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Abstract. We present two randomized algorithms. One solves linear programs 
involving m constraints in d variables in expected time O(m). The other constructs 
convex hulls of n points in Nd, d > 3, in expected time O(nln/2l). In both bounds d is 
considered to be a constant. In the linear programming algorithm the dependence 
of the time bound on d is of the form d!. The main virtue of our results lies in the utter 
simplicity of the algorithms as well as their analyses. 

1. Introduction 

One of the more exciting achievements in the theory of linear programming was 
accomplished in a series of papers by Megiddo and by Dyer, in the beginning of 
the last decade [M1], [M2], [D1], [D2], who showed that if d, the number of 
variables in a linear program, is considered a constant, then the linear program 
can be solved in time that is linear in m, the number of its constraints. These new 
algorithms were extremely complex, and, unfortunately, the running time of these 
algorithms depended on d in a superexponential way: for Megiddo's original 
algorithm [M2] the dependence was doubly exponential; subsequently, this was 
somewhat improved by Clarkson and by Dyer to a dependence of the form 3 d2 
I f 1 ] ,  [D2]. 

More recently a number of randomized algorithms have been proposed [DF],  
[C2], where the most interesting one, due to Clarkson, has a remarkable expected 

running time of O(dZm) + (log m)O(d) n/2 +o~1) + O(d4x/-m log m). That algorithm is 
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relatively straightforward, however, the analysis of its expected running time is 
somewhat involved. 

In the first part of this paper we present an exceedingly simple linear pro- 
gramming algorithm whose expected running time is O(d! m). The analysis of its 
expected complexity is completely elementary and matches the algorithm in its 
simplicity. 

The second part of this paper concerns the problem of constructing the con- 
vex hull of n points in ~d. For dimension d _< 3 this problem was essentially 
solved by the late seventies I-G], [PH].  For d > 3 a number of deterministic 
algorithms have been proposed [CK], [K], [Sw], IS1], [$2], where the best time 
bounds achieved were O(nfd/21), if measured in terms of input size n only, or 
O(n z + F log n), if measured in terms of input size n and output size F, the number 
of faces produced IS1], [$2] (d is considered a constant here). 

In this paper we are only concerned with the case where d > 3 is a constant 
and where the running time is to be bounded by the input size only. Here the 
main open question has been whether it is possible to achieve a bound of O(ntd/eJ), 
which would be worst-case optimal as the convex hull of n points in ~d can have 
this many faces. So far there has been no success with deterministic algorithms. 
However, recently Clarkson and Shor [CS] proposed a randomized algorithm 
with O(n Ld/2j) expected running time. 

In this paper we propose another randomized algorithm with the same 
performance. Our algorithm is similar to the one of Clarkson and Shor in that it 
is incremental. However, we avoid having to maintain so-called conflict graphs, 
which simplifies our algorithm and allows a very straightforward and elementary 
analysis of its expected running time. 

The analyses of the expected running times of both algorithms in this paper 
rely heavily on the same idea, which can be expressed as "analyze the algorithm 
as if it were running backwards, from output to input." This view has proved very 
useful and is more thoroughly exploited in a forthcoming paper [$3]. 

2. Linear Programming 

Geometrically, linear programming amounts to the following: we are given a set 
~ff of m half-spaces and a vector c in ~d, and we want to find an "optimum vertex" 
v of the polyhedron P g  formed by the intersection of the half-spaces in off, so 
that v maximizes the linear functional specified by c; in other words, v must be 
contained in the tangent hyperplane of P ~  whose outward normal is c. 

Consider the following strategy for finding such an optimum vertex v: Choose 
and remove a random H from the m half-spaces in off to obtain the set off'. 
Recursively compute the optimum vertex v' of P~v. (with respect to the direction 
c). From v' compute v as follows: If v' is contained in the half-space H, then clearly 
v = v', and nothing needs to be done. Otherwise v must be contained in the 
bounding hyperplane h of the half-space H. As a matter of fact, if? is the orthogonal 
projection of c into h and off----7 = {G c~ hi G ~ off'}, then v is the optimum vertex for 
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the (d - 1)-dimensional linear program specified by the half-spaces ~ '  (of h) and 
the direction 6. Thus v can be determined by recursively solving a ( d -  1)- 
dimensional problem with m - 1 constraints. (A one-dimensional problem can be 
solved straightforwardly in time proportional to the number of its constraints.) 

This is the gist of our algorithm. A number of important details still need to 
be addressed: How does the recursive procedure bot tom out? What happens if 
an "opt imum vertex" does not exist because of infeasibility or unboundedness of 
the problem? 

Let us at first dispose of the unboundedness case. We stipulate that we are not 
interested in all of B e but just some bounding box B, (i.e., we impose explicit lower 
and upper bounds -:~ _< x i < :~ on the d variables xg). This bounding box also 
provides a convenient way for dealing with the bottoming out problem: if d4 ~ is 
empty, then the optimum solution is one of the vertices of B, and it can be 
determined from the signs of the coordinates of c in O(d) time. Finally, infeasibility 
of the linear program (i.e., emptiness of P,~e') is discovered when the recursion has 
descended to the one-dimensional case. 

What would the expected running time of our algorithm be? Why expected 
running time? Recall that the algorithm starts by choosing a half-space H from 

at random. The expectation of the running time is to be taken with the 
assumption that whenever such a random choice is made each member of ~ is 
chosen equally likely. 

For the sake of analysis let us assume at first that our linear programming 
problem and all the subproblems encountered are well behaved in the sense that 
the optimum vertex is unique, and that it is the intersection of the bounding 
hyperplanes of exactly d of the given half-spaces. 

We claim that under these nondegeneracy assumptions our proposed method 
has an expected running time of O(d! m). The proof, by induction on d, proceeds 
in a nutshell as follows: In case d = 1 the problem can be solved trivially in O(m) 
time. For d > 1 it suffices to show that the expected time necessary to obtain v 
from v' is O(d!). The interesting and expensive case happens when v' and v are 
different. But note that these vertices can only be different if one of the d half-spaces 
whose bounding hyperplanes define v is H. Since /4 was chosen from the 
m half-spaces in ~ uniformly at random, it follows that v is different from v' 
with probability dim (at most, since some of the d hyperplanes defining v 
might derive from the bounding box B,). By inductive assumption the expected 
cost of solving the ensuing (d - 1)-dimensional linear program with rn - 1 con- 
straints is O((d - 1)! (m - 1)). Thus the expected cost of obtaining v from v' is 
(d/m).O((d - 1)! (m - 1)), which is O(d!), as claimed. 

What  about our nondegeneracy assumptions? We enforce uniquencess of the 
opt imum vertex v by requiring that it be the vertex of B, c~ P ~  that maximizes 
the inner product with c and that has the lexicographically largest coordinate 
representation. Note that for the analysis of the running time of the algorithm it 
is crucial that v is defined uniquely and canonically with respect to ~ff. 

Finally, the assumption that v be the intersection of the bounding hyperplanes 
of exactly d half-spaces can be dropped altogether. However many half-spaces of 
o~ are involved in the definition of v, among them there can be at most d 
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half-spaces H with the property that the opt imum vertex for Jg \{H} is different 
from v. 

We summarize: 

Theorem 1. Using the randomized method outlined in this section a linear program 
with m constraints in d variables can be solved in expected time O(d! m). 

Proof. We just tidy up the analysis of the expected running time of our procedure. 
Assuming that testing whether a point is contained in a half-space takes O(d) time, 
that projecting a d-vector orthogonally into a hyperplane takes O(d) time, and 
that determining the intersection of a half-space in ~d with a hyperplane takes 
O(d) time also, the expected running time T(d, m) for our procedure satisfies 

O(m) 

T(d, m) < {O(d) 
d d 

T(d, m - 1) + O(tO + - O(dm) + - T(d -- 1, m -- 1) 
m m 

if d = l ,  

if m = l ,  

otherwise. 

It is now easy to check that T(d, m) = 0 ( ~  <,<a(i2/i!)d! m), which is O(d! m) since 
the sum converges even without an upper bound for i. []  

The reader might object to our method of enforcing boundedness by imposing 
explicit lower and upper bounds on the variables. The number ~ might be chosen 
too small so that the bounding box B, does not contain the opt imum vertex of 
P ~ ;  or it might also be important  to determine whether P~r is unbounded in the 
objective direction c. 

There are at least two ways of dealing with such problems. One approach would 
be to amend the notion of "op t imum solution" for a linear program: if P~v is 
bounded in the c-direction, then, as before, the opt imum solution is a canonical 
vertex of P~e that maximizes the inner product with c; otherwise the opt imum 
solution is a canonical direction in the recession cone of P Jr for which the unit 
vector maximizes the inner product with c. 

Another approach would be to continue using a bounding box B,. However, 
we do not choose ~ explicitly but we use for ~ an indeterminate number 2 larger 
than any number that ever appears in the computation,  and we deal with ~. 
symbolically. It turns out that this way the coordinates of the intermediate and 
final results in the computat ion are degree-1 polynomials in 2. In particular, the 
final opt imum vertex is presented as v(2) = u + 2-w, where u and w are d-vectors. 
For  all sufficiently large values for 2, the vector v(2) is then the opt imum vertex 
of B~ c~ P~r. This means that if w is the zero vector, then the problem is bounded 
and u is the opt imum vertex of P~e; otherwise there is some real number 20 so 
that the ray {v(2)12 > 20} is contained in P ~ .  We detail this approach in the 
Appendix. 
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3. Convex Hulls 

This section concerns the construction of the convex hull of a set S of n points in 
Ne. We are only interested in the case n > d > 3, and we assume that S is in 
nondegenerate position, i.e., no d + 1 points of S lie in a common hyperplane. Such 
nondegeneracy can easily be simulated with impunity using standard perturbations 
techniques [E, p. 185]. Nondegeneracy ensures that the convex hull of any subset 
of S is a simplicial polytope. 

First some basics: let P be a simplicial d-polytope, let V be the vertex set of P, 
and let n = I gl,  It is known that P can have at most O(n tn/2j) faces [Mc]. We call 
the (d - 1)-faces of P facets and the (d - 2)-faces ridges. Every facet is uniquely 
identified by the d-tuple of its vertices. Similarly, every ridge can be identified by 
a (d - l)-tuple of vertices in V. Since every ridge is contained in precisely two 
facets we can represent the facial structure of P by its facet graph ~(P),  which has 
the facets of P as its nodes and two facets adjacent iff they share a common ridge 
of P. Note that for simplicial d-polytopes the facet graph is regular of degree d. 
Throughout this section when we talk about "constructing the convex hull P of 
V" we really mean constructing the facet graph ~(P) .  Moreover, we are not 
particularly careful with the distinction between facet F of P, the node correspond- 
ing to F in the facet graph .~-(P), and the d-tuple of vertices in V that span F. The 
same holds for ridges of P, edges of ~(P) ,  and (d - 1)-tuples of defining vertices. 

Let p be some point in Ne in nondegenerate position with respect to V. We 
call a facet F of P visible from p iff the hyperplane spanned by F separates P and 
p. We call F obscured otherwise. We call a face G of P visible from p iff it is only 
contained in facets of P that are visible from p. Obscured faces are defined 
analogously. We call G a horizon face with respect to x iff it is contained in some 
visible and some obscured facet. 

This terminology allows a convenient characterization of the facial structure 
of the polytope P' = conv(P w {x}) in terms of the faces of P: no visible face of P 
is a face of P' ;  all obscured and all horizon faces of P are faces of P'; for each 
horizon face G of P the pyramid conv(G w {x}) is a face of P'; this yields all faces 
of P'. 

This characterization justifies the following method for obtaining P' from P 
and x. As stated before, we assume here that the polytopes are represented by 
their facet graphs. Thus, to be more precise, the procedure outlined below is 
intended to compute o~(P') from o~(P) and x: 

(i) Locate some facet F of P that is visible from x, or determine that no such 
facet exist, in which case x is contained in P and hence P' = P. 

(ii) Determine the set of facets and ridges of P that are visible from x and 
determine all horizon ridges of P with respect to x. Delete all visible facets 
and ridges. 

(iii) For each horizon ridge G of P generate the new facet conc(G w {x}) of P'  
(i.e., a new node for the facet graph). 

(iv) Generate the new ridges of P' (i.e., the edges between the new nodes of the 
facet graph). 
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Let us ignore for the moment how step (i) of this procedure can be done and 
let us examine the other steps in more detail. 

Step (ii) can clearly be implemented via a depth-first search through ,~-(P) that 
starts at F so that the time necessary is proportional to the number of visible faces 
found. Since all those faces are deleted, and since each face can be deleted only 
once, the cost of this step can be charged to the creation of each deleted face, and 
thus in the amortized sense step (ii) incurs no cost at all. 

Step (iii) is straightforward and can be completed in time proportional to Nx, 
the number of new facets created. 

The number of new ridges created in step (iv) is proportional to N x. How can 
they be found? For every new facet generated in step (iii) the d -  1 new ridges 
contained in it can be determined "locally." Radix sorting the ( d -  1)-tuples of 
vertices (or rather vertex indices) that identify these ridges then allows us to match 
them up and to form the new edges of the facet graph ~(P ' )  in time proportional 
to n + Nx. 

It follows that if we ignore the cost of step (i), the total amortized cost of this 
procedure is O(n + Nx), where n is the number of vertices of P and Nx is the 
number of facets of P' that contain x. 

Let us still defer the details of how to deal with step (i) and let us consider the 
following algorithm for constructing the convex hull of a set S of n > d points in 
~a in nondegenerate position: 

1. Put the points of S in a random order Pl . . . . .  P,. 
2. Form the facet graph ~(Pa+ 1), where Pa+ 1 = cony{P1 . . . . .  Pa+ 1}- (Note that 

this graph is simply the complete graph on d + 1 vertices.) 
3. For d + 1 < i _< n, using the insertion procedure outlined above, form the 

facet graph o~(Pi) from J~(Pi-1), where Pi = cony{p1 . . . . .  Pi}. 

What is the expected running time of this algorithm? Obviously the crux of 
the question is what is the expected running time of step 3? In particular, what 
is the expected cost of computing ~(P;)  from .~-(P~_ 1)? We know that it is 
O(i + N~), where N~ is the number of facets of P~ that contain p~. So what we need 
to determine is the expected value of Ni. Assuming that step 1 generates each 
permutation with equal probability, every one of the j _< i vertices of P~ was added 
last (i.e., was Pi) with equal probability. Since each facet of P~ contains exactly d 
vertices and since Pi has at most O(f  d/2j) facets it follows that the expectation of 
N~ is at most (d/j) O(jta/2~), which is O(i ta/21 - 1). It follows therefore that the expected 
cost of the ith iteration of our algorithm is 0(r d/zJ 1), which implies that the total 
expected cost of the entire algorithm is ~+1<~_<, O( itd/2j- 1), which is O(ntd/2J). 

This analysis still neglects the cost of step (i) of the updating procedure. Recall 
that this step must find one visible facet of the "old"  polytope P~ 1 or determine 
that no such facet exists. Note that this is really a crucial step. It is exactly this 
problem, for instance, that forces Clarkson and Shor to resort to conflict graphs 
in their incremental convex hull algorithm. However, there is a straightforward 
solution to this problem, since it is nothing but a linear program in d dimensions 
involving one constraint for each vertex of Pi_ r Of course, for fixed d this can 
be solved in O(i) time and for d > 3 this cost is subsumed by the cost of the 
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remaining steps of the update procedure. Thus the expected running time of our 
incremental randomized convex hull algorithm remains O(ntd/2J). 

We summarize: 

Theorem 2. Using the algorithm outlined in this section the convex hull of n points 
in ~d can be constructed in expected time O(ntd/21), for any 9fixed constant d > 3. 

4. Remarks 

The problem of locating a facet of the d-polytop P = cony S that is visible from 
a point x can actually be formulated as a linear program in d - 1 dimensions: we 
want to find a hyperplane that contains x and is tangent to P. This in effect will 
locate a horizon ridge G of P and one of the two facets that contain G must be 
visible from x. 

In our presentation we swept one problem under the rug: How does one 
correlate the output of the linear programming problem to the facet graph? The 
linear program will just produce the (d - 1)-set of vertices that span G. It needs 
a little bit of work to get from such a set to the actual edge in the facet graph. 
However, this can be done within the given time bound; for instance as follows: 
Let the points of S be numbered Pl . . . . .  p, according to the used random 
permutation. We maintain a sorted array of all ridges that have been created in 
the course of the algorithm and we correlate the array entries of the currently 
existing ridges with the corresponding edges of the current facet graph. Each ridge 
is represented as an ordered (d - 1)-tuple of the points that span it, ordered by 
decreasing point index. The array is sorted lexicographically in increasing order. 
Now, if the linear program outputs a (d - 1)-set T of vertices, we sort T into 
decreasing order and then use binary search to locate the resulting (d - 1)-tuple 
in our array in logarithmic time. From this entry we can determine the desired 
edge of the current facet graph in constant time. Updating the array is easy: When 
we add point Pi to the current hull the insertion algorithm already produces a 
lexicographically sorted list of all new ridges that contain Pi- Since i at that point 
is the currently largest index we only have to append that list to our master array. 

The scheme just outlined might be undesirable as it uses space O(n rd/2~) in the 
worst case since no ridge is ever deleted from the array. Worst-case space O(n td/2j) 
could be achieved, however, by using, instead of the array, a balanced-tree scheme 
that allows deletion of pointed to nodes in constant amortized or expected time. 
Examples of such tree schemes are red-black trees IT] or randomized search trees 
[AS]. 

A few words about the probability that the running times of the algorithms 
presented in this paper differ substantially from their expectations: We have been 
unable to prove any interesting results in this direction for the convex hull 
algorithm. For the linear programming algorithm the variance turns out to be 
very large, and we have not been able to prove that the probability of the algorithm 
exceeding its expected running time by a constant factor tends to 0 as m tends to 
infinity. However, it is possible to prove something slightly weaker. 
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Let Z~' be a discrete random variable measuring the number of operations 
made by our linear programming algorithm when applied to an input with m 
constraints in d < m variables. The measurement will be pretty rough. We assume 
that each recursive invocation of the algorithm takes one unit of time for m > 0 
and d > 1 (plus the time for recursive subcalls, of course), and that an invocation 
with d = 1 takes m units of time. This random variable reflects the actual running 
time of the algorithm reasonably well in that they are proportional to each other 
within a fixed factor. (A factor of O(d) is easy to see, actually a factor of O(I) holds.) 

Let pT(x) be the generating function for Z~". If we slow down the algorithm 
slightly so that one more constraint is used in the possible ( d -  1)-dimensional 
subcall, an upper bound for this generating function can be defined recursively as 
follows: 

p T ( x ) =  i7 
,,, if d = 1, 

if d > l  

~pr~-l(x)'X'((l--d)+dp~_l(X)) if d > l  

This can be rewritten as 

and m = 0, 

and m > 0. 

{ x "  ( ( j )  d ~  ) if d = l  
p~'(x) = 

x" H 1 -  + l(x) if d >  1. 
l<_j<_m J 

Note that this definition relies on the fact that there is no dependence between 
the vaious random choices made in the course of the algorithm. 

Now let c~ be any positive real number and depending on this number define 
recursively, for each d > 1, 

cn = (1 + c I) ea . . . .  1. 

Lemma 1. L e t  m > 0 be f i x e d  and let ~,~ = (1 + ca) 1/'~. Then ,  f o r  1 < j  <_ m, 

~(~m) < (1 + ca) jim < 1 + j -  ca. 
m 

Proo f .  The second inequality is true since for any x > 0 and any positive e < 1 
the inequality (1 + x) ~ _< 1 + ex  holds. We prove the first inequality by induction 
on d. For  d = 1 it is true with equality by definition. For d > 1 we first use the 
inductive assumption and then the inequality (1 + x) _< e x to obtain 

) ) pJa(o~=) = ~x~ V[ 1 - + - pia- t(~x,,,) ~ oe j 1 + - c a_ t 
1 j i l<_i<_j\ m 

< o d e  i(d/'~ : ((1 + el)e&a-t) jim : (1 + ca) -//m. []  



Small-Dimensional Linear Programming and Convex Hulls Made Easy 431 

L e m m a  1 is of interest because of the following easily provable  fact. 

F a c t  1. Let q(z) be the generating function of  a nonnegative integer random variable 
X ,  and let a > 1 be any real number and k be some positive integer. Then 

q(a) 
Pr(X _> k) _> - -  

a k �9 

Bounding the tail of the distribution of the r andom variable Z~' is now easy: 

L e m m a  2. Let c 1 > O, let c a be defined as above, and let k be a positive integer, then 

1 + c  a 
Pr(Z~' _> k) _ . . . . .  

(1 + cO k/re' 

Proof. Setting the a of Fact  1 to ~,, = (1 + cl) l/m and using the bound of L e m m a  
1 we obtain  

Pr(Z~' > k) < P~'(:~") 1 + Cd 1 + Cd 
-- -- ~mk ~ ~mk -- (1 + Cl) k/"" [ ]  

Recalling that  the expected value of Z~" is d! m we obtain  the following: 

C o r o l l a r y  2.1. For any f ixed constant c > 1 and any function b(m) the probability 
that Z"d exceeds its expected value by a factor of  b(m) is O(c d!b~m)). 

C o r o l l a r y  2.2. For any f ixed  constant c' > 0 the probability that Z7  exceeds its 
expected value by a factor of  log m is O(m-c'd!). 

By optimizing the choice of the number  c I it is possible to get more  explicit 
bounds  for small d. Fo r  instance, for d = 2 the linear p rog ramming  algori thm 
exceeds its expected running time by a factor of 10 with probabi l i ty  at most  
6.5 • 10 -12, and by a factor of 20 with probabi l i ty  at most  5.8 • 10 35. In the 
three-dimensional  case the expected running t ime is exceeded by a factor of 20 
with probabi l i ty  at most  1.4 x 10- t s .  

Mike H o h m e y e r  at U C  Berkeley has implemented a version of the linear 
p r o g r a m m i n g  algori thm. Running a five-dimensional example  with 2000 non-  
redundant  constraints  (hyperplanes tangent  to a c o m m o n  paraboloid)  15 times on 
a D E C  3100 works ta t ion  required a m in imum execution t ime of 4.7 seconds and 
a m a x i m u m  of 18.6 seconds with an average execution time of 10.2 seconds. 
Various heuristics for speeding up the a lgori thm are being investigated. 
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Appendix 

Here we give a more detailed description of a possible implementation of the 
randomized linear programming algorithm. The reader be warned that this is not 
necessarily a practical implementation: issues of numerical stability are ignored; 
most likely we should replace one of the recursions by iteration; employing the 
indeterminate 2 also slows down the algorithm. 

Below we detail a function LP that takes as inputs a positive integer d, a d-vector 
c = (c 1 . . . . .  ca), and a set A of (d + 2)-vectors. LP either returns a pair of d-vectors 
u, w that have the property that for all sufficiently large reals 2 the d-vector u + 2w 
is the lexicographically largest vector x that maximizes ~ <_~<_d C~X~ subject to the 
parametrized constraints 

E aixi<--ad+l +ad+z 2 foreach  a = ( a l  . . . . .  a d + 2 ) E A  
l < i < d  

and 

- - 2 < x i < 2  for l < i < d ,  

or LP determines eventual infeasibility, i.e., for all sufficiently large 2 the para- 
metrized constraints do not admit a common solution. ("For all sufficiently large 
reals 2" is to mean "for all 2 > 2o," where 2 0 is some real number.) 

Note that the variable bounds - 2  < xl < 2 imply that for any 2 the system 
either has an opt imum solution or is infeasible. Unboundedness is impossible. 

Of course we are really interested in solving (possibly unbounded) linear 
programs of the form maximize ~l<_i<_a c~x~ subject to the nonparametrized 
constraints 

~, a ix i<aa+l  foreach  a = ( a l  . . . . .  aa+l)eA, 
l < i < d  

where A is a set of (d + 1)-vectors. This problem can be solved by our function 
LP if we extend every a ~ A to a (d + 2)-vector by appending 0 as the (d + 2)nd 
coordinate. In other words, formally all constraints are now parametrized as 

aixi < ad+l + 0"2. 
l<i_<d 

If a set A of such extended vectors is supplied to our function LP along with the 
dimension d and the objective vector c, then either LP(d, c, A) determines eventual 
infeasibility, in which case the original problem is infeasible, or LP(d, c, A) returns 
a pair of d-vectors (u, w) with w = 0, in which case the original problem is bounded 
and u is the optimal solution, or LP(d, c, A) returns a pair of d-vectors (u, w) with 
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w r 0, in which case the original problem is unbounded  and there is some number  
2o so that  the ray {u + ).wl). >_ 'i-o} is contained in the feasible region. 

The function L P  specified below uses the test "_< L" which, given real numbers  
p, q, r, s, is to decide whether  for all sufficiently large ). we have (p + 2q) < (r + 2s). 
Of  course this just amounts  to a lexicographic compar i son  between the pairs (q, p) 
and (s, r). The operat ions  " < L , "  "maxL,"  and "minL" are to be unders tood and 
performed analogously.  

LP(d, c, A) 
Base case d = I: 

let (h + h').) = minL({(a2/a , + ( a 3 / a , ) 2 ) l a e A ,  a, > 0} w {(0 + 1.2)}) 
let (l + l').) = maxL({(aE/a 1 + ( a j a , ) 2 1 a e A ,  a 1 < 0} w {(0 - 1 -).)}) 
let (z + z'2) = minL{(a2 + a 3 ) . ) l a e A ,  al = 0} 
if (z + z'2) < L (0 + 0 ') . )  or (h + h').) < L (l + l').) then stop and report  

infeasibility 
if c >_ 0 then return the pair  of 1-vectors ((h), (h')) 

else return the pair of 1-vectors ((1), (l')) 
Case d > 1' 

if A is empty  then return the pair  of d-vectors (u, w), where, for 
O < _ i < _ d , u  i = O , a n d w  i =  1 i f c  i > _ O a n d w  i =  - 1  otherwise 

Select some a ~ A uniformly at r andom and remove it f rom A to ob- 
tain A'. 

let (u, w) be the pair  of d-vectors returned by LP(d, c, A') 

if ( (21  ~i ~d aiui) + ( ~ l  <_ i<_a ai wi)).) <- L (% +1 + ad +22) then return (u, w) 
else (* (u + ).w) violates the constraint  a. *) 

let 1 < k _< d be maximal  such that  ak d = 0 
if no such k exists then stop and report  infeasibility 

(* Eliminate variable Xk from constraints  in A' and from c. *) 
let A ' =  { ( b -  (bk/ak)a) with the kth componen t  removed I b e A ' }  
let • = (c - (ck/ak)gO with the kth componen t  removed,  where 

= (a 1 . . . . .  ad) 
(* Incorpora te  the constraints  - , i .  _< Xk --< 2 into A'. *) 

let f be the (d + 2)-vector with fk = fd+ 2 = 1 and all other compo-  
nents 0 

let g be the ( d + 2 ) - v e c t o r  with g k = g d + 2  = --1 and all other 
componen t s  0 

let /1 = A--Vw{( f - - (1 /ak)a) ,  (g -- (1/a~)a) with the kth componen t  
removed} 

(* Solve the (d - 1)-dimensional p rob lem and "lift" the solution. *) 
let (ti, #) be the pair  of (d - 1)-vectors returned by LP(d - 1, g , / t )  
let u be the d-vector  obta ined from ~ by inserting 0 as the kth 

componen t  
let w be the d-vector obtained from # by inserting 0 as the kth 

componen t  
let u k = (1/ak)(ad+ 1 -- ~ l  <i<<.d aiui) 
let w k = (1/ak)(ad§ 2 -- ~ l  <i<_d aiwi) 
return the pair  of d-vectors (u, w) 
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