] < Pa[”Ra”fzz’C] <r— ”R”[po,a]]'
Now, sincer, is independent of,, we can average backwards and obtain
]P’[IIRII 0.a1 1 IIRII (a.c] S r] < IP’[IIRIIFO’L,] + IIRaIIf;,C] <r]

for everyr € R, as desired for (5). O
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The next proposition covers the simpler situation wipea oo, and follows mainly the outline of Theorem 2.1
in [23].

Proposition 6. Suppose thap = +oo. Let R1, R2 be two independent copies Bfand sety = H — 8 > 0. Then
for everya,b >0

(@+b)7 R = max{al || Rall; b7||Rz]l}.

Proof. We need to show that for alle R
P[(a+b)7|R| <r]<Pla?| R <r]P[6?|RI| <r].
Setc = a + b. Again we use theo-superadditivity ofj| - || and get
IRllfo.c1 > sup{ I Rllo.as R llfac1}-
Therefore,
P[IIRl[0.c1 < r] <P[IRI0.a1 <7, I Rllfa,e1 < 7] =E[l{uRulo_ﬂJgr}Pa[IIRll[a,c] <rl]

for everyr € R, whereP, is defined as above. By Anderson’s inequality, independen&g of G,, extrapolation-
homogeneity of® and translation-invariance ¢f- ||, we obtain

Pa[lIRllja.c1 < 7] =Pa[lRa + Rallja,e] < 7] < Pa[llRallfa,c1 < r] =P[R0, < ]
Averaging backwards, we get
P(IIRl0.c; <] <P[lIR0.a1 < 7]|P[IIRIlj0.67 < 7]
for everyr € R. Now this yields the desired inequality
Plc?|IR| < r] <P[a?|R| < r]P[b||RI| <],
since by self-similarity ofR and|| - ||
P[IRlj0.; <r]=P[?|R]| <]
foreveryr >0andreR. O
We are now ready to proceed to the proof of Theorem 4.
3.2. Proof of Theorem 4
Again we first consider the cage < co. Proposition 5 yields the following decisive inequality for Laplace
transforms:
E[exp—(a +b)?||R|”] < E[exp—a’ || R||”]E[exp—b? | R|"]
for everya, b > 0 andg = p(H — B) as above. This entails that the functiéndefined by
@ (h) =logE[exp—h?||R| "]

for everyh > 0, is a continuous negative function which satisfieg: + b) < @ (a) + @ (b) for everya, b > 0.
By the standard subadditivity argument, we obtain

im 2 _ e $W _

h—oco h h=0 h —C&l=00.0
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and, returning to the Laplace transform,
lim aY4logE[exp—A|R|”] = —C.
A—+00
Notice thatg > 1 by assumption. Hence we can apply de Bruijn’s exponential Tauberian theorem (see Theo-
rem 4.12.9 in [6], or Theorem 3.5 in [26] for a more comfortable formulation), which yields

lim Y@=V logP[|IR||” < &] = —K = —(g — 1)(C/q)?/ 47D,
e—0

and finally
lim &7 logP[[| Rl < ¢] = =K € [=00,0)
£—>
with y = (H — g — 1/ p)~L. This completes the proof of Theorem 4 wher: +o0.

In the casep = +o00 we do not even need Laplace transform, since it follows directly from Proposition 6 that
the function

@ (h) =logP[||R|| < hP~ "]
is subadditive. Again this entails

e o)
hILmoo h _;:gfo ho K el=00.0,

and we obtain

lim &7 logP[[| Rl < ¢] = =K € [=00,0)
E—>

with y = (H — B)~1, as desired whep = +00. O

4. Lower bounds: finiteness of the constant for continuous RLP

In this section we obtain a suitable lower bound for small deviation probabilities which will allow us to prove,
under certain conditions, that the const&hfrom Theorem 4 is actually finite whenevgr || € L(8, p) as well.
Unfortunately, our method is only efficient in tkentinuouscase, i.e. when

a=2 or H>1/a.

An explanation for this understandable, but important restrictiorRowill be given later. Our result reads as
follows:

Theorem 7.Let || - || € L(B, p) and R be a continuousy-stable RLP with Hurst parameteff. Suppose that
H>pg+1/pifa=2andH >B+1/p+1/aif ¢ <2. Then

Iir;njgﬁ e’ logP[ I R|| < &] > —o0, (6)
withy =(H-8-1/p)~ L

Combining Theorem 4 and Theorem 7 yields readily the following fairly general small deviation theorem for
continuous Riemann-Liouville processes:
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Corollary 8. Let || - || € N(8, p) and R be a continuousx-stable RLP with Hurst parametelf. Suppose that
H>pg+1/pifa=2andH > 8+ 1/p+ 1/a if « < 2. Then there exist§ e (0, oco) such that

Ii?g) e’ logP[||R]| < &] = -k,
withy =(H — g —1/p)~ L.

We stress that if the parametgris not too large, more preciselyH < 2, then it is possible to obtain the lower
bound for small deviation probabilities under a weaker assumption [thdne L (8, p). Here we just need that
Il -1 € L(B, p) with respect to

U= {y,=v@t-—n+1),1<n<2/, j>0},

the Schauder system generated by the triangular fungtion= 1j91;(r)(1 — |2t — 1|).
Notice that on each levgl the supports of the functiong;, have disjoint interiors, so that hejte || LB, p)
w.r.t. & simply means that

2 2/ 1/p
D xuWn| < Cp2Y <Z |xn|P)
n=1 n=1

for p < 400, with an obvious modification fop = co. We have an analogous result to Theorem 7:

Theorem 9.Let| - || € L(B, p) wW.r.t. Schauder system amtibe a continuoug-stable RLP with Hurst parameter
H < 2.Supposethal > 8+ 1/pifa=2andH > B+ 1/p+1/aif « < 2. Then

liminf ¢” logP| || R| < —00,
ne e’ logP[[|R]| <&] > —o0
withy = (H—-p—1/p)~L.
And, of course, we get the corresponding corollary:

Corollary 10. Let| - || € N(8, p) w.r.t. Schauder system amtlbe a continuous-stable RLP with Hurst parameter
H < 2.Suppose thall >+ 1/pifa=2andH > +1/p + 1/a if @ < 2. Then there exist& < (0, co) such
that

i Y <el=_
lim 7 logP[|R|l < €] = ~K,
withy =(H — g —1/p)~ L.

Remark. The assumptior{ < 2 is rather restrictive and this is why the Schauder basis is not always a sufficient
tool. For example, ifv < 1/2, thenH < 2 is incompatible with the continuity assumptiéh> 1/«, thus for small
a we get nothing from Theorem 9; recall however that Theorem 7 still works.

4.1. Decorrelating stable arrays

In this paragraph we prove a crucial lower bound, which is a generalization of Lemma 2.1 in [42] to arrays of
symmetrica-stable random variables, and which will be useful for both Theorems 7 and 9. It relies on a version of
Sidak’s inequality for stable variables recently obtained in this framework by G. Samorodnitsky [35].
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Lemmall.letM,h>0and{y;,, 1<n< < M2, j >0} be an array of identically distributed symmetric jointly
a-stable random variables. Let § > 0 be such that <z if e =2and$§ <z — h/a if @ < 2. Letm > 0 be an
integer and set

dj — d/(m) — 22(j—m)=8|j—m|
Then there exists a constafitdepending only o/, h, z, § such that
Plyjnl <dj, 1<n < M2V, j>0]>exp—C2".

Proof. Up to normalization, the case= 2 is just the statement of Lemma 2.1 in [42]. Hence we can concentrate
on the case < 2, and first notice that Lemma 2.1 in [35] entails the following decorrelation inequality:

. M2k
Pllyjal <dj, 1<n<M2Y, j=0] =[] Plyvi<d;]"" .
j=0
wherey is some symmetria-stable random variable. We can decompose the right-hand side into

HP[|y|<d,-]M2"‘f=<1'[ P[lyl <] )<nP|y|<d] )

j=0 j=m
To estimate the infinite product, we use the following well-known tail behavioy ¢dee e.g. Property 1.2.15
in [36]):

lim r ]P’[|y| > r] K1 € (0, +00). ©)
rt+00
This yields
h .
log [[ P [yl <a;]" =M ) 2Ylog(1-P[ly| > d;])
jzm jzm
-C Z zhjp[|y| - 2(1—3)(/'—M)]
jzm
-C Z ohjo—a(z—8)(j—m)
j=zm
> _Czhm’

where in the last inequality we uséd- o (z — §) < 0. The estimate of the finite product is even simpler. Since
has a positive density in the neighbourhood of the origin, we have

|i%e*119>[|y| <e] =Kz € (0, +00).
&

This entails
Mzhf' et
Iogl_[ [yi<d;]"" =M 2" IogP[ly| < d;]
j=0
m—1
—C Z Zhj (1 + |Og(2(z+5)(m—j)))

j=0

m—1
> _C2hm Z(m . j)zh(jﬂn)

j=0

h
>-Cc2",
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where in the last inequality we uséd- 0. Putting everything together now yields
Plyjnl <dj, 1<n< M2V, j>0]>exp—C2"

for a constantC not dependingom. 0O

Remark. In the non-Gaussian case, it is easy to see that the conditon— i/« is also necessary, because of the
heavy tails ofx-stable random variables: indeed, if thg’s are mutually independent andzit= § + i /«, then it
follows from (7) that

Pllyjnl <dj, 1<n< M2V, j>0]=0.
4.2. Some elements of wavelet theory

The proof of Theorem 7 relies mainly on a suitable wavelet decompositi@) which we recall here for the
sake of completeness. In this paragraph we fix once and for all a semifjngral (8, p) which isZ-smooth-finite,
andR a continuous RLP satisfying the assumptions of Theorem 7.

There exist two functiong, v € Cf}) (“wavelet parents”) such that has vanishing moments up to order

e e]

/tklp(t)dtzo, 0<k<e, (8)

and such that the wavelet functiofg;,, n € Z, j > 1} and{g,, n € Z}, respectively defined by

Vi) =229 2/t —n) and @, (1) = ot —n),

form an orthogonal base df;(R). We refer to Daubechies’ construction [15], Section 6.4 for the definition and
Section 7.1 for smoothness properties of these compactly supported wavelets. A useful book is also [31].

Fix [— D, D] an interval containing the supports¥fandy. Considerl, the integration operator on compactly
supported functions:

t
I1f(t)= / f(s)ds

for every suchf andr e R. We set/° for the identity operator and for the kth iteration of7, k > 1. Since for
everyk >0

t
I"+lf(t)=% / f)(t —s)kds,

the moment condition (8) o entails that the functiongy, are also supported by the intenfat D, D] for
0< k< £ In particular,

Iy (*D)=0, 0<k<¢. 9)

Since under our assumptio®sis continuous, the procedso 2p+11R belongs a.s. td.2(R) (actually a weaker
assumptior > 1/a — 1/2 would suffice here, see [36, Chapter 11]). Hence, we can write its wavelet decomposi-
tion:

1[0,2D+1]R = Z ernwjn + Zrn(pm (10)

‘/';1 n n
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where
2D+1 2D+1
Fin = / R()Yju(s)ds and r, = / R(s)p,(s)ds.
0 0

Actually more can be said about the convergence of the series on the right-hand side in (10). Namely, again from
our assumption orH, it is well-known thatR is locally n-Holder for somen > 0 [20,43], and in particular the
function R coincides on— D, 3D + 1] with an La-function which isglobaly n-Holder. We know then (see e.qg.
Theorem 7 in [31, Chapter 6]) that the series (10) converg@&suniformlyon [0, 1].

Besides, in (10) we can delete eagh, andy, whose support does not overlap wjth 1], and the remaining
series still converges tR uniformly on[0, 1]. More precisely, forj > 1 let N; be the set of all positive integens
such that the support af ;, overlaps with[0, 1]. Similarly, let Ng denote the set of all positive integersuch that
the support ofp, overlaps with[0, 1]. We have, uniformly ori0, 1],

R= Z( Z rjnl/fjn) + Z T'n®n.
j=1 "neN; neNg

We will need two elementary properties of the fam{ily;}. First, sincep andvys have compact support, we have
an exponential bound of the array’s size: there exists a con&tatgpending only orD such that for allj

sup |n| < M2/, (11)

nENj

Second, for allj > 0 and alln € N; the support ofi/;, overlaps with[0, 1] and its length is bounded byZP
Hence,y , vanishes ofi2D + 1, oo) and we have

Looo)Vjn =102+ ¥ jn, J =0, neN;. (12)
4.3. Proof of Theorem 7

We may (and will) assume thdt> H. For everyn € Z we will set g, = ¢, andrg, = r, for the sake of
concision. By lower semi-continuity and triangle’s inequality, we clearly have

IRI=D_| Y rintin

j=0"neN;

Moreover, since the parent functions have suppdr-if, D], for eachj > 0 we can split the familyy;,, n € N;}
into [2D] + 1 subfamilies such that in each subfamily the functions have supports with disjoint interiors. Suppose
first thatp < +o00. The triangle inequality, condition (G) and (11) yield

1/p
IRI<C Z( > |r,,n|P||w,;n||1’> : (13)
j}O neN_/-

On the one hand, by translation-invariangeself-similarity, contractivity and-smooth-finiteness of - ||, it is
easy to see that for evelyn,

W jnll < C2Y/2ZHEP)] (14)

for some constant’ independent ofj, n. On the other hand, we can evaluate the coefficients as follows. Starting
with the definition ofr;, and making use of (12) we have for gl> 1,n € N;
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2D+1 +00
Fin = / R(s)Yn(s) ds = / R($)Yn(5) ds
0 0
+00 +00
:2/'/2/R(s)lp(zfs—n)ds:zﬂ/?/R(2*fs)¢(s—n)ds
0 0
+o00
L o= (H+1/2)j / R(s)l/f(s—n)ds=2_(H+1/2)j/R(s—l—n)lﬁ(s)ds, (15)
0 R

where in the penultimate inequality we used #ieself-similarity of R. Plugging (14) and (15) into (13) and using
(11) yields

IRl < C Y 27 H=P=UPi( sup |r],]), (16)
j=0 In|<M2i

Wherer}n stand for theenormalizedwvavelet coefficients oR, viz.

oy =ron and s, L / RGs +my(s)ds if j>1 (17)

R

Notice that one can write the wavelet coefficients from (17) in the following integral forp2ifl, thenr’, =
T,Yjn, Where

+00
r;;‘:f U(u+n—s)f’w(u)du
0 R

H' = H — 1/a, and{yj,, |n| < M2/, j >0} is an array of identically distributed symmetric joiniystable
random variables. We first aim to prove

o
ds,

supr, < +o0. (18)
n

To get this uniform bound, we first recall thathas its support ifi—D, D], so that the integral defining’ can be
rewritten as follows:

n+D, D o

T = f /(u—i—n—s)f/l/f(u)du ds.
0o '-p

We cut the domain of integration oveiinto [0, n — 2D] and[n — 2D, n + D]. The first integral is given by

n—2D, D o

= ( e

= u+n—s)" Yyw)du| ds.
o '-p

We first transform
D
/ (u+n— s)Hll//(u) du
-D

through¢ successive integrations by parts. Recalling (9), we see that each time the bordeftgr(dsD), 0 <
m < £, vanish. In the end, we obtain
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n—2D

II=c /

0
n—2D
<C / (D +n —s)2H'=0 g4
0
+00
<C / sH=0-1 g5, (29)
D

where in the first inequality we uséd> H > H’. The integral on the right-hand side is clearly finite and indepen-
dent ofn.
The integral over the second domain is given, after a change of variable, by

3D

1,?:/

0

RecallthatH’ > 0 fora <2 andH’ > —1/2 for« = 2. Therefore, the integral on the right-hand side is again finite
and independent of. Putting (19) and (20) together yields (18) as desired.
The following upper bound ofiR|| is a direct consequence of (16) and (18):

IRl <CY 27 H=F=HPI( sup  |yjul), (22)
j>0 1< |n|<M2

D

/(u +n— s)H,_Zléllf(u)du ds

-D

D

/(u +2D — )My () du

-D

3D , 3D

ads<C/ (/u”’du>ads. (20)

0 0

where{y;,, [n| < M2/, j >0} is an array of identically distributed symmetric jointlystable random variables
onR.
The end of the proof is now standard and follows [42, Theorem 3.1]. Chosg@ such that

S<H-B8-1/p if o =2,
S<H-B-1/p—1/a ifa<?2.

Letm be a positive integer. Set
dj = o(H—B~1/p)(j—m)=d|j—m| (22)
for everyj > 0. On the one hand, it is clear from (21) and (22) that
{Iyjnl <dj, 1< Inl < M2/, j >0 c{IIRII < C(&)2-H-F=HPm),
On the other hand, it follows from Lemma 11 (with= 1) that
Pllyjnl <dj, 1< In| < M2/, j>0] > exp—C2".
SinceH — 8 —1/p=1/y, we obtain
liminf 27" logP[ | R|| < C(8)27"/7 ] > —o0

m—

which is equivalent to
liminf e’ logP|[||R|| < &| > —o0,
ne gP[IRII <e]

as desired. The proof is complete in the case co. The casep = oo can be handled exactly in the same way,
replacing (13) by

IRI<CY (suplriall¥jul). O

=0 neN;
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Remarks. (a) Itis clear from the above proof that the assumptieij € L (8, p) is not necessary to get the lower
bound. We just neefil- | € L (8, p) w.r.t. &, a wavelet family generated by parefits v} that are smooth enough.
But the required smoothness depends on the pararAetand this would lead to much heavier notations. For this
reason we prefer stating Theorem 7 in this form, save for the loss of generality.

(b) There is at least one example whérgs, p) is really more relevant thah (B, p). It is well-known (see
[31, Chapter 6]) thatn, p, g)-Besov semi-norms; > 0 andp, ¢ > 1, are equivalent to sequential norms on the
wavelet coefficients. More precisely,

1/p ) 1/p
an% + ijnlﬂjn ~ (Z |xn|1’) + ” {2(77—1/1?)1 <Z |xjn|p> }
n j.n n n

Hence, with our notations, it is clear that the p, ¢)-Besov semi-norm belongs ko —1/p, p) w.r.t. any wavelet
basis¥ . Hence, wherp = 400, Theorem 4 yields the existence of the constantfavith y = (H — ). Note
that this rate is in accordance with the results of [42], which covered the range of parammet@rand O< H < 1
(with no restriction orp).

(c) In the Gaussian case, thesmooth-finiteness of the semi-norm must hold wkj@j is a.s. finite. Indeed,
if H denotes the reproducing kernel Hilbert space associatedwitien it is well known that{ contains functions
with (H + 1/2)th derivative inL,. On the other hand, from a 0-1 law for Gaussian measures on linear spaces, the
finiteness ofl| R|| with positive probability yields thaf f|| < oo for every f € H. Hence,| - || is £-smooth-finite
as soon ag > H + 1/2. In the non-Gaussian case, the challenging question whigihek oo a.s. implies the
£-smooth-finiteness of the semi-norm remains open.

(d) For the first efficient use of wavelet methods in similar problems to small deviation probability, we refer to
[1] where the optimal finite-dimensional approximation of fractional Brownian motion is considered.

j=llig,

4.4. Proof of Theorem 9

The outline of the proof is the same as that for Theorem 7, except that we use Schauder system and provide new
estimates for the corresponding coefficients. Recall that under our assumptiorf$, 02 in the Gaussian case
and Y« < H < 2 in the non-Gaussian case. Again we Bét= H — 1/«. We exclude the casd#’ = 0 whereRr is
Brownian motion: the result follows then directly from Theorem 1 in [41].

SinceR is continuous, we can decompose it[n1] along the Schauder system (see [2,41]):

R = ZR]'(I) + Ryt
j=0
for everyr € [0, 1]. Here, for everyj > 0,
2J
Ri) = rin¥jn(0),
n=1
where we set?n =n-12/, t}n =(n—1/227/, t]?n =n2"/ and
Tin = 2Rt1 —Ro — Rz

jn jn jn

We first suppose that < co. Condition &) entails

2/ p
IR < czfﬁ(z |r,-n|f’> : (23)

n=1

Notice that the coefficients;,, can be rewritten as;, = o;,,y;,, where
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+00

a;fn=/|2(z}n_s)f’_(z;?n_s)f’_(zj? — )| ds (24)
0

(we use the notatiom, = u A0 for everyu € R), and{y;,, 1<n <2/,

‘ j = 0} is an array of identically distributed
symmetric jointlya-stable random variables. Foreacklk <2/, j >0, w

e will now give an upper bound ary,

depending only ory.
If n =1, then
2-J 2—J

o

o= |2(27(j+1) - s)f/ -2/ - s)H/|ads <C | s g5 =c2-oHi,

o
o

If n > 1, then we setj_” = (n —2)2=/ > 0 and cut the domain of integration in (24) in@& tj_n] and[tj_n, +00).
Reasoning as above, we see that the second integral
tJ?n
Ijzn - /|2(tjln - S)-ﬁb-[/ - (t,?n - S)-ﬁb-[/ - (tjzn - S)H/|ads’

tjn

is bounded from above by2-*#/ We estimate the first integral as follows:

tjn

Ijln = /|2(t/1n - S)H/ - (t?n - S)H/ - (t,IZn - S)H/’ads
0
n
_2 / 263, — 2, + 27w — (8, — 2, + 27— @)™ | du
2

n
— p~aH] /|2(u — 12" — - D" —u | du
2

o0
g Cz—aH.j/‘u(H,—z)Ol du
2

=c27H,
where the last equality comes frofh < 2. Putting everything together yields now
Ojn < c2~Hi
and, recalling (23),

IRl < C2BFYP=i(sup |y;al). (25)
1<n<2

By lower semi-continuity and triangle’s inequality, this entails
IRl < c(|R1| + Y 20+ Yp=i( sup |y,-n|))
>0 1< InI< M2

and sinceR; has a symmetria-stable law, we can finish the proof as in Theorem T
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Remarks. (a) In the latter proof, the estimate @r becomes too crude whet > 2. This is the principal reason
why we need to introduce smoother wavelets in Theorem 7.

(b) As we said before, the proofs of Theorems 7 and 9 work only for continuous processes. The main reason for
this comes from Lemma 11. On the one hand, the exclusion of the boundary valfig 2/« in the non-Gaussian
case cancels the important cdge= 1/a. On the other hand, Sidak’s inequality handles|iRg ||'s as if they were
independentBut if R is discontinuous, then it is possible that its jumps have a significant influence on every level
R, so that our estimate of the serig3; [| R ;| may not be realistic anymore.

(c) In the non-Gaussian case and whién< 8+ 1/p + 1/«, it is easy to see that the statements of Theorems 7
and 9 are false, even i > 8 + 1/p. Suppose for example that < 1/«. It is well-known (see [36, Chapter 10])
that a.s.

sup |R;| = +oo,
o<1

so that Theorems 7 and 9 cannot hold with respect to the supremum norfd £.e-co in Theorem 4), although
hereg =0 andp = +oco. Similarly, if H = 1/«, then clearly

|Rt - Rs|
sup [——X ) =+00 as.
0<s<t<1 |t — 5|7

for everyn > 0, so that Theorems 7 and 9 cannot hold with respect to;adglder semi-normg = n, p = +00).
It is natural to conjecture that these two theorems remain true in full generality Whem + 1/p + 1/«, but in
view of the above Remark (b), we probably need different methods.

5. Lower bounds for LMP: finiteness of the constant for continuous LFSM
Our aim in this section is to extend Theorem 9Xo the continuous LFSM which we defined in Section 2.
Recall thatX admits an independent decompositi®n= R + M whereR (resp.M) is an RLP (resp. an LMP)

with the same parameters. The following theorem can be viewed as a generalization of Lemma 3.2 in [23].

Theorem 12.Let | - || € I:(ﬂ,p) w.rt. the Schauder system add be an LMP with parametera € (1, 2],
H e (1/a,1). Supposethall > 8+ 1/pifa=2andH > B+1/p+1/aif a #2. Then

lime” logP[|| M| < e]=0,
lim 7 logP[|IM]] < ¢]
wherey = (H - —1/p)~L.

Using Theorems 4 and 9 along with the elementary independence argument developed in [23, p. 1334],
Theorem 12 yields readily the desired small deviation theorenX for

Theorem 13.Let | - || € N(8, p) w.rt. the Schauder system andbe a continuous LFSM with parameterse
(1,2], H € (1), 1). Suppose thall > 8+ 1/pifa=2andH > B8+ 1/p+1/a if « #2. Then

lime” logP| | X|| <e|=lime” logP|||R| <e|=—-K,
im e” log PI1X | < e] = lim " logP|IRl| < e]
wherekK e (—o0,0), y = (H — p —1/p)~* andR is the RLP associated t&.

We now proceed to the proof of Theorem 12, which is quite analogous to the proof of Theorem 9, except that
our estimates of the Schauder coefficients will not be uniform in time-argument&irees a singularity at 0.
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5.1. Proof of Theorem 12

Again we setH’ = H — 1/a € (—1, 1) and exclude the trivial situation whei’ = 0. SinceM is continuous,
we can decompose it df, 1] along the Schauder system: for every [0, 1]

M; = ZM]‘(I) + Mt,
j=0
where
2]

MJ'(Z) = ijn'(pjn(t)

n=1

andmj, =2M,a1 — M, — M2 as inthe proof of Theorem 9. We first consider the gase+-oo. Condition ©)
Jn n n

entails

2/ 1/p
IM; | < c2P (Z m m") (26)

n=1
and we just need to evaluate the coefficiens = o;,y;,, where

+00
ot = / |26 + 150" = (s + 1) = (s + 15| ds
0

+00
=2 Hej / 2 4+n—1/2" — @ +n—D* — @ +n)"' " du,
0

and{y;,, 1<n <2/, j>0}is an array of identically distributed symmettiestable random variables. Notice
first that from the so-called Cooper’s formula

1/2 u+n—1/2+6
2u+n—12" —u+n-D" —w+m" =—H'(H - 1) / / v’ =2 qv40.
0 utn—-1+6
Clearly, sinceH’ < 2, this entails
2 +n - 12" —@+n - —@+n| <Cminf@+n-1"21).
We now fix somer € (0, 1) and first estimate ;, when 2/ <n < 2/:

+00
a}-"n < Cc2 H / (u+n-— 1)0‘(H/72) du
0

< c2Haj (n— 1)oz(H’72)+1 — 2 Hejo—ha(2-H)j (27)
The estimate of;, when 1< n < 2" is even simpler:
+00 1
ol < cz—H“f(/ u? =2 gy 4 / Cdu) < c2Hei, (28)
1 0
Recalling (26), we get
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2hi 1/p
IM; ||<Czﬁ'<Za + Z ,,1) Sup [yl

n=2hi 41 I<n<2/

<C2—(H—ﬁ)1(2hj +2}2—h(2 H)Pj)l/P sup |yjul-
1<n<2

The balance is attained &t= (1+ (2 — H)p)~* € (0, 1), whence

IM;I| < C27HB=RIP sup  [y;,l. (29)
1<n<2

Using (29) instead of (25), we can proceed as in the proof of Theorem 9 and obtain
liminf &7 logP[|| M| < —00,
|€¢|0 e logP[IM|| < &] > —o0

with y’ = (H — B —h/p)~t < y. In particular
liminf e’ logP[||M|| <e|=0,
ninte gP[IM]l <]
which completes the proof of Theorem 12 fo oco. .
The casep = +oo requires more careful estimates. Conditi@) éntails

IM;l < C2P7 sup |mjyl. (30)
1<n<2«f

Again we fix somé: € (0, 1). Using (30), (27), and (28) we can write,

IM;Il <C2PT sup ojulyjul <C27HPI( sup |yl +27" sup |yjul).
1<n<2/ 1<n<2M 2hj <n2/

where we sek1 = (2— H)h. For every integem > 0 we focus on the event
R ={lyjul <dju(m), 1<n <2/, j >0}
where we sety = [m/h], § € (0, H — 8) and

d [ 2H=pG=mD=8ljmmlif 1 < < M
jn(m) = 2(H=p+h1)(j—m)=8|j—m| if 2hj — < 2.

Take nowh small enough such that
H—B<H—B+hi<(H-B)/h.
On the one hand, it is clear that

§2m {Z Ml < cz**’—ﬂ*’”)'"}. (31)
j=0
On the other hand, it follows from decorrelation argument of Lemma 11 that
logP[£2,,] > —C (2" 4 2") > —C2™. (32)

Using (31) and (32), we can now finish the proof exactly as in the pasetoco. O

Remarks. (a) Contrary to [23], the above proof does not require any entropy argument and relies only on an
elementary estimate of the Schauder coefficients.
(b) It would be quite interesting to calculate the optimal rate

yo=infly > 0] |i%ey logP[||M|| < ¢]=0}.
&€

We did not study this question but it seems plausible that 0: indeed M is aC> process o0, +oc0), and one
may expect subexponential rate for its small deviation probabilities.
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6. Examples: particular semi-norms

In this section, we place all our results in the context of the previous literature, and show what is new. We try to
be as exhaustive as possible as far as RLP’s and LFSM’s are concerned. We refer to the surveys [26,27] for more
information about other processes and for further references.

EverywhereR (resp.X) will be an RLP (resp. an LFSM) with Hurst parametér> 0 and stability index
a € (0, 2], whereag| - || will be a semi-norm ifN(B, p) or N(8, p) for someg € R and p € (0, +o0]. We always
suppose thatl > g+ 1/p and sety = (H — 8 — 1/p)~! for our small deviation rateC will stand for the small
deviation constant appearing on the right-hand side of Theorem 4. Sometimes we will call them just “the rate” and
“the constant”. Let us begin with the most classical case, which deserves of course a particular mentioning.

6.1. Brownian motion

Brownian motionB is an RLP (or an LFSM) with parametefs = 1/2 anda = 2, hence it clearly satisfies
the assumptions of Corollary 10 (or Theorem 13). Notice that here our Theorem 9 just amounts to Stolz’s lower
bound criterion (Theorem 1 in [41]), so that in the present paper the originality comes only from Theorem 4.
Corollary 10 entails the existence of Brownian small deviation constants under almost all classical semi-norms
(with the regrettable exception of certain Besov semi-norms for which we were unable to prove the appropriate
superadditivity index). In other words, we get lipge? logP[|| B|| < ¢] = =K € (=00, 0), where the dependence
of y on the semi-nornf - || is given by the following table:

I 14
Supremum 2

Ly 2
n-Holder 21— 2n)
p-variation p/(p—2)

(n, p)-Sobolev 2(1-2n)
(n, 00, g)-Besov 2(1-2n)

The existence of a finite small deviation constant for Brownian motion uhgeand supremum norms is a
very classical result, and in this situation the constaman even be more or less explicitly computed (see [8,26]
and the references therein). The existence of the constant under Holder semi-norms was first proved by Baldi and
Roynette [2] — see also [21], and it is actually a direct consequence of Stolz’s upper bound criterion (Theorem 2
in [41]) and of the standard subadditivity argument involving the Markov property of Brownian motion. In the
three last examples, Stolz’s results do provide the right rate, viz.

—o0 < Iimii(?f e’ logP[ || B|| < ] < limsupe” logP[||B]| < &] <0
£ el0

with the above corresponding, but here the existence of the limit does not follow directly. In these three cases,
our result seems to be new.

It is of course a challenging problem tomputethese new Brownian constants. As a rule, this kind of (hard)
problems requires analytical techniques depending heavily on the choice of the semi-norm, and it seems difficult
to find a universal solution.

We stress that the above table matches quite accurately the sample path properties of Brownian motion. It is
well-known thatB is n-Hélder if and only ifn < 1/2 and has finitgp-variation if and only ifp > 2. Besides, it has
finite (, p)-Sobolev semi-norm if and only if < 1/2 [14].
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Besov semi-norms deserve a special remark since no necessary and sufficient conditions seem to be available
Roynette [33] had proved that Brownian motion has fiidifep, ¢)-Besov semi-norm whenever one of the three
following situations occurs:

n p q
<1/2 >1/n >1
<1/2 =1/y =1
=1/2 >2 =400

Notice that the latter situation is rather specific, since here small deviation probabilities vanish istsznall
enough, thus the investigation is pointless.
We are able to prove the existence of a finite small deviation constant in the following situation:

<1/2 =+00 >1

6.2. Gaussian fractional processes

In this paragraply = 2 andH > 0, the Brownian casé& = 1/2 being implicitly excluded. Up to normalization
constant our process is the usual fractional Brownian motion, whikecan be viewed as the fractionally integrated
Brownian motion. Before stating our results, we will give a list of local propertig, ofiost of which are classical.
As we mentioned in Section 2, all these local properties remain trug fig soon agf < 1.

R is n-Holder (respn-Lipschitz) if and only if H > 5. In particular,R has finitep-variation if H > 1/p and
only if H > 1/p (the boundary value being excluded when> 1/2 — see Theorem 5.4 in [17], but the situation
H =1/p < 1/2 seems to have escaped investigation). Fin&l{as finite(n, p)-Sobolev semi-norm if and only
if H>n[14].

Less is known about Besov semi-norms. In [13], Proposition 4.1 and Theorem 4.3, it is provedthatlifand
0<1/p < n, thenX has finite(n, p, co)-Besov semi-norm if and only iff > n (whenH = n, the small deviation
probabilities vanish for smadl).

With the same notations as in the preceding paragraph, the following table is a direct consequence of Corollary 8
and of Remark (b) at the end of Section 4.3. Recall that it is availabl&fand for X with the same finite
constantC, as soon a$f > 8+ 1/p.

-1l 14
Supremum 1H

Ly 1/H
n-Holder Y(H—n)
p-variation p/(Hp —1)

(n,00,q)-Besov Y (H —1n)

If in addition H < 2, then we can add another line:

- 14
(n, p)-Sobolev  ¥(H —n)
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The existence ok for X under the supremum norm was established in [23], [37] and [38]. In [23], it is also
proved forR when H < 1. WhenH > 1, the existence of is mentioned in [24]. UndeL ,-norms, the right
rate for R can be found in [3]. Specialists seem to be aware of the existence of the constant [29], but up to our
knowledge this is not explicitly proved in literature. Notice that the case 2 is rather special because of its
Hilbert space background. Quite recently, éxactvalue ofC under thel.>-norm was found for integrated Wiener
process [11,19], and for fractional Brownian motion [9]. Finally, we refer to [22] for non sharp small ball estimates
under the Hélder norm for a large class of stationary Gaussian processes, and to [25] for sharp small ball estimates
under Sobolev type norms for certain Gaussian processes including fBm. Our results recover everything that is
done for gaussian RLP and fBM, sometimes in a sharper form, and provide new estimates in the Besov case.

6.3. Non-Gaussian stable Lévy processes

Non-Gaussian symmetrie-stable Lévy processes are RLP’s with paramatets2 andH = 1/a. They have
a.s. discontinuous sample paths, hence in the present paper they are only concerned by Theorem 4.

Recall that they have finitp-variation if and only if p > « [7]. In the case Xk « < 2, it is shown in [13]
Theorem 6.1 that they have finifg/«, p, co)-Besov norm if and only if K p < .

Our Theorem 4 yields the following table which can be read as in the preceding paragraph, except that here we
know nothinga priori about the finiteness d&f.

I 4
Supremum  «
Lp o
p-variation  ap/(p —a)

Under the supremum norm, the finitenesskbfdates back to Taylor [44] and Mogulskii [32]. See also [5]
for the computation ofC in the completely asymmetric case, and [10] for applications to functional laws of the
iterated logarithm. Notice that in this case the existendé€ fllows readily from the Markov property, so that our
Theorem 4 is a bit useless here. Undgrnorms, the existence and the finitenes&odeems to belong to some
ancient folklore, but we could not find any precise reference in the literature. We remark that this follows readily
from Theorem 4 and Taylor—Mogulskii’s lower bound. Z. Shi also indicated us that in this case the prolilgm of
small deviations can be reduced to some specific large deviation probabilities for occupation measures which were
previously studied by Donsker and Varadhan. It is shown in [39] that thejcasg is again rather specific since it
can be derived from the ,-small deviations of Wiener process, thanks to an identity in law due to Donati-Martin,
Song, and Yor [16]. Finally, we refer to [40] for the finiteness®tinder thep-variation norm.

6.4. Non-Gaussian fractional processes

In this paragraplr < 2 andH > 0, the caséd = 1/a being implicitly excluded. As in the Gaussian framework,
we begin with listing local properties at, most of which can be found in the monograph [36]. Again, all these
local properties remain true foaf when it is well-defined.

R is sample-bounded ifff > 1/« and belongs locally td., if and only if H > 1/a —1/p. R is n-Holder (resp.
n-Lipschitz) if and only if H > n + 1/«. This latter fact is less classical and was provedXdsy Takashima [43]
(see also [20]). Notice that the “if” part is quite straightforward from

|R; — Ry| < Cl|Zloolt — s|MMEH-YV) - g > 10

for all s, ¢ € [0, 1]. It is interesting to note that contrary to the Gaussian case, the boundaryvaléie— 1/« is
included here. In particular, this entails thahas finitep-variation if and only ifH > 1/p + 1/« [12].
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Nothing seems to be known about Sobolev or Besov semi-norms. From Hélder continuity, we sRdésat
finite (n, p)-Sobolev semi-norm i1 > n + 1/«, yet this does not seem to be a sharp estimate.

WhenR is continuous and wheH > 8+ 1/p + 1/a, we get exactly the same tables as in Section 6.2.

The only result which we are aware of in this direction is due to G. Samorodnitsky [35], who had given just a bit
less precise bounds in the small deviation problem for LFSiW& < H < 1) under the supremum norm. In the
present paper we find the right rate, prove that the constant exists, and our conditios tre best possible since
R is not bounded anymore whefi < 1/«. In general, our results match quite accurately the local sample-path
properties ofR. Namely, except for Sobolev and Besov norms, the only situations which are not covered are the
critical values ofH w.r.t. Holder andp-variation semi-norms.

When R is not continuous, i.e. wheH < 1/, the only relevant classical semi-norms are fhgnorms, as
soon asH > 1/a —1/p. Our Theorem 4 yieldg = 1/H but nothing is known about the finiteness of the constant
KC. We believe that AH is still the right rate in this situation.

7. Concluding remarks

(a) In general, it is not true tha is the only parameter of a self-similar stable process which is involved in the
exponential behavior of its small deviation probabilities. Indeed, [35] delivers an examplexe$taile,H -sssi
process whose small deviation rate depends botH andw. Let us also recall the general results of [34] about
stable measures, which entail that

y < —
1«

for arbitrarya-stable processes with@a < 1.

(b) Thesymmetrnassumption on the stable processes is a crucial one, since our proofs are heavily based on two
Gaussian results: Anderson’s and Sidak’s inequalities. Nevertheless, it seems likely that everything remains true as
soon a<Z is not a subordinator.

(c) Theorem 4 can be easily extended to multi-dimensional RLP’s having some symmetry, since they also
have the crucial extrapolation-homogeneity property. However, modifying the proof of Theorem 7 in a multi-
dimensional context raises technical difficulties related to Sidak’s inequality.

(d) As we indicated before, there are many different generalizations of fractional Brownian motion in non-
Gaussian case. K is the well-balanced linear fractional stable motion defined in (3), then the proof of Theorem 4
fails in the absence of extrapolation-homogeneity. However, we believe that the rates should be the same.

(e) Although our results are designed for nice translation-invariant semi-norms, it is worthwhile to mention
that there exist elaborated techniques concerning norms that are not translation-invariant. See especially [4,28,29]
and [39], where weighted ,-norms are handled respectively for Brownian motion, fractional Brownian motion,
and symmetrie-stable processes.
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