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Abstract

Let {Rt , 0� t � 1} be a symmetricα-stable Riemann–Liouville process with Hurst parameterH > 0. Consider a translatio
invariant,β-self-similar, andp-pseudo-additive functional semi-norm‖ · ‖. We show that ifH > β + 1/p andγ = (H − β −
1/p)−1, then

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K ∈ [−∞,0),

with K finite in the Gaussian caseα = 2. If α < 2, we prove thatK is finite whenR is continuous andH > β + 1/p + 1/α.
We also show that under the above assumptions,

lim
ε↓0

εγ logP
[‖X‖ � ε

] = −K ∈ (−∞,0),

whereX is the linearα-stable fractional motion with Hurst parameterH ∈ (0,1) (if α = 2, thenX is the classical fractiona
Brownian motion). These general results cover many cases previously studied in the literature, and also prove the ex
new small deviation constants, both in Gaussian and non-Gaussian frameworks.
 2004 Elsevier SAS. All rights reserved.

Résumé

Soit {Rt , 0 � t � 1} un processus de Riemann–Liouvilleα-stable symétrique avec paramètre de HurstH > 0. Considérons
une semi-norme fonctionnelle‖ · ‖ invariante par translation,β-autosimilaire etp-pseudo-additive. Nous montrons que
H > β + 1/p etγ = (H − β − 1/p)−1 alors

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K ∈ [−∞,0),
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avecK finie dans le cas gaussienα = 2. Lorsqueα < 2, nous montrons queK est finie quandR est continu etH > β + 1/p +
1/α. Nous montrons aussi que sous ces hypothèses

lim
ε↓0

εγ logP
[‖X‖ � ε

] = −K ∈ (−∞,0),

oùX est le mouvement fractionnaire linéaireα-stable avec paramètre de HurstH ∈ (0,1) (lorsqueα = 2, X est le mouvemen
brownien fractionnaire usuel). Ces résultats généraux recouvrent de nombreux cas précédemment étudiés dans la l
prouvent l’existence de nouvelles constantes de petites déviations, aussi bien dans le cadre gaussien que non gauss
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Let X be a random process whose sample paths belong to some functional normed space(F ,‖ · ‖). The inves-
tigation of the small deviations (or small ball probabilities) ofX deals with the asymptotics of

P
[‖X‖ � ε

]
whenε ↓ 0, and has proved to be a difficult problem with increasing number of applications in Probability, A
sis, Complexity. . . etc. We refer to the recent surveys [26,27] for a detailed account on this subject.

In the literature, this problem is usually studied for a particular class of processes and under a particula
It remains a great challenge to find some principle describing small deviations for general classes of proce
norms, rather than investigate the problem case by case.

The unique successful attempt in this direction was made by W. Stolz [41,42], who obtained estimates

−∞ < lim inf
ε↓0

εγ logP
[‖X‖ � ε

]
� lim sup

ε↓0
εγ logP

[‖X‖ � ε
]
< 0, (1)

where{Xt, 0 � t � 1} is a Brownian motion (or more generally a continuous Gaussian process with cova
function similar to that of fractional Brownian motion), andγ a finite positive parameter depending on the beha
of the (semi-)norm‖·‖ on linear combinations of Schauder functions. A lot of classical semi-norms fell into S
scope:Lp-norms, Hölder and Sobolev semi-norms, Besov norms. . . etc., and his estimates provided a general p
of view on many previously studied situations (see the references quoted in [41,42]).

The next important issue is theexistence of the limitin (1), and this is the matter of the present paper. Our m
result says that if‖ · ‖ is a translation invariant,β-self-similar andp-superadditive functional semi-norm – s
Definition 1 for more details about these notions, and{Rt, 0 � t � 1} is a symmetricα-stable Riemann–Liouville
process with Hurst parameterH > β +1/p (R can be viewed as a fractionally integrated symmetricα-stable Lévy
process, see Section 2 for a precise definition), then

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K ∈ [−∞,0) (2)

with the rateγ = (H −β −1/p)−1. From the technical point of view, the main ingredient of the proof is a stoch
superadditive inequality which is based upon the extrapolation-homogeneity ofR, and is then easy to combine wi
an exponential Tauberian theorem and the standard subadditivity arguments.

Our framework has two secondary, but non-negligible advantages with respect to [42].Non-Gaussianstable
processes are included, as well as smooth Gaussian ones likem-times integrated Brownian motion.
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A special effort is needed to prove that the constantK in (2) is finite. In order to get the suitable lower boun
on the small deviation probabilities, we use roughly the same method as in [41,42], except that we decomR

along Daubechies’ wavelet bases, since Schauder system is not smooth enough whenH becomes too large.
In the last part of this paper, we extend the above results to a class of self-similar processes with lon

dependence, the so-called unilateral linear fractional stable motions. These processes can be viewed as
generalization of fractional Brownian motion with an underlying stable noise. Thanks to a nice argument ess
due to Li and Linde [23], the problem is reduced to a study of the Schauder decomposition of the associa
memory process.

We conclude this article with a brief survey of concrete results. It seems that our theorems contain ev
that is known about the existence of finite small deviation constants for continuous fractional processe
translation-invariant semi-norms. Last but not least, some constants appearing in our results seem to be
in Gaussian and non-Gaussian situations.

Still, a major drawback of the above wavelet methods is that they exclude discontinuous processes. A
proving lower bound probabilities for processes with jumps requires completely different discretization tech
[32,44], and we have no idea how to adapt our approach to this case.

2. Preliminaries

2.1. Parametrization:(β,p)-semi-norms

Let I be the set of all closed bounded intervals ofR. ConsiderF a linear space of functions fromR to R

and, for eachI ∈ I, letFI be a linear space of functions fromI to R such thatfI ∈FI for everyf ∈F , wherefI

stands for the restriction off to I .
We define a semi-norm‖ · ‖ on F as a family{‖ · ‖I , I ∈ I} of functionals mappingFI to R

+ such that
‖λf ‖I = |λ|‖f ‖I and‖f +g‖I � ‖f ‖I +‖g‖I for everyλ ∈ R, f,g ∈FI . We will use the notation‖f ‖I = ‖fI‖I

for everyf ∈ F , I ∈ I. In the remainder of this paper we will assume that‖ · ‖ satisfies the following assumption
which are verified by all the classical semi-norms:

(A) ‖ · ‖I � ‖ · ‖J for everyI, J ∈ I such thatI ⊂ J . (Contractivity)
(B) ‖f ‖I−c = ‖f (· − c)‖I for everyf ∈ F , I ∈ I andc ∈ R. (Translation-invariance)

Definition 1. Let β ∈ R, p ∈ (0,+∞] and‖ · ‖ be a contractive and translation-invariant semi-norm onF . We say
that‖ · ‖ is anupper(β,p)-semi-normif it satisfies the following properties:

(C) ‖f (c ·)‖I/c = cβ‖f ‖I for everyf ∈ F , I ∈ I andc > 0. (β-self-similarity)
(D) For everya0 < · · · < an ∈ R andf ∈F{‖f ‖[a0,an] � (‖f ‖p

[a0,a1] + · · · + ‖f ‖p
[an−1,an])1/p if p < +∞,

‖f ‖[a0,an] � sup(‖f ‖p
[a0,a1], . . . ,‖f ‖p

[an−1,an]) if p = +∞.
(p-superadditivity)

In the following we will denote byU(β,p) the set of upper(β,p)-semi-norms, and setU for the union of all
U(β,p)’s.

Remarks. (a) Of course it suffices to taken = 2 in the definition ofp-superadditivity. We wrote the property
this form in order to make it symmetric with thep-subadditivity and the corresponding lower(β,p)-semi-norms,
which will appear just below.
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(b) From the inequality(a + b)q � aq + bq for everya, b � 0 andq � 1, it follows thatU(β,p) ⊂ U(β,p′)
wheneverp′ � p.

(c) In the definition of upper(β,p)-semi-norm, one can ask for the possible values of the parametersβ andp.
By self-similarity and translation-invariance, it is easy to see that if1 ∈ F and 0< ‖1‖[0,1] < ∞ (where1 stands
for the unit function), then necessarilyβ + 1/p � 0. However, the examples (c)–(f) below show that this inequa
is no longer true whenever‖1‖[0,1] = 0.

We stress that most of the usual semi-norms belong toU. In the following examples we always assume t
F = {f : ‖f ‖I < ∞, I ∈ I}.
Examples. (a) The supremum semi-norm, which is given by

‖f ‖I = sup
t∈I

∣∣f (t)
∣∣

for everyI ∈ I, belongs toU(0,+∞).
(b) TheLp-semi-norm,p � 1, which is given by

‖f ‖I =
(∫

I

∣∣f (s)
∣∣p ds

)1/p

for everyI ∈ I, belongs toU(−1/p,p).
(c) Theη-Hölder semi-norm, 0� η � 1, which is given by

‖f ‖I = sup
s<t∈I

|f (t) − f (s)|
|t − s|η

for every I ∈ I, belongs toU(η,+∞). In particular, the oscillation semi-norm (η = 0) belongs toU(0,+∞).
Similarly, the Calderón–Zygmund semi-norm

‖f ‖I = sup
s<t∈I

|2f ((t + s)/2) − f (s) − f (t)|
(t − s)

belongs toU(1,+∞), and theη-Lipschitz semi-norm,η > 1, which is given by

‖f ‖I = sup
s<t∈I

|f (n)(t) − f (n)(s)|
|t − s|η−n

,

wheren < η < n + 1 (and by its Calderón–Zygmund analogue forη = n), belongs toU(η,+∞).
(d) The (strong)p-variation semi-norm,p � 1, which is given by

‖f ‖I =
(

sup
t0<···<tn∈I

n∑
i=1

∣∣f (ti) − f (ti−1)
∣∣p)1/p

for everyI ∈ I, belongs toU(0,p).
(e) The(η,p)-Sobolev semi-norm,p � 1 and 0� η + 1/p < 1, which is given by

‖f ‖I =
(∫

I

∫
I

( |f (t) − f (s)|
|t − s|η+1/p

)p

ds dt

)1/p

for everyI ∈ I, belongs toU(η − 1/p,p).
(f) The (η,p,g)-Besov semi-norm,η > 0 andp,q � 1, which is given by

‖f ‖I =
( |I |∫ (

ωp,I (t, f )

tη

)q
dt

t

)1/q
0
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for everyI ∈ I, where

ωp,I (t, f ) = sup
|h|�t

(∫
Ih

∣∣f (x − h) − f (x)
∣∣p dx

)1/p

,

Ih = {x ∈ I | x − h ∈ I } and|I | stands for the Lebesgue measure ofI , belongs toU(η − 1/p,+∞). Notice that
the usual(η,p, q)-Besov semi-norm, where theLp-semi-norm is added in the definition (see e.g. [13]), doesnot
belong toU sinceLp-semi-norms have a different self-similarity index.

It follows from Remark (b) above that the concept of upper(β,p)-semi-norm is not sharp enough for our furth
purposes. Namely, the parameterp which appears in our main Theorem 4 is not uniquely defined. Therefore
need some kind of inverse property to (D), in order to work with a family ofdisjoint sets of semi-norms. LetC�

K

(resp.C0
K ) denote the class of all�-times continuously differentiable (resp. continuous) functions with com

support. For technical reasons, we make the following assumptions on‖ · ‖.

(E) C�
K ⊂ F . (�-smooth-finiteness)

(F) For everyI ∈ I andf,fn ∈FI ,

fn → f uniformly onI ⇒ ‖f ‖I � lim sup‖fn‖I . (Lower semi-continuity)

Remark. Clearly,�-smooth-finiteness yields‖f ‖I < +∞ for everyf of classC� and everyI ∈ I.

Semi-continuity and�-smooth-finiteness (with appropriate� depending on the semi-norm) are verified by
classical semi-norms.

Definition 2. Let β ∈ R, p ∈ (0,+∞] and‖ · ‖ be a contractive, translation-invariant,�-smooth-finite, lower semi
continuous andβ-self-similar semi-norm onF . We say that‖ · ‖ is a lower (β,p)-semi-normif it satisfies the
following property:

(G) There existsCp > 0 such that for everya0 < · · · < an ∈ R andf ∈ C�
K verifying f (a0) = · · · = f (an) = 0,{‖f ‖[a0,an] � Cp(‖f ‖p

[a0,a1] + · · · + ‖f ‖p
[an−1,an])1/p if p < +∞,

‖f ‖[a0,an] � C∞ sup(‖f ‖[a0,a1], . . . ,‖f ‖[an−1,an]) if p = +∞.
(p-superadditivity)

In the following we will denote byL(β,p) the set of lower(β,p)-semi-norms, and setL for the union of the
L(β,p)’s. We will say that‖ ·‖ is a(β,p)-semi-normif it belongs toN(β,p) = U(β,p)∩L(β,p) and analogously
we will setN for the union ofN(β,p)’s.

Remarks. (a) Since the constantCp may be larger than 1, it is not enough to taken = 2 in the definition of
p-subadditivity, contrary top-superadditivity.

(b) From the inequality(a0 + · · · + an)
q � a

q

0 + · · · + a
q
n for everya0, . . . , an � 0 and 0� q � 1, it follows that

L(β,p) ⊂ L(β,p′) wheneverp′ � p.
(c) Again, one can ask for the possible values of the parametersβ andp in the definition of a lower(p,β)-

semi-norm. By self-similarity and translation-invariance, it is easy to see that when the inequalities in (G) h
the functionf = 1 and for all partitions (assuming of course that1∈F ) and if 0< ‖1‖[0,1] < ∞, then necessarily
β + 1/p � 0. This inequality is actually true for all available examples, but we were unable to prove it i
generality.

(d) The supplementary assumptionf (a0) = · · · = f (an) = 0 makes sense, because in some casesp-sub-
additivity inequalities fail on more general functions (e.g. forp-variation norm and for Hölder norm).
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Notice that each of the above examples (a)–(d) belongs toL , and hence toN. Actually in each case we ha
chosen the smallest possible parameterp, i.e. we could have written‖ · ‖ ∈ L(β,p) as well as‖ · ‖ ∈ U(β,p). This
fact is trivial for examples (a) and (b) where we can takeCp = 1. In examples (c) and (d) we can takeC∞ = 2 and
Cp = 21−1/p (as soon asp � 1), respectively. (Notice that in both cases the conditionf (a0) = · · · = f (an) = 0 is
essential.)

However,(η,p, q)-Besov and(η,p)-Sobolev semi-norms do not belong toL , because in these cases the c
stantCp may depend on the subdivisiona0 < · · · < an. These two examples are important in certain contexts,
this is why we would like to introduce a weaker definition, which will be given in terms of the evaluation o‖ · ‖
along specific families of functions.

If � ∈ N andψ ∈ C�
K , we introduceΨ = {ψjn, n ∈ Z, j � 0}, the two-parametric subset ofC�

K defined by

ψjn(t) = ψ
(
2j (t − n)

)
for everyn ∈ Z, j � 0, t ∈ R.

Definition 3. Let β ∈ R, p ∈ (0,+∞] and‖ · ‖ be a lower semi-continuous,�-smooth-finite semi-norm onF . We
say that‖ · ‖ is a lower (β,p)-semi-norm in the wide sensewith respect toΨ , if it satisfies the following property

(G̃) There existsCp > 0 such that for everyj � 0, arbitraryx1, . . . , xm ∈ R, and arbitraryn1, . . . , nm ∈ N such
that the supports of the functions{ψj,ni

, 1� i � m} have disjoint interiors,

{
‖∑m

i=1 xiψjni
‖[0,1] � Cp2βj (

∑m
i=1 |xi |p)1/p if p < +∞,

‖∑m
i=1 xiψjni

‖[0,1] � C∞2βj sup1�i�m |xi | if p = +∞.

Similarly we will denote bỹL(β,p) the set of lower(β,p)-semi-norms in the wide sense, and setL̃ for the union
of the L̃(β,p)’s. Analogously, we definẽN(β,p) = U(β,p) ∩ L̃(β,p) and setÑ for the union of theÑ(β,p)’s.

Remarks. (a) In the sequel,Ψ will be either a family of sufficiently smooth wavelet functions, or the Schau
system on[0,1].

(b) Condition (̃G) means, in particular, that (G) holds for linear combinations of specific functions with the
“frequency”, and it is a well-known condition to obtain lower bounds for small deviation probabilities in a Gau
framework [41,42]. Actually we will use it for the same purposes, but sometimes in a more general cont
Section 4.

(c) At first sight, neither translation-invariance nor self-similarity are required in the definition ofL̃(β,p).
Actually, working with a specific family of functions allows us to combine these necessary properties in the
inequality given by (̃G).

(d) Again we can prove thatL(β,p) ⊂ L(β,p′) wheneverp′ � p.
(e) It is a bit tedious but not difficult to see that the(η,p, q)-Besov semi-norm belongs tõN(η,+∞) and that

the(η,p, q)-Sobolev semi-norm belongs tõN(η − 1/p,p), both with respect to the Schauder system.

Notation. In the following we will mainly consider functions restricted to[0,1]. By minor abuse of notations, an
for the sake of brevity, we will set‖f ‖ = ‖f ‖[0,1] for everyf ∈F , although such statements like “‖ · ‖ ∈ U(β,p)”
or “‖ · ‖ ∈ L(β,p)” will always refer to the family‖ · ‖ = {‖ · ‖I , I ∈ I}. By C we will always mean a positiv
finite constant independent of the involved parameters, and whose value may change from line to line.
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2.2. Riemann–Liouville processes and their associated linear fractional stable motions

Let {Zt , t � 0} be a symmetricα-stable process with indexα ∈ (0,2], i.e.Z is a Lévy process whose chara
teristic function is given by

E[eiλZt ] = e−t |λ|α

for everyt � 0 andλ ∈ R. It is well known and easy to see that for everyH > 0 the following stochastic integral

RH
t =

t∫
0

(t − s)H−1/α dZs,

is well-defined for everyt > 0. We setRH
0 = 0 and call{RH

t , t � 0} theRiemann–Liouville process(in abridged
form: RLP) with Hurst parameterH . This latter terminology is motivated by the followingH -self-similarity prop-
erty ofRH : for everyc > 0

{RH
ct , t � 0} d= {cH RH

t , t � 0}.
When no confusion is possible, we will drop the subscriptH and writeR = RH for the sake of brevity. Notice tha
R has no stationary increments, unlessH = 1/α. Instead of this,R has some kind of extrapolation-homogene
which will be important in the sequel: namely, if we set

Ra,t =
t∫

a

(t − s)H−1/α dZs

for everyt � a � 0, then the following equality in law holds:

{Ra,a+t , t � 0} d= {Rt, t � 0}.
Moreover,R has an equally important independence property: ifR̃a,t = Rt − Ra,t , then for everya � 0 the
processes{Ra,a+t , t � 0} and {R̃a,a+t , t � 0} are independent. These three properties follow easily from
similarity, stationarity and independence of the increments ofZ.

Of course,Z itself is an RLP with Hurst parameterH = 1/α. Notice also that up to normalization constan
the family of Riemann–Liouville processes{

RH , H � max{0,1/α − 1}}
is closed with respect to time-integration. In particular, them-times integrated Brownian motion is an RLP w
parametersα = 2 andH = m + 1/2.

The Riemann–Liouville process is closely related to{XH
t , t � 0}, the so-calledlinear stable fractional mo-

tion (in abridged form: LFSM) with Hurst parameterH . XH can be defined through the following (independe
decomposition:XH = RH + MH whereMH

0 = 0 and

MH
t =

+∞∫
0

(
(t + s)H−1/α − sH−1/α

)
dZ̃s

for everyt > 0, Z̃ being an independent copy ofZ. We callMH thelong memory process(in abridged form: LMP)
associated toXH . We use the notion of “long memory” in a non-standard sense here (long memory is now
commonly related to a certain range ofH ), since it perfectly reflects the unboundedness of the support o
corresponding kernel, contrary to that of RLP.
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Notice that the stochastic integral definingMH diverges a.s. at+∞ as soon asH � 1. Hence,XH can be defined
only for H ∈ (0,1). Again, when no confusion is possible, we will drop the subscriptH and writeX = XH (resp.
M = MH ) for the sake of brevity.

X is alsoH -self-similar and its increments are stationary:

{Xs+t − Xs, t � 0} d= {Xt, t � 0}
for everys � 0, andX is a so-calledH -sssi process. We refer to the monographs [18,36] for an extensive accoun
these latter processes. Notice that in the Gaussian caseα = 2, X coincides with the canonical fractional Brownia
motion, up to some numerical factor (see Proposition 7.2.6 in [36]). Moreover, an alternative definition ofX can
then be given through the following (“well-balanced”) decomposition:

Xt =
+∞∫

−∞

(|t + s|H−1/2 − |s|H−1/2) Ḃ(ds),

whereḂ is the usual white noise (see Exercise 7.2 in [36]). Whenα < 2, the corresponding integral

X̃t =
+∞∫

−∞

(|t + s|H−1/α − |s|H−1/α
)
Ż(ds) (3)

also makes sense, whereŻ is the so-called symmetricα-stable noise. However,̃X is no more equivalent toX
(see Theorem 7.4.5 in [36]). Actually, many other “bilateral”H -sssiα-stable processes can be constructed, w
are all non-equivalent except in the Gaussian case (see Definition 7.4.1 and Theorem 7.4.5 in [36]). He
unilateral LFSM process is justonepossible stable generalization of fractional Brownian motion. However
will restrict our study to this unilateral process, even though our results can probably be adapted to som
situations.

Notice that the processM is smoothon (0,+∞), so thatX andR exhibit similar local properties. In particula
it is well known (see Chapters 9–12 in [36]) thatR (resp.X) admits a continuous version if and only if

α = 2 or H > 1/α.

In Section 6 we will give some other local properties ofR andX, related to the examples of semi-norms (a
(f) listed above. We finally refer to [30] for a more thorough comparison betweenR andX, in the context of
econometric applications.

3. Existence of the small deviation constant for RLP

We can now state the main result of this paper.

Theorem 4.Let ‖ · ‖ ∈ U(β,p) and R be an RLP with Hurst parameterH . Assume thatH > β + 1/p and set
γ = (H − β − 1/p)−1. Then there existsK ∈ (0,+∞] such that

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K. (4)

Remarks. (a) It is interesting to note that the stability indexα does not directly show up in the expression of
small deviation rate.

(b) This result says nothing about the finiteness of the constantK, which is of course a very important feature.
this aim, one needs to show a lower bound for small deviation probabilities with appropriate order – see Se
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While a priori nothing indicates that the orderγ of small deviation probabilities we propose in Theorem 4 is
right one, it is indeed correct forall available examples, as soon asp is chosen as small as possible – see Sectio

The next two paragraphs are devoted to the proof of Theorem 4 and we fix once and for all an upper(β,p)-
semi-norm‖ · ‖, and an RLPR with Hurst parameterH > β + 1/p. We begin with proving a kind of stochast
superadditivity property, which will be our crucial argument.

3.1. Stochastic superadditivity

Let X andY be two real-valued random variables. We say thatX is stochastically largerthanY if and only if

P{X � r} � P{Y � r}
for everyr ∈ R, and we write in this caseX � Y . If X andY are positive, then clearlyX � Y entails that

E[exp−λX] � E[exp−λY ]
for everyλ � 0.

Proposition 5.Suppose thatp < ∞. LetR1, R2 be two independent copies ofR and setq = p(H − β) > 0. Then
for everya, b � 0

(a + b)q‖R‖p � aq‖R1‖p + bq‖R2‖p.

Proof. Fix a, b > 0 and setc = a + b. We first use thep-superadditivity of‖ · ‖ and get

‖R‖p

[0,c] � ‖R‖p

[0,a] + ‖R‖p
[a,c].

By self-similarity for both‖ · ‖ andR, we also have

‖R‖p

[0,c]
d= ‖cH R(c−1·)‖p

[0,c] = cp(H−β)‖R‖p

[0,1] = cq‖R‖p

and, similarly,

‖R‖p

[0,a]
d= aq‖R1‖p and ‖R‖p

[0,b]
d= bq‖R2‖p.

Putting everything together, we now see that it is enough to show

‖R‖p

[0,a] + ‖R‖p
[a,c] � ‖R‖p

[0,a] + ‖Ra‖p
[a,c], (5)

because of the translation-invariance of‖ · ‖ and the extrapolation-homogeneity ofR. Here and throughout thi
section,Ra denotes the process{Ra,t , t � a}. For everya � 0, setGa for theσ -field generated by{Zs, 0� s � a}
andPa for the conditional probability with respect toGa . We clearly have

P
[‖R‖p

[0,a] + ‖R‖p
[a,c] � r

] = E
[
Pa

[‖R‖p
[a,c] � r − ‖R‖p

[0,a]
]]

= E
[
Pa

[‖R̃a + Ra‖p
[a,c] � r − ‖R‖p

[0,a]
]]

for every r ∈ R. SinceRa is a conditionally Gaussian process underPa (see [36, pp. 153–154]), we can app
Anderson’s inequality underPa and get (recall that̃Ra is Ga-measurable)

Pa

[‖R̃a + Ra‖p
[a,c] � r − ‖R‖p

[0,a]
]
� Pa

[‖Ra‖p
[a,c] � r − ‖R‖p

[0,a]
]
.

Now, sinceRa is independent ofGa , we can average backwards and obtain

P
[‖R‖p

[0,a] + ‖R‖p
[a,c] � r

]
� P

[‖R‖p

[0,a] + ‖Ra‖p
[a,c] � r

]
for everyr ∈ R, as desired for (5). �
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The next proposition covers the simpler situation whenp = ∞, and follows mainly the outline of Theorem 2
in [23].

Proposition 6.Suppose thatp = +∞. LetR1, R2 be two independent copies ofR and setq = H − β > 0. Then
for everya, b � 0

(a + b)q‖R‖ � max
{
aq‖R1‖; bq‖R2‖

}
.

Proof. We need to show that for allr ∈ R

P
[
(a + b)q‖R‖ � r

]
� P

[
aq‖R‖ � r

]
P
[
bq‖R‖ � r

]
.

Setc = a + b. Again we use the∞-superadditivity of‖ · ‖ and get

‖R‖[0,c] � sup
{‖R‖[0,a],‖R‖[a,c]

}
.

Therefore,

P
[‖R‖[0,c] � r

]
� P

[‖R‖[0,a] � r,‖R‖[a,c] � r
] = E

[
1{‖R‖[0,a]�r}Pa

[‖R‖[a,c] � r
]]

for everyr ∈ R, wherePa is defined as above. By Anderson’s inequality, independence ofRa of Ga , extrapolation-
homogeneity ofR and translation-invariance of‖ · ‖, we obtain

Pa

[‖R‖[a,c] � r
] = Pa

[‖R̃a + Ra‖[a,c] � r
]
� Pa

[‖Ra‖[a,c] � r
] = P

[‖R‖[0,b] � r
]
.

Averaging backwards, we get

P
[‖R‖[0,c] � r

]
� P

[‖R‖[0,a] � r
]
P
[‖R‖[0,b] � r

]
for everyr ∈ R. Now this yields the desired inequality

P
[
cq‖R‖ � r

]
� P

[
aq‖R‖ � r

]
P
[
bq‖R‖ � r

]
,

since by self-similarity ofR and‖ · ‖
P
[‖R‖[0,t] � r

] = P
[
tq‖R‖ � r

]
for everyt � 0 andr ∈ R. �

We are now ready to proceed to the proof of Theorem 4.

3.2. Proof of Theorem 4

Again we first consider the casep < ∞. Proposition 5 yields the following decisive inequality for Lapla
transforms:

E
[
exp−(a + b)q‖R‖p

]
� E

[
exp−aq‖R‖p

]
E

[
exp−bq‖R‖p

]
for everya, b � 0 andq = p(H − β) as above. This entails that the functionΦ defined by

Φ(h) = logE
[
exp−hq‖R‖p

]
for everyh � 0, is a continuous negative function which satisfiesΦ(a + b) � Φ(a) + Φ(b) for everya, b � 0.
By the standard subadditivity argument, we obtain

lim
Φ(h) = inf

Φ(h) = −C ∈ [−∞,0)

h→∞ h h�0 h
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and, returning to the Laplace transform,

lim
λ→+∞λ1/q logE

[
exp−λ‖R‖p

] = −C.

Notice thatq > 1 by assumption. Hence we can apply de Bruijn’s exponential Tauberian theorem (see
rem 4.12.9 in [6], or Theorem 3.5 in [26] for a more comfortable formulation), which yields

lim
ε→0

ε1/(q−1) logP
[‖R‖p � ε

] = −K = −(q − 1)(C/q)q/(q−1),

and finally

lim
ε→0

εγ logP
[‖R‖ � ε

] = −K ∈ [−∞,0)

with γ = (H − β − 1/p)−1. This completes the proof of Theorem 4 whenp < +∞.
In the casep = +∞ we do not even need Laplace transform, since it follows directly from Proposition 6

the function

Φ(h) = logP
[‖R‖ � hβ−H

]
is subadditive. Again this entails

lim
h→∞

Φ(h)

h
= inf

h�0

Φ(h)

h
= −K ∈ [−∞,0),

and we obtain

lim
ε→0

εγ logP
[‖R‖ � ε

] = −K ∈ [−∞,0)

with γ = (H − β)−1, as desired whenp = +∞. �

4. Lower bounds: finiteness of the constant for continuous RLP

In this section we obtain a suitable lower bound for small deviation probabilities which will allow us to p
under certain conditions, that the constantK from Theorem 4 is actually finite whenever‖ · ‖ ∈ L(β,p) as well.
Unfortunately, our method is only efficient in thecontinuouscase, i.e. when

α = 2 or H > 1/α.

An explanation for this understandable, but important restriction onR will be given later. Our result reads a
follows:

Theorem 7. Let ‖ · ‖ ∈ L(β,p) and R be a continuousα-stable RLP with Hurst parameterH . Suppose tha
H > β + 1/p if α = 2 andH > β + 1/p + 1/α if α < 2. Then

lim inf
ε↓0

εγ logP
[‖R‖ � ε

]
> −∞, (6)

with γ = (H − β − 1/p)−1.

Combining Theorem 4 and Theorem 7 yields readily the following fairly general small deviation theore
continuous Riemann–Liouville processes:
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Corollary 8. Let ‖ · ‖ ∈ N(β,p) and R be a continuousα-stable RLP with Hurst parameterH . Suppose tha
H > β + 1/p if α = 2 andH > β + 1/p + 1/α if α < 2. Then there existsK ∈ (0,∞) such that

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K,

with γ = (H − β − 1/p)−1.

We stress that if the parameterH is not too large, more precisely ifH < 2, then it is possible to obtain the low
bound for small deviation probabilities under a weaker assumption than‖ · ‖ ∈ L(β,p). Here we just need tha
‖ · ‖ ∈ L̃(β,p) with respect to

Ψ = {
ψjn = ψ(2j t − n + 1), 1� n � 2j , j � 0

}
,

the Schauder system generated by the triangular functionψ(t) = 1[0,1](t)(1− |2t − 1|).
Notice that on each levelj the supports of the functionsψjn have disjoint interiors, so that here‖ · ‖ ∈ L̃(β,p)

w.r.t. Ψ simply means that∥∥∥∥∥
2j∑

n=1

xnψjn

∥∥∥∥∥ � Cp2βj

(
2j∑

n=1

|xn|p
)1/p

for p < +∞, with an obvious modification forp = ∞. We have an analogous result to Theorem 7:

Theorem 9.Let ‖ · ‖ ∈ L̃(β,p) w.r.t. Schauder system andR be a continuousα-stable RLP with Hurst paramete
H < 2. Suppose thatH > β + 1/p if α = 2 andH > β + 1/p + 1/α if α < 2. Then

lim inf
ε↓0

εγ logP
[‖R‖ � ε

]
> −∞,

with γ = (H − β − 1/p)−1.

And, of course, we get the corresponding corollary:

Corollary 10. Let‖ ·‖ ∈ Ñ(β,p) w.r.t. Schauder system andR be a continuousα-stable RLP with Hurst paramete
H < 2. Suppose thatH > β + 1/p if α = 2 andH > β + 1/p + 1/α if α < 2. Then there existsK ∈ (0,∞) such
that

lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K,

with γ = (H − β − 1/p)−1.

Remark. The assumptionH < 2 is rather restrictive and this is why the Schauder basis is not always a suf
tool. For example, ifα < 1/2, thenH < 2 is incompatible with the continuity assumptionH > 1/α, thus for small
α we get nothing from Theorem 9; recall however that Theorem 7 still works.

4.1. Decorrelating stable arrays

In this paragraph we prove a crucial lower bound, which is a generalization of Lemma 2.1 in [42] to ar
symmetricα-stable random variables, and which will be useful for both Theorems 7 and 9. It relies on a ver
Šidák’s inequality for stable variables recently obtained in this framework by G. Samorodnitsky [35].
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Lemma 11.LetM,h > 0 and{yjn, 1� n � M2hj , j � 0} be an array of identically distributed symmetric joint
α-stable random variables. Letz, δ > 0 be such thatδ < z if α = 2 and δ < z − h/α if α < 2. Let m > 0 be an
integer and set

dj = dj (m) = 2z(j−m)−δ|j−m|.
Then there exists a constantC depending only onM , h, z, δ such that

P
[|yjn| � dj , 1� n � M2hj , j � 0

]
� exp−C2hm.

Proof. Up to normalization, the caseα = 2 is just the statement of Lemma 2.1 in [42]. Hence we can concen
on the caseα < 2, and first notice that Lemma 2.1 in [35] entails the following decorrelation inequality:

P
[|yjn| � dj , 1� n � M2hj , j � 0

]
�

∏
j�0

P
[|y| � dj

]M2hj

,

wherey is some symmetricα-stable random variable. We can decompose the right-hand side into

∏
j�0

P
[|y| � dj

]M2hj =
( ∏

j�m

P
[|y| � dj

]M2hj
)(

m−1∏
j=0

P
[|y| � dj

]M2hj

)
.

To estimate the infinite product, we use the following well-known tail behavior ofy (see e.g. Property 1.2.1
in [36]):

lim
r↑+∞ rα

P
[|y| > r

] = K1 ∈ (0,+∞). (7)

This yields

log
∏
j�m

P
[|y| � dj

]M2hj = M
∑
j�m

2hj log
(
1− P

[|y| > dj

])

� −C
∑
j�m

2hj
P
[|y| > 2(z−δ)(j−m)

]

� −C
∑
j�m

2hj2−α(z−δ)(j−m)

� −C2hm,

where in the last inequality we usedh − α(z − δ) < 0. The estimate of the finite product is even simpler. Sincy

has a positive density in the neighbourhood of the origin, we have

lim
ε↓0

ε−1
P
[|y| � ε

] = K2 ∈ (0,+∞).

This entails

log
m−1∏
j=0

P
[|y| � dj

]M2hj = M

m−1∑
j=0

2hj logP
[|y| � dj

]

� −C

m−1∑
j=0

2hj
(
1+ log(2(z+δ)(m−j))

)

� −C2hm
m−1∑
j=0

(m − j)2h(j−m)

� −C2hm,
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where in the last inequality we usedh > 0. Putting everything together now yields

P
[|yjn| � dj , 1� n � M2hj , j � 0

]
� exp−C2hm

for a constantC not depending onm. �
Remark. In the non-Gaussian case, it is easy to see that the conditionδ < z−h/α is also necessary, because of
heavy tails ofα-stable random variables: indeed, if theyjn’s are mutually independent and ifz = δ + h/α, then it
follows from (7) that

P
[|yjn| � dj , 1� n � M2hj , j � 0

] = 0.

4.2. Some elements of wavelet theory

The proof of Theorem 7 relies mainly on a suitable wavelet decomposition ofR, which we recall here for the
sake of completeness. In this paragraph we fix once and for all a semi-norm‖·‖ ∈ L(β,p) which is�-smooth-finite,
andR a continuous RLP satisfying the assumptions of Theorem 7.

There exist two functionsϕ,ψ ∈ C�
K) (“wavelet parents”) such thatψ has vanishing moments up to order�:

∞∫
−∞

tkψ(t) dt = 0, 0� k � �, (8)

and such that the wavelet functions{ψjn, n ∈ Z, j � 1} and{ϕn, n ∈ Z}, respectively defined by

ψjn(t) = 2j/2ψ(2j t − n) and ϕn(t) = ϕ(t − n),

form an orthogonal base ofL2(R). We refer to Daubechies’ construction [15], Section 6.4 for the definition
Section 7.1 for smoothness properties of these compactly supported wavelets. A useful book is also [31].

Fix [−D,D] an interval containing the supports ofψ andϕ. ConsiderI , the integration operator on compac
supported functions:

If (t) =
t∫

−∞
f (s) ds

for every suchf andt ∈ R. We setI0 for the identity operator andI k for thekth iteration ofI , k � 1. Since for
everyk � 0

I k+1f (t) = 1

k!
t∫

−∞
f (s)(t − s)k ds,

the moment condition (8) onψ entails that the functionsI kψ are also supported by the interval[−D,D] for
0� k � �. In particular,

I kψ(±D) = 0, 0� k � �. (9)

Since under our assumptionsR is continuous, the process1[0,2D+1]R belongs a.s. toL2(R) (actually a weake
assumptionH > 1/α − 1/2 would suffice here, see [36, Chapter 11]). Hence, we can write its wavelet decom
tion:

1[0,2D+1]R =
∑∑

rjnψjn +
∑

rnϕn, (10)

j�1 n n
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rjn =
2D+1∫
0

R(s)ψjn(s) ds and rn =
2D+1∫
0

R(s)ϕn(s) ds.

Actually more can be said about the convergence of the series on the right-hand side in (10). Namely, ag
our assumption onH , it is well-known thatR is locally η-Hölder for someη > 0 [20,43], and in particular th
function R coincides on[−D,3D + 1] with an L2-function which isglobaly η-Hölder. We know then (see e.
Theorem 7 in [31, Chapter 6]) that the series (10) converges toR uniformlyon [0,1].

Besides, in (10) we can delete eachψjn andϕn whose support does not overlap with[0,1], and the remaining
series still converges toR uniformly on[0,1]. More precisely, forj � 1 letNj be the set of all positive integersn
such that the support ofψjn overlaps with[0,1]. Similarly, letN0 denote the set of all positive integersn such that
the support ofϕn overlaps with[0,1]. We have, uniformly on[0,1],

R =
∑
j�1

( ∑
n∈Nj

rjnψjn

)
+

∑
n∈N0

rnϕn.

We will need two elementary properties of the family{Nj }. First, sinceϕ andψ have compact support, we ha
an exponential bound of the array’s size: there exists a constantM depending only onD such that for allj

sup
n∈Nj

|n| � M2j . (11)

Second, for allj � 0 and alln ∈ Nj the support ofψjn overlaps with[0,1] and its length is bounded by 2D.
Hence,ψjn vanishes on[2D + 1,∞) and we have

1[0,∞)ψjn = 1[0,2D+1]ψjn, j � 0, n ∈ Nj . (12)

4.3. Proof of Theorem 7

We may (and will) assume that� > H . For everyn ∈ Z we will set ψ0n = ϕn and r0n = rn for the sake of
concision. By lower semi-continuity and triangle’s inequality, we clearly have

‖R‖ =
∑
j�0

∥∥∥∥ ∑
n∈Nj

rjnψjn

∥∥∥∥.

Moreover, since the parent functions have support in[−D,D], for eachj � 0 we can split the family{ψjn, n ∈ Nj }
into [2D] + 1 subfamilies such that in each subfamily the functions have supports with disjoint interiors. Su
first thatp < +∞. The triangle inequality, condition (G) and (11) yield

‖R‖ � C
∑
j�0

( ∑
n∈Nj

|rjn|p‖ψjn‖p

)1/p

. (13)

On the one hand, by translation-invariance,β-self-similarity, contractivity and�-smooth-finiteness of‖ · ‖, it is
easy to see that for everyj,n,

‖ψjn‖ � C2(1/2+β)j (14)

for some constantC independent ofj,n. On the other hand, we can evaluate the coefficients as follows. Sta
with the definition ofr and making use of (12) we have for allj � 1, n ∈ N
jn j
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rjn =
2D+1∫
0

R(s)ψjn(s) ds =
+∞∫
0

R(s)ψjn(s) ds

= 2j/2

+∞∫
0

R(s)ψ(2j s − n)ds = 2−j/2

+∞∫
0

R(2−j s)ψ(s − n)ds

d= 2−(H+1/2)j

+∞∫
0

R(s)ψ(s − n)ds = 2−(H+1/2)j

∫
R

R(s + n)ψ(s) ds, (15)

where in the penultimate inequality we used theH -self-similarity ofR. Plugging (14) and (15) into (13) and usin
(11) yields

‖R‖ � C
∑
j�0

2−(H−β−1/p)j
(

sup
|n|�M2j

|r ′
jn|

)
, (16)

wherer ′
jn stand for therenormalizedwavelet coefficients ofR, viz.

r ′
0n = r0n and r ′

jn

d=
∫
R

R(s + n)ψ(s) ds if j � 1. (17)

Notice that one can write the wavelet coefficients from (17) in the following integral form: ifj � 1, thenr ′
jn =

τnyjn, where

τα
n =

+∞∫
0

∣∣∣∣
∫
R

(u + n − s)H
′

+ ψ(u)du

∣∣∣∣
α

ds,

H ′ = H − 1/α, and {yjn, |n| � M2j , j � 0} is an array of identically distributed symmetric jointlyα-stable
random variables. We first aim to prove

sup
n

τn < +∞. (18)

To get this uniform bound, we first recall thatψ has its support in[−D,D], so that the integral definingτα
n can be

rewritten as follows:

τα
n =

n+D∫
0

∣∣∣∣∣
D∫

−D

(u + n − s)H
′

+ ψ(u)du

∣∣∣∣∣
α

ds.

We cut the domain of integration overs into [0, n − 2D] and[n − 2D,n + D]. The first integral is given by

I1
n =

n−2D∫
0

∣∣∣∣∣
D∫

−D

(u + n − s)H
′
ψ(u)du

∣∣∣∣∣
α

ds.

We first transform
D∫

−D

(u + n − s)H
′
ψ(u)du

through� successive integrations by parts. Recalling (9), we see that each time the border termsImψ(±D), 0�
m � �, vanish. In the end, we obtain
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I1
n = C

n−2D∫
0

∣∣∣∣∣
D∫

−D

(u + n − s)H
′−�I �ψ(u)du

∣∣∣∣∣
α

ds

� C

n−2D∫
0

(D + n − s)α(H ′−�) ds

� C

+∞∫
D

sα(H−�)−1 ds, (19)

where in the first inequality we used� > H > H ′. The integral on the right-hand side is clearly finite and indep
dent ofn.

The integral over the second domain is given, after a change of variable, by

I2
n =

3D∫
0

∣∣∣∣∣
D∫

−D

(u + 2D − s)H
′

+ ψ(u)du

∣∣∣∣∣
α

ds � C

3D∫
0

( 3D∫
0

uH ′
du

)α

ds. (20)

Recall thatH ′ > 0 for α < 2 andH ′ > −1/2 for α = 2. Therefore, the integral on the right-hand side is again fi
and independent ofn. Putting (19) and (20) together yields (18) as desired.

The following upper bound on‖R‖ is a direct consequence of (16) and (18):

‖R‖ � C
∑
j�0

2−(H−β−1/p)j
(

sup
1�|n|�M2j

|yjn|
)
, (21)

where{yjn, |n| < M2j , j � 0} is an array of identically distributed symmetric jointlyα-stable random variable
on R.

The end of the proof is now standard and follows [42, Theorem 3.1]. Chooseδ > 0 such that{
δ < H − β − 1/p if α = 2,
δ < H − β − 1/p − 1/α if α < 2.

Let m be a positive integer. Set

dj = 2(H−β−1/p)(j−m)−δ|j−m| (22)

for everyj � 0. On the one hand, it is clear from (21) and (22) that{|yjn| � dj , 1� |n| � M2j , j � 0
} ⊂ {‖R‖ � C(δ)2−(H−β−1/p)m

}
.

On the other hand, it follows from Lemma 11 (withh = 1) that

P
[|yjn| � dj , 1� |n| � M2j , j � 0

]
� exp−C2m.

SinceH − β − 1/p = 1/γ , we obtain

lim inf
m→∞ 2−m logP

[‖R‖ � C(δ)2−m/γ
]
> −∞

which is equivalent to

lim inf
ε↓0

εγ logP
[‖R‖ � ε

]
> −∞,

as desired. The proof is complete in the casep < ∞. The casep = ∞ can be handled exactly in the same w
replacing (13) by

‖R‖ � C
∑(

sup
n∈N

|rjn|‖ψjn‖
)
. �
j�0 j
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Remarks. (a) It is clear from the above proof that the assumption‖ · ‖ ∈ L(β,p) is not necessary to get the low
bound. We just need‖ · ‖ ∈ L̃(β,p) w.r.t. Ψ , a wavelet family generated by parents{ϕ,ψ} that are smooth enough
But the required smoothness depends on the parameterH , and this would lead to much heavier notations. For
reason we prefer stating Theorem 7 in this form, save for the loss of generality.

(b) There is at least one example whereL̃(β,p) is really more relevant thanL(β,p). It is well-known (see
[31, Chapter 6]) that(η,p, q)-Besov semi-norms,η > 0 andp,q � 1, are equivalent to sequential norms on
wavelet coefficients. More precisely,∥∥∥∥∑

n

xnφn +
∑
j,n

xjnψjn

∥∥∥∥ ∼
(∑

n

|xn|p
)1/p

+
∥∥∥∥
{

2(η−1/p)j

(∑
n

|xjn|p
)1/p}

j�1

∥∥∥∥
�q

.

Hence, with our notations, it is clear that the(η,p, q)-Besov semi-norm belongs tõL(η−1/p,p) w.r.t. any wavelet
basisΨ . Hence, whenp = +∞, Theorem 4 yields the existence of the constant forR with γ = (H − η)−1. Note
that this rate is in accordance with the results of [42], which covered the range of parametersα = 2 and 0< H < 1
(with no restriction onp).

(c) In the Gaussian case, the�-smooth-finiteness of the semi-norm must hold when‖R‖ is a.s. finite. Indeed
if H denotes the reproducing kernel Hilbert space associated withR, then it is well known thatH contains functions
with (H + 1/2)th derivative inL2. On the other hand, from a 0–1 law for Gaussian measures on linear spac
finiteness of‖R‖ with positive probability yields that‖f ‖ < ∞ for everyf ∈ H. Hence,‖ · ‖ is �-smooth-finite
as soon as� > H + 1/2. In the non-Gaussian case, the challenging question whether‖R‖ < ∞ a.s. implies the
�-smooth-finiteness of the semi-norm remains open.

(d) For the first efficient use of wavelet methods in similar problems to small deviation probability, we re
[1] where the optimal finite-dimensional approximation of fractional Brownian motion is considered.

4.4. Proof of Theorem 9

The outline of the proof is the same as that for Theorem 7, except that we use Schauder system and pro
estimates for the corresponding coefficients. Recall that under our assumptions, 0< H < 2 in the Gaussian cas
and 1/α < H < 2 in the non-Gaussian case. Again we setH ′ = H − 1/α. We exclude the caseH ′ = 0 whereR is
Brownian motion: the result follows then directly from Theorem 1 in [41].

SinceR is continuous, we can decompose it on[0,1] along the Schauder system (see [2,41]):

Rt =
∑
j�0

Rj (t) + R1t

for everyt ∈ [0,1]. Here, for everyj � 0,

Rj (t) =
2j∑

n=1

rjnψjn(t),

where we sett0
jn = (n − 1)2−j , t1

jn = (n − 1/2)2−j , t2
jn = n2−j and

rjn = 2Rt1
jn

− Rt0
jn

− Rt2
jn

.

We first suppose thatp < ∞. Condition (̃G) entails

‖Rj‖ � C2jβ

(
2j∑

n=1

|rjn|p
)1/p

. (23)

Notice that the coefficientsr can be rewritten asr = σ y , where
jn jn jn jn
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σα
jn =

+∞∫
0

∣∣2(t1
jn − s)H

′
+ − (t0

jn − s)H
′

+ − (t2
jn − s)H

′
+

∣∣α ds (24)

(we use the notationu+ = u∧0 for everyu ∈ R), and{yjn, 1� n � 2j , j � 0} is an array of identically distribute
symmetric jointlyα-stable random variables. For each 1� n � 2j , j � 0, we will now give an upper bound onσjn

depending only onj .
If n = 1, then

σα
j1 =

2−j∫
0

∣∣2(2−(j+1) − s)H
′

+ − (2−j − s)H
′ ∣∣α ds � C

2−j∫
0

sαH ′
ds = C2−αHj .

If n > 1, then we sett−jn = (n − 2)2−j � 0 and cut the domain of integration in (24) into[0, t−jn] and[t−jn,+∞).
Reasoning as above, we see that the second integral

I2
jn =

t2
jn∫

t−jn

∣∣2(t1
jn − s)H

′
+ − (t0

jn − s)H
′

+ − (t2
jn − s)H

′ ∣∣α ds,

is bounded from above byC2−αHj . We estimate the first integral as follows:

I1
jn =

t−jn∫
0

∣∣2(t1
jn − s)H

′ − (t0
jn − s)H

′ − (t2
jn − s)H

′ ∣∣α ds

= 2−j

n∫
2

∣∣2(t1
jn − t2

jn + 2−j u)H
′ − (t0

jn − t2
jn + 2−j u)H

′ − (2−j u)H
′ ∣∣α du

= 2−αHj

n∫
2

∣∣2(u − 1/2)H
′ − (u − 1)H

′ − uH ′ ∣∣α du

� C2−αHj

∞∫
2

u(H ′−2)α du

= C2−αHj ,

where the last equality comes fromH < 2. Putting everything together yields now

σjn � C2−Hj

and, recalling (23),

‖Rj‖ � C2(β+1/p−H)j
(

sup
1�n�2j

|yjn|
)
. (25)

By lower semi-continuity and triangle’s inequality, this entails

‖R‖ � C

(
|R1| +

∑
j�0

2(β+1/p−H)j
(

sup
1�|n|�M2j

|yjn|
))

and sinceR has a symmetricα-stable law, we can finish the proof as in Theorem 7.�
1
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Remarks. (a) In the latter proof, the estimate onI1
jn becomes too crude whenH � 2. This is the principal reaso

why we need to introduce smoother wavelets in Theorem 7.
(b) As we said before, the proofs of Theorems 7 and 9 work only for continuous processes. The main re

this comes from Lemma 11. On the one hand, the exclusion of the boundary valuez = δ +h/α in the non-Gaussia
case cancels the important caseH = 1/α. On the other hand, Šidák’s inequality handles the‖Rj‖’s as if they were
independent. But if R is discontinuous, then it is possible that its jumps have a significant influence on ever
Rj , so that our estimate of the series

∑
j ‖Rj‖ may not be realistic anymore.

(c) In the non-Gaussian case and whenH < β + 1/p + 1/α, it is easy to see that the statements of Theorem
and 9 are false, even ifH > β + 1/p. Suppose for example thatH < 1/α. It is well-known (see [36, Chapter 10
that a.s.

sup
0�t�1

|Rt | = +∞,

so that Theorems 7 and 9 cannot hold with respect to the supremum norm (i.e.K = +∞ in Theorem 4), although
hereβ = 0 andp = +∞. Similarly, if H = 1/α, then clearly

sup
0�s<t�1

( |Rt − Rs |
|t − s|η

)
= +∞ a.s.

for everyη > 0, so that Theorems 7 and 9 cannot hold with respect to anyη-Hölder semi-norm (β = η, p = +∞).
It is natural to conjecture that these two theorems remain true in full generality whenH = β + 1/p + 1/α, but in
view of the above Remark (b), we probably need different methods.

5. Lower bounds for LMP: finiteness of the constant for continuous LFSM

Our aim in this section is to extend Theorem 9 toX, the continuous LFSM which we defined in Section
Recall thatX admits an independent decompositionX = R + M whereR (resp.M) is an RLP (resp. an LMP
with the same parameters. The following theorem can be viewed as a generalization of Lemma 3.2 in [23]

Theorem 12. Let ‖ · ‖ ∈ L̃(β,p) w.r.t. the Schauder system andM be an LMP with parametersα ∈ (1,2],
H ∈ (1/α,1). Suppose thatH > β + 1/p if α = 2 andH > β + 1/p + 1/α if α �= 2. Then

lim
ε↓0

εγ logP
[‖M‖ � ε

] = 0,

whereγ = (H − β − 1/p)−1.

Using Theorems 4 and 9 along with the elementary independence argument developed in [23, p
Theorem 12 yields readily the desired small deviation theorem forX:

Theorem 13.Let ‖ · ‖ ∈ Ñ(β,p) w.r.t. the Schauder system andX be a continuous LFSM with parametersα ∈
(1,2], H ∈ (1/α,1). Suppose thatH > β + 1/p if α = 2 andH > β + 1/p + 1/α if α �= 2. Then

lim
ε↓0

εγ logP
[‖X‖ � ε

] = lim
ε↓0

εγ logP
[‖R‖ � ε

] = −K,

whereK ∈ (−∞,0), γ = (H − β − 1/p)−1 andR is the RLP associated toX.

We now proceed to the proof of Theorem 12, which is quite analogous to the proof of Theorem 9, exc
our estimates of the Schauder coefficients will not be uniform in time-argument sinceM has a singularity at 0.



M. Lifshits, T. Simon / Ann. I. H. Poincaré – PR 41 (2005) 725–752 745

e

5.1. Proof of Theorem 12

Again we setH ′ = H − 1/α ∈ (−1,1) and exclude the trivial situation whenH ′ = 0. SinceM is continuous,
we can decompose it on[0,1] along the Schauder system: for everyt ∈ [0,1]

Mt =
∑
j�0

Mj (t) + M1t,

where

Mj (t) =
2j∑

n=1

mjnψjn(t)

andmjn = 2Mt1
jn

− Mt0
jn

− Mt2
jn

as in the proof of Theorem 9. We first consider the casep < +∞. Condition (̃G)

entails

‖Mj‖ � C2βj

(
2j∑

n=1

|mjn|p
)1/p

(26)

and we just need to evaluate the coefficientsmjn = σjnyjn, where

σα
jn =

+∞∫
0

∣∣2(s + t1
jn)

H ′ − (s + t0
jn)

H ′ − (s + t2
jn)

H ′ ∣∣α ds

= 2−Hαj

+∞∫
0

∣∣2(u + n − 1/2)H
′ − (u + n − 1)H

′ − (u + n)H
′ ∣∣α du,

and{yjn, 1 � n � 2j , j � 0} is an array of identically distributed symmetricα-stable random variables. Notic
first that from the so-called Cooper’s formula

2(u + n − 1/2)H
′ − (u + n − 1)H

′ − (u + n)H
′ = −H ′(H ′ − 1)

1/2∫
0

u+n−1/2+θ∫
u+n−1+θ

vH ′−2 dv dθ.

Clearly, sinceH ′ < 2, this entails∣∣2(u + n − 1/2)H
′ − (u + n − 1)H

′ − (u + n)H
′ ∣∣ � C min

{
(u + n − 1)H

′−2,1
}
.

We now fix someh ∈ (0,1) and first estimateσjn when 2hj < n � 2j :

σα
jn � C2−Hαj

+∞∫
0

(u + n − 1)α(H ′−2) du

� C2−Hαj (n − 1)α(H ′−2)+1 = C2−Hαj2−hα(2−H)j . (27)

The estimate ofσjn when 1� n � 2hj is even simpler:

σα
jn � C2−Hαj

( +∞∫
1

uα(H ′−2) du +
1∫

0

C du

)
� C2−Hαj . (28)

Recalling (26), we get
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‖Mj‖ � C2βj

(
2hj∑
n=1

σ
p
jn +

2j∑
n=2hj +1

σ
p
jn

)1/p

sup
1�n�2j

|yjn|

� C2−(H−β)j (2hj + 2j 2−h(2−H)pj )1/p sup
1�n�2j

|yjn|.

The balance is attained ath = (1+ (2− H)p)−1 ∈ (0,1), whence

‖Mj‖ � C2−(H−β−h/p)j sup
1�n�2j

|yjn|. (29)

Using (29) instead of (25), we can proceed as in the proof of Theorem 9 and obtain

lim inf
ε↓0

εγ ′
logP

[‖M‖ � ε
]
> −∞,

with γ ′ = (H − β − h/p)−1 < γ . In particular

lim inf
ε↓0

εγ logP
[‖M‖ � ε

] = 0,

which completes the proof of Theorem 12 forp < ∞.
The casep = +∞ requires more careful estimates. Condition (G̃) entails

‖Mj‖ � C2βj sup
1�n�2j

|mjn|. (30)

Again we fix someh ∈ (0,1). Using (30), (27), and (28) we can write,

‖Mj‖ � C2βj sup
1�n�2j

σjn|yjn| � C2−(H−β)j
(

sup
1�n�2hj

|yjn| + 2−h1j sup
2hj <n�2j

|yjn|
)
,

where we seth1 = (2− H)h. For every integerm > 0 we focus on the event

Ωm = {|yjn| � djn(m), 1� n � 2j , j � 0
}

where we setm1 = [m/h], δ ∈ (0,H − β) and

djn(m) =
{

2(H−β)(j−m1)−δ|j−m1| if 1 � n � 2hj ,
2(H−β+h1)(j−m)−δ|j−m| if 2hj < n � 2j .

Take nowh1 small enough such that

H − β < H − β + h1 < (H − β)/h.

On the one hand, it is clear that

Ωm ⊂
{∑

j�0

‖Mj‖ � C2−(H−β+h1)m

}
. (31)

On the other hand, it follows from decorrelation argument of Lemma 11 that

logP[Ωm] � −C(2hm1 + 2m) � −C2m. (32)

Using (31) and (32), we can now finish the proof exactly as in the casep < +∞. �
Remarks. (a) Contrary to [23], the above proof does not require any entropy argument and relies only
elementary estimate of the Schauder coefficients.

(b) It would be quite interesting to calculate the optimal rate

γ0 = inf
{
γ > 0 | lim

ε↓0
εγ logP

[‖M‖ � ε
] = 0

}
.

We did not study this question but it seems plausible thatγ0 = 0: indeed,M is aC∞ process on(0,+∞), and one
may expect subexponential rate for its small deviation probabilities.
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6. Examples: particular semi-norms

In this section, we place all our results in the context of the previous literature, and show what is new. W
be as exhaustive as possible as far as RLP’s and LFSM’s are concerned. We refer to the surveys [26,27]
information about other processes and for further references.

EverywhereR (resp.X) will be an RLP (resp. an LFSM) with Hurst parameterH > 0 and stability index
α ∈ (0,2], whereas‖ · ‖ will be a semi-norm inN(β,p) or Ñ(β,p) for someβ ∈ R andp ∈ (0,+∞]. We always
suppose thatH > β + 1/p and setγ = (H − β − 1/p)−1 for our small deviation rate.K will stand for the small
deviation constant appearing on the right-hand side of Theorem 4. Sometimes we will call them just “the ra
“the constant”. Let us begin with the most classical case, which deserves of course a particular mentionin

6.1. Brownian motion

Brownian motionB is an RLP (or an LFSM) with parametersH = 1/2 andα = 2, hence it clearly satisfie
the assumptions of Corollary 10 (or Theorem 13). Notice that here our Theorem 9 just amounts to Stolz
bound criterion (Theorem 1 in [41]), so that in the present paper the originality comes only from Theo
Corollary 10 entails the existence of Brownian small deviation constants under almost all classical sem
(with the regrettable exception of certain Besov semi-norms for which we were unable to prove the app
superadditivity index). In other words, we get limε↓0 εγ logP[‖B‖ � ε] = −K ∈ (−∞,0), where the dependenc
of γ on the semi-norm‖ · ‖ is given by the following table:

‖ · ‖ γ

Supremum 2
Lp 2
η-Hölder 2/(1− 2η)

p-variation 2p/(p − 2)

(η,p)-Sobolev 2/(1− 2η)

(η,∞, q)-Besov 2/(1− 2η)

The existence of a finite small deviation constant for Brownian motion underLp and supremum norms is
very classical result, and in this situation the constantK can even be more or less explicitly computed (see [8
and the references therein). The existence of the constant under Hölder semi-norms was first proved by B
Roynette [2] – see also [21], and it is actually a direct consequence of Stolz’s upper bound criterion (The
in [41]) and of the standard subadditivity argument involving the Markov property of Brownian motion. I
three last examples, Stolz’s results do provide the right rate, viz.

−∞ < lim inf
ε↓0

εγ logP
[‖B‖ � ε

]
� lim sup

ε↓0
εγ logP

[‖B‖ � ε
]
< 0

with the above correspondingγ , but here the existence of the limit does not follow directly. In these three c
our result seems to be new.

It is of course a challenging problem tocomputethese new Brownian constants. As a rule, this kind of (ha
problems requires analytical techniques depending heavily on the choice of the semi-norm, and it seems
to find a universal solution.

We stress that the above table matches quite accurately the sample path properties of Brownian mo
well-known thatB is η-Hölder if and only ifη < 1/2 and has finitep-variation if and only ifp > 2. Besides, it has
finite (η,p)-Sobolev semi-norm if and only ifη < 1/2 [14].
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Besov semi-norms deserve a special remark since no necessary and sufficient conditions seem to be
Roynette [33] had proved that Brownian motion has finite(η,p, q)-Besov semi-norm whenever one of the th
following situations occurs:

η p q

< 1/2 > 1/η � 1
< 1/2 = 1/η = 1
= 1/2 > 2 = +∞

Notice that the latter situation is rather specific, since here small deviation probabilities vanish whenε is small
enough, thus the investigation is pointless.

We are able to prove the existence of a finite small deviation constant in the following situation:

η p q

< 1/2 = +∞ � 1

6.2. Gaussian fractional processes

In this paragraphα = 2 andH > 0, the Brownian caseH = 1/2 being implicitly excluded. Up to normalizatio
constant our processX is the usual fractional Brownian motion, whileR can be viewed as the fractionally integrat
Brownian motion. Before stating our results, we will give a list of local properties ofR, most of which are classica
As we mentioned in Section 2, all these local properties remain true forX as soon asH < 1.

R is η-Hölder (resp.η-Lipschitz) if and only ifH > η. In particular,R has finitep-variation if H > 1/p and
only if H � 1/p (the boundary value being excluded whenH � 1/2 – see Theorem 5.4 in [17], but the situati
H = 1/p < 1/2 seems to have escaped investigation). Finally,R has finite(η,p)-Sobolev semi-norm if and onl
if H > η [14].

Less is known about Besov semi-norms. In [13], Proposition 4.1 and Theorem 4.3, it is proved that ifH < 1 and
0< 1/p < η, thenX has finite(η,p,∞)-Besov semi-norm if and only ifH � η (whenH = η, the small deviation
probabilities vanish for smallε).

With the same notations as in the preceding paragraph, the following table is a direct consequence of Co
and of Remark (b) at the end of Section 4.3. Recall that it is available forR and for X with the same finite
constantK, as soon asH > β + 1/p.

‖ · ‖ γ

Supremum 1/H
Lp 1/H

η-Hölder 1/(H − η)

p-variation p/(Hp − 1)

(η,∞, q)-Besov 1/(H − η)

If in additionH < 2, then we can add another line:

‖ · ‖ γ

(η,p)-Sobolev 1/(H − η)
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The existence ofK for X under the supremum norm was established in [23], [37] and [38]. In [23], it is
proved forR whenH < 1. WhenH � 1, the existence ofK is mentioned in [24]. UnderLp-norms, the right
rate forR can be found in [3]. Specialists seem to be aware of the existence of the constant [29], but up
knowledge this is not explicitly proved in literature. Notice that the casep = 2 is rather special because of
Hilbert space background. Quite recently, theexactvalue ofK under theL2-norm was found for integrated Wien
process [11,19], and for fractional Brownian motion [9]. Finally, we refer to [22] for non sharp small ball esti
under the Hölder norm for a large class of stationary Gaussian processes, and to [25] for sharp small ball e
under Sobolev type norms for certain Gaussian processes including fBm. Our results recover everythin
done for gaussian RLP and fBM, sometimes in a sharper form, and provide new estimates in the Besov ca

6.3. Non-Gaussian stable Lévy processes

Non-Gaussian symmetricα-stable Lévy processes are RLP’s with parametersα < 2 andH = 1/α. They have
a.s. discontinuous sample paths, hence in the present paper they are only concerned by Theorem 4.

Recall that they have finitep-variation if and only ifp > α [7]. In the case 1< α < 2, it is shown in [13]
Theorem 6.1 that they have finite(1/α,p,∞)-Besov norm if and only if 1� p < α.

Our Theorem 4 yields the following table which can be read as in the preceding paragraph, except that
know nothinga priori about the finiteness ofK.

‖ · ‖ γ

Supremum α

Lp α

p-variation αp/(p − α)

Under the supremum norm, the finiteness ofK dates back to Taylor [44] and Mogulskii [32]. See also
for the computation ofK in the completely asymmetric case, and [10] for applications to functional laws o
iterated logarithm. Notice that in this case the existence ofK follows readily from the Markov property, so that o
Theorem 4 is a bit useless here. UnderLp-norms, the existence and the finiteness ofK seems to belong to som
ancient folklore, but we could not find any precise reference in the literature. We remark that this follows
from Theorem 4 and Taylor–Mogulskii’s lower bound. Z. Shi also indicated us that in this case the problemLp-
small deviations can be reduced to some specific large deviation probabilities for occupation measures wh
previously studied by Donsker and Varadhan. It is shown in [39] that the casep = 2 is again rather specific since
can be derived from theLp-small deviations of Wiener process, thanks to an identity in law due to Donati-M
Song, and Yor [16]. Finally, we refer to [40] for the finiteness ofK under thep-variation norm.

6.4. Non-Gaussian fractional processes

In this paragraphα < 2 andH > 0, the caseH = 1/α being implicitly excluded. As in the Gaussian framewo
we begin with listing local properties ofR, most of which can be found in the monograph [36]. Again, all th
local properties remain true forX when it is well-defined.

R is sample-bounded iffH � 1/α and belongs locally toLp if and only if H > 1/α −1/p. R is η-Hölder (resp.
η-Lipschitz) if and only ifH � η + 1/α. This latter fact is less classical and was proved forX by Takashima [43]
(see also [20]). Notice that the “if” part is quite straightforward from

|Rt − Rs | � C‖Z‖∞|t − s|min{1,H−1/α}, H � 1/α

for all s, t ∈ [0,1]. It is interesting to note that contrary to the Gaussian case, the boundary valueη = H − 1/α is
included here. In particular, this entails thatR has finitep-variation if and only ifH � 1/p + 1/α [12].
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Nothing seems to be known about Sobolev or Besov semi-norms. From Hölder continuity, we see thaR has
finite (η,p)-Sobolev semi-norm ifH > η + 1/α, yet this does not seem to be a sharp estimate.

WhenR is continuous and whenH > β + 1/p + 1/α, we get exactly the same tables as in Section 6.2.
The only result which we are aware of in this direction is due to G. Samorodnitsky [35], who had given ju

less precise bounds in the small deviation problem for LFSM’s(1/α < H < 1) under the supremum norm. In th
present paper we find the right rate, prove that the constant exists, and our condition onH is the best possible sinc
R is not bounded anymore whenH < 1/α. In general, our results match quite accurately the local sample
properties ofR. Namely, except for Sobolev and Besov norms, the only situations which are not covered
critical values ofH w.r.t. Hölder andp-variation semi-norms.

WhenR is not continuous, i.e. whenH < 1/α, the only relevant classical semi-norms are theLp-norms, as
soon asH > 1/α − 1/p. Our Theorem 4 yieldsγ = 1/H but nothing is known about the finiteness of the cons
K. We believe that 1/H is still the right rate in this situation.

7. Concluding remarks

(a) In general, it is not true thatH is the only parameter of a self-similar stable process which is involved i
exponential behavior of its small deviation probabilities. Indeed, [35] delivers an example of anα-stable,H -sssi
process whose small deviation rate depends both onH andα. Let us also recall the general results of [34] ab
stable measures, which entail that

γ � α

1− α

for arbitraryα-stable processes with 0< α < 1.
(b) Thesymmetryassumption on the stable processes is a crucial one, since our proofs are heavily base

Gaussian results: Anderson’s and Šidák’s inequalities. Nevertheless, it seems likely that everything remain
soon asZ is not a subordinator.

(c) Theorem 4 can be easily extended to multi-dimensional RLP’s having some symmetry, since th
have the crucial extrapolation-homogeneity property. However, modifying the proof of Theorem 7 in a
dimensional context raises technical difficulties related to Šidák’s inequality.

(d) As we indicated before, there are many different generalizations of fractional Brownian motion in
Gaussian case. If̃X is the well-balanced linear fractional stable motion defined in (3), then the proof of Theo
fails in the absence of extrapolation-homogeneity. However, we believe that the rates should be the same

(e) Although our results are designed for nice translation-invariant semi-norms, it is worthwhile to m
that there exist elaborated techniques concerning norms that are not translation-invariant. See especially
and [39], where weightedLp-norms are handled respectively for Brownian motion, fractional Brownian mo
and symmetricα-stable processes.
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