
Discrete Comput Geom 6:423 434 (1991)
Discrete & Computational Geometry

i 1991 Sprmgcr-Verlag New York Inc

Small-Dimensional Linear Programming and
Convex Hulls Made Easy*

Raimund Seidel

Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720, USA

Abstract. We present two randomized algorithms. One solves linear programs
involving m constraints in d variables in expected time O(m). The other constructs
convex hulls of n points in Nd, d > 3, in expected time O(nln/2l). In both bounds d is
considered to be a constant. In the linear programming algorithm the dependence
of the time bound on d is of the form d!. The main virtue of our results lies in the utter
simplicity of the algorithms as well as their analyses.

1. Introduction

One of the more exciting achievements in the theory of linear programming was
accomplished in a series of papers by Megiddo and by Dyer, in the beginning of
the last decade [M1], [M2], [D1], [D2], who showed that if d, the number of
variables in a linear program, is considered a constant, then the linear program
can be solved in time that is linear in m, the number of its constraints. These new
algorithms were extremely complex, and, unfortunately, the running time of these
algorithms depended on d in a superexponential way: for Megiddo's original
algorithm [M2] the dependence was doubly exponential; subsequently, this was
somewhat improved by Clarkson and by Dyer to a dependence of the form 3 d2
I f 1] , [D2].

More recently a number of randomized algorithms have been proposed [DF],
[C2], where the most interesting one, due to Clarkson, has a remarkable expected

running time of O(dZm) + (log m)O(d) n/2 +o~1) + O(d4x/-m log m). That algorithm is

* Large portions of the research reported here were conducted while the author visited DIMACS
at Princeton University. The author was supported by NSF Presidential Young Investigator Award
CCR-9058440. Email address: seidel (~ harmony.berkeley.edu.

424 R. Seidel

relatively straightforward, however, the analysis of its expected running time is
somewhat involved.

In the first part of this paper we present an exceedingly simple linear pro-
gramming algorithm whose expected running time is O(d! m). The analysis of its
expected complexity is completely elementary and matches the algorithm in its
simplicity.

The second part of this paper concerns the problem of constructing the con-
vex hull of n points in ~d. For dimension d _< 3 this problem was essentially
solved by the late seventies I-G], [PH]. For d > 3 a number of deterministic
algorithms have been proposed [CK], [K], [Sw], IS1], [$2], where the best time
bounds achieved were O(nfd/21), if measured in terms of input size n only, or
O(n z + F log n), if measured in terms of input size n and output size F, the number
of faces produced IS1], [$2] (d is considered a constant here).

In this paper we are only concerned with the case where d > 3 is a constant
and where the running time is to be bounded by the input size only. Here the
main open question has been whether it is possible to achieve a bound of O(ntd/eJ),
which would be worst-case optimal as the convex hull of n points in ~d can have
this many faces. So far there has been no success with deterministic algorithms.
However, recently Clarkson and Shor [CS] proposed a randomized algorithm
with O(n Ld/2j) expected running time.

In this paper we propose another randomized algorithm with the same
performance. Our algorithm is similar to the one of Clarkson and Shor in that it
is incremental. However, we avoid having to maintain so-called conflict graphs,
which simplifies our algorithm and allows a very straightforward and elementary
analysis of its expected running time.

The analyses of the expected running times of both algorithms in this paper
rely heavily on the same idea, which can be expressed as "analyze the algorithm
as if it were running backwards, from output to input." This view has proved very
useful and is more thoroughly exploited in a forthcoming paper [$3].

2. Linear Programming

Geometrically, linear programming amounts to the following: we are given a set
~ff of m half-spaces and a vector c in ~d, and we want to find an "optimum vertex"
v of the polyhedron P g formed by the intersection of the half-spaces in off, so
that v maximizes the linear functional specified by c; in other words, v must be
contained in the tangent hyperplane of P ~ whose outward normal is c.

Consider the following strategy for finding such an optimum vertex v: Choose
and remove a random H from the m half-spaces in off to obtain the set off'.
Recursively compute the optimum vertex v' of P~v. (with respect to the direction
c). From v' compute v as follows: If v' is contained in the half-space H, then clearly
v = v', and nothing needs to be done. Otherwise v must be contained in the
bounding hyperplane h of the half-space H. As a matter of fact, if? is the orthogonal
projection of c into h and off----7 = {G c~ hi G ~ off'}, then v is the optimum vertex for

Small-Dimensional Linear Programming and Convex Hulls Made Easy 425

the (d - 1)-dimensional linear program specified by the half-spaces ~ ' (of h) and
the direction 6. Thus v can be determined by recursively solving a (d - 1)-
dimensional problem with m - 1 constraints. (A one-dimensional problem can be
solved straightforwardly in time proportional to the number of its constraints.)

This is the gist of our algorithm. A number of important details still need to
be addressed: How does the recursive procedure bot tom out? What happens if
an "opt imum vertex" does not exist because of infeasibility or unboundedness of
the problem?

Let us at first dispose of the unboundedness case. We stipulate that we are not
interested in all of B e but just some bounding box B, (i.e., we impose explicit lower
and upper bounds -:~ _< x i < :~ on the d variables xg). This bounding box also
provides a convenient way for dealing with the bottoming out problem: if d4 ~ is
empty, then the optimum solution is one of the vertices of B, and it can be
determined from the signs of the coordinates of c in O(d) time. Finally, infeasibility
of the linear program (i.e., emptiness of P,~e') is discovered when the recursion has
descended to the one-dimensional case.

What would the expected running time of our algorithm be? Why expected
running time? Recall that the algorithm starts by choosing a half-space H from

at random. The expectation of the running time is to be taken with the
assumption that whenever such a random choice is made each member of ~ is
chosen equally likely.

For the sake of analysis let us assume at first that our linear programming
problem and all the subproblems encountered are well behaved in the sense that
the optimum vertex is unique, and that it is the intersection of the bounding
hyperplanes of exactly d of the given half-spaces.

We claim that under these nondegeneracy assumptions our proposed method
has an expected running time of O(d! m). The proof, by induction on d, proceeds
in a nutshell as follows: In case d = 1 the problem can be solved trivially in O(m)
time. For d > 1 it suffices to show that the expected time necessary to obtain v
from v' is O(d!). The interesting and expensive case happens when v' and v are
different. But note that these vertices can only be different if one of the d half-spaces
whose bounding hyperplanes define v is H. Since /4 was chosen from the
m half-spaces in ~ uniformly at random, it follows that v is different from v'
with probability dim (at most, since some of the d hyperplanes defining v
might derive from the bounding box B,). By inductive assumption the expected
cost of solving the ensuing (d - 1)-dimensional linear program with rn - 1 con-
straints is O((d - 1)! (m - 1)). Thus the expected cost of obtaining v from v' is
(d/m).O((d - 1)! (m - 1)), which is O(d!), as claimed.

What about our nondegeneracy assumptions? We enforce uniquencess of the
opt imum vertex v by requiring that it be the vertex of B, c~ P ~ that maximizes
the inner product with c and that has the lexicographically largest coordinate
representation. Note that for the analysis of the running time of the algorithm it
is crucial that v is defined uniquely and canonically with respect to ~ff.

Finally, the assumption that v be the intersection of the bounding hyperplanes
of exactly d half-spaces can be dropped altogether. However many half-spaces of
o~ are involved in the definition of v, among them there can be at most d

426 R. Seidel

half-spaces H with the property that the opt imum vertex for Jg \{H} is different
from v.

We summarize:

Theorem 1. Using the randomized method outlined in this section a linear program
with m constraints in d variables can be solved in expected time O(d! m).

Proof. We just tidy up the analysis of the expected running time of our procedure.
Assuming that testing whether a point is contained in a half-space takes O(d) time,
that projecting a d-vector orthogonally into a hyperplane takes O(d) time, and
that determining the intersection of a half-space in ~d with a hyperplane takes
O(d) time also, the expected running time T(d, m) for our procedure satisfies

O(m)

T(d, m) < {O(d)
d d

T(d, m - 1) + O(tO + - O(dm) + - T(d -- 1, m -- 1)
m m

if d = l ,

if m = l ,

otherwise.

It is now easy to check that T(d, m) = 0 (~ <,<a(i2/i!)d! m), which is O(d! m) since
the sum converges even without an upper bound for i. []

The reader might object to our method of enforcing boundedness by imposing
explicit lower and upper bounds on the variables. The number ~ might be chosen
too small so that the bounding box B, does not contain the opt imum vertex of
P ~ ; or it might also be important to determine whether P~r is unbounded in the
objective direction c.

There are at least two ways of dealing with such problems. One approach would
be to amend the notion of "op t imum solution" for a linear program: if P~v is
bounded in the c-direction, then, as before, the opt imum solution is a canonical
vertex of P~e that maximizes the inner product with c; otherwise the opt imum
solution is a canonical direction in the recession cone of P Jr for which the unit
vector maximizes the inner product with c.

Another approach would be to continue using a bounding box B,. However,
we do not choose ~ explicitly but we use for ~ an indeterminate number 2 larger
than any number that ever appears in the computation, and we deal with ~.
symbolically. It turns out that this way the coordinates of the intermediate and
final results in the computat ion are degree-1 polynomials in 2. In particular, the
final opt imum vertex is presented as v(2) = u + 2-w, where u and w are d-vectors.
For all sufficiently large values for 2, the vector v(2) is then the opt imum vertex
of B~ c~ P~r. This means that if w is the zero vector, then the problem is bounded
and u is the opt imum vertex of P~e; otherwise there is some real number 20 so
that the ray {v(2)12 > 20} is contained in P ~ . We detail this approach in the
Appendix.

Small-Dimensional Linear Programming and Convex Hulls Made Easy 427

3. Convex Hulls

This section concerns the construction of the convex hull of a set S of n points in
Ne. We are only interested in the case n > d > 3, and we assume that S is in
nondegenerate position, i.e., no d + 1 points of S lie in a common hyperplane. Such
nondegeneracy can easily be simulated with impunity using standard perturbations
techniques [E, p. 185]. Nondegeneracy ensures that the convex hull of any subset
of S is a simplicial polytope.

First some basics: let P be a simplicial d-polytope, let V be the vertex set of P,
and let n = I gl, It is known that P can have at most O(n tn/2j) faces [Mc]. We call
the (d - 1)-faces of P facets and the (d - 2)-faces ridges. Every facet is uniquely
identified by the d-tuple of its vertices. Similarly, every ridge can be identified by
a (d - l)-tuple of vertices in V. Since every ridge is contained in precisely two
facets we can represent the facial structure of P by its facet graph ~(P), which has
the facets of P as its nodes and two facets adjacent iff they share a common ridge
of P. Note that for simplicial d-polytopes the facet graph is regular of degree d.
Throughout this section when we talk about "constructing the convex hull P of
V" we really mean constructing the facet graph ~(P) . Moreover, we are not
particularly careful with the distinction between facet F of P, the node correspond-
ing to F in the facet graph .~-(P), and the d-tuple of vertices in V that span F. The
same holds for ridges of P, edges of ~(P) , and (d - 1)-tuples of defining vertices.

Let p be some point in Ne in nondegenerate position with respect to V. We
call a facet F of P visible from p iff the hyperplane spanned by F separates P and
p. We call F obscured otherwise. We call a face G of P visible from p iff it is only
contained in facets of P that are visible from p. Obscured faces are defined
analogously. We call G a horizon face with respect to x iff it is contained in some
visible and some obscured facet.

This terminology allows a convenient characterization of the facial structure
of the polytope P' = conv(P w {x}) in terms of the faces of P: no visible face of P
is a face of P' ; all obscured and all horizon faces of P are faces of P'; for each
horizon face G of P the pyramid conv(G w {x}) is a face of P'; this yields all faces
of P'.

This characterization justifies the following method for obtaining P' from P
and x. As stated before, we assume here that the polytopes are represented by
their facet graphs. Thus, to be more precise, the procedure outlined below is
intended to compute o~(P') from o~(P) and x:

(i) Locate some facet F of P that is visible from x, or determine that no such
facet exist, in which case x is contained in P and hence P' = P.

(ii) Determine the set of facets and ridges of P that are visible from x and
determine all horizon ridges of P with respect to x. Delete all visible facets
and ridges.

(iii) For each horizon ridge G of P generate the new facet conc(G w {x}) of P'
(i.e., a new node for the facet graph).

(iv) Generate the new ridges of P' (i.e., the edges between the new nodes of the
facet graph).

428 R. Se ide l

Let us ignore for the moment how step (i) of this procedure can be done and
let us examine the other steps in more detail.

Step (ii) can clearly be implemented via a depth-first search through ,~-(P) that
starts at F so that the time necessary is proportional to the number of visible faces
found. Since all those faces are deleted, and since each face can be deleted only
once, the cost of this step can be charged to the creation of each deleted face, and
thus in the amortized sense step (ii) incurs no cost at all.

Step (iii) is straightforward and can be completed in time proportional to Nx,
the number of new facets created.

The number of new ridges created in step (iv) is proportional to N x. How can
they be found? For every new facet generated in step (iii) the d - 1 new ridges
contained in it can be determined "locally." Radix sorting the (d - 1)-tuples of
vertices (or rather vertex indices) that identify these ridges then allows us to match
them up and to form the new edges of the facet graph ~(P ') in time proportional
to n + Nx.

It follows that if we ignore the cost of step (i), the total amortized cost of this
procedure is O(n + Nx), where n is the number of vertices of P and Nx is the
number of facets of P' that contain x.

Let us still defer the details of how to deal with step (i) and let us consider the
following algorithm for constructing the convex hull of a set S of n > d points in
~a in nondegenerate position:

1. Put the points of S in a random order Pl P,.
2. Form the facet graph ~(Pa+ 1), where Pa+ 1 = cony{P1 Pa+ 1}- (Note that

this graph is simply the complete graph on d + 1 vertices.)
3. For d + 1 < i _< n, using the insertion procedure outlined above, form the

facet graph o~(Pi) from J~(Pi-1), where Pi = cony{p1 Pi}.

What is the expected running time of this algorithm? Obviously the crux of
the question is what is the expected running time of step 3? In particular, what
is the expected cost of computing ~(P;) from .~-(P~_ 1)? We know that it is
O(i + N~), where N~ is the number of facets of P~ that contain p~. So what we need
to determine is the expected value of Ni. Assuming that step 1 generates each
permutation with equal probability, every one of the j _< i vertices of P~ was added
last (i.e., was Pi) with equal probability. Since each facet of P~ contains exactly d
vertices and since Pi has at most O(f d/2j) facets it follows that the expectation of
N~ is at most (d/j) O(jta/2~), which is O(i ta/21 - 1). It follows therefore that the expected
cost of the ith iteration of our algorithm is 0(r d/zJ 1), which implies that the total
expected cost of the entire algorithm is ~+1<~_<, O(itd/2j- 1), which is O(ntd/2J).

This analysis still neglects the cost of step (i) of the updating procedure. Recall
that this step must find one visible facet of the "old" polytope P~ 1 or determine
that no such facet exists. Note that this is really a crucial step. It is exactly this
problem, for instance, that forces Clarkson and Shor to resort to conflict graphs
in their incremental convex hull algorithm. However, there is a straightforward
solution to this problem, since it is nothing but a linear program in d dimensions
involving one constraint for each vertex of Pi_ r Of course, for fixed d this can
be solved in O(i) time and for d > 3 this cost is subsumed by the cost of the

Small-Dimensional Linear Programming and Convex Hulls Made Easy 429

remaining steps of the update procedure. Thus the expected running time of our
incremental randomized convex hull algorithm remains O(ntd/2J).

We summarize:

Theorem 2. Using the algorithm outlined in this section the convex hull of n points
in ~d can be constructed in expected time O(ntd/21), for any 9fixed constant d > 3.

4. Remarks

The problem of locating a facet of the d-polytop P = cony S that is visible from
a point x can actually be formulated as a linear program in d - 1 dimensions: we
want to find a hyperplane that contains x and is tangent to P. This in effect will
locate a horizon ridge G of P and one of the two facets that contain G must be
visible from x.

In our presentation we swept one problem under the rug: How does one
correlate the output of the linear programming problem to the facet graph? The
linear program will just produce the (d - 1)-set of vertices that span G. It needs
a little bit of work to get from such a set to the actual edge in the facet graph.
However, this can be done within the given time bound; for instance as follows:
Let the points of S be numbered Pl p, according to the used random
permutation. We maintain a sorted array of all ridges that have been created in
the course of the algorithm and we correlate the array entries of the currently
existing ridges with the corresponding edges of the current facet graph. Each ridge
is represented as an ordered (d - 1)-tuple of the points that span it, ordered by
decreasing point index. The array is sorted lexicographically in increasing order.
Now, if the linear program outputs a (d - 1)-set T of vertices, we sort T into
decreasing order and then use binary search to locate the resulting (d - 1)-tuple
in our array in logarithmic time. From this entry we can determine the desired
edge of the current facet graph in constant time. Updating the array is easy: When
we add point Pi to the current hull the insertion algorithm already produces a
lexicographically sorted list of all new ridges that contain Pi- Since i at that point
is the currently largest index we only have to append that list to our master array.

The scheme just outlined might be undesirable as it uses space O(n rd/2~) in the
worst case since no ridge is ever deleted from the array. Worst-case space O(n td/2j)
could be achieved, however, by using, instead of the array, a balanced-tree scheme
that allows deletion of pointed to nodes in constant amortized or expected time.
Examples of such tree schemes are red-black trees IT] or randomized search trees
[AS].

A few words about the probability that the running times of the algorithms
presented in this paper differ substantially from their expectations: We have been
unable to prove any interesting results in this direction for the convex hull
algorithm. For the linear programming algorithm the variance turns out to be
very large, and we have not been able to prove that the probability of the algorithm
exceeding its expected running time by a constant factor tends to 0 as m tends to
infinity. However, it is possible to prove something slightly weaker.

430 R. Seidel

Let Z~' be a discrete random variable measuring the number of operations
made by our linear programming algorithm when applied to an input with m
constraints in d < m variables. The measurement will be pretty rough. We assume
that each recursive invocation of the algorithm takes one unit of time for m > 0
and d > 1 (plus the time for recursive subcalls, of course), and that an invocation
with d = 1 takes m units of time. This random variable reflects the actual running
time of the algorithm reasonably well in that they are proportional to each other
within a fixed factor. (A factor of O(d) is easy to see, actually a factor of O(I) holds.)

Let pT(x) be the generating function for Z~". If we slow down the algorithm
slightly so that one more constraint is used in the possible (d - 1)-dimensional
subcall, an upper bound for this generating function can be defined recursively as
follows:

p T (x) = i7
,,, if d = 1,

if d > l

~pr~-l(x)'X'((l--d)+dp~_l(X)) if d > l

This can be rewritten as

and m = 0,

and m > 0.

{ x " ((j) d ~) if d = l
p~'(x) =

x" H 1 - + l(x) if d > 1.
l<_j<_m J

Note that this definition relies on the fact that there is no dependence between
the vaious random choices made in the course of the algorithm.

Now let c~ be any positive real number and depending on this number define
recursively, for each d > 1,

cn = (1 + c I) ea 1.

Lemma 1. L e t m > 0 be f i x e d and let ~,~ = (1 + ca) 1/'~. Then , f o r 1 < j <_ m,

~(~m) < (1 + ca) jim < 1 + j - ca.
m

Proo f . The second inequality is true since for any x > 0 and any positive e < 1
the inequality (1 + x) ~ _< 1 + ex holds. We prove the first inequality by induction
on d. For d = 1 it is true with equality by definition. For d > 1 we first use the
inductive assumption and then the inequality (1 + x) _< e x to obtain

)) pJa(o~=) = ~x~ V[1 - + - pia- t(~x,,,) ~ oe j 1 + - c a_ t
1 j i l<_i<_j\ m

< o d e i(d/'~ : ((1 + el)e&a-t) jim : (1 + ca) -//m. []

Small-Dimensional Linear Programming and Convex Hulls Made Easy 431

L e m m a 1 is of interest because of the following easily provable fact.

F a c t 1. Let q(z) be the generating function of a nonnegative integer random variable
X , and let a > 1 be any real number and k be some positive integer. Then

q(a)
Pr(X _> k) _> - -

a k �9

Bounding the tail of the distribution of the r andom variable Z~' is now easy:

L e m m a 2. Let c 1 > O, let c a be defined as above, and let k be a positive integer, then

1 + c a
Pr(Z~' _> k) _

(1 + cO k/re'

Proof. Setting the a of Fact 1 to ~,, = (1 + cl) l/m and using the bound of L e m m a
1 we obtain

Pr(Z~' > k) < P~'(:~") 1 + Cd 1 + Cd
-- -- ~mk ~ ~mk -- (1 + Cl) k/"" []

Recalling that the expected value of Z~" is d! m we obtain the following:

C o r o l l a r y 2.1. For any f ixed constant c > 1 and any function b(m) the probability
that Z"d exceeds its expected value by a factor of b(m) is O(c d!b~m)).

C o r o l l a r y 2.2. For any f ixed constant c' > 0 the probability that Z7 exceeds its
expected value by a factor of log m is O(m-c'd!).

By optimizing the choice of the number c I it is possible to get more explicit
bounds for small d. Fo r instance, for d = 2 the linear p rog ramming algori thm
exceeds its expected running time by a factor of 10 with probabi l i ty at most
6.5 • 10 -12, and by a factor of 20 with probabi l i ty at most 5.8 • 10 35. In the
three-dimensional case the expected running t ime is exceeded by a factor of 20
with probabi l i ty at most 1.4 x 10- t s .

Mike H o h m e y e r at U C Berkeley has implemented a version of the linear
p r o g r a m m i n g algori thm. Running a five-dimensional example with 2000 non-
redundant constraints (hyperplanes tangent to a c o m m o n paraboloid) 15 times on
a D E C 3100 works ta t ion required a m in imum execution t ime of 4.7 seconds and
a m a x i m u m of 18.6 seconds with an average execution time of 10.2 seconds.
Various heuristics for speeding up the a lgori thm are being investigated.

A c k n o w l e d g m e n t s

I would like to thank Emo Welzl for inspiring discussions. I am grateful to an
a n o n y m o u s referee for setting the s tandards high. Tetsuo Asano kindly pointed

432 R. Seidel

out an error in a previous version of this paper. Finally I want to thank Ricky
Pollack for making me write this paper.

Appendix

Here we give a more detailed description of a possible implementation of the
randomized linear programming algorithm. The reader be warned that this is not
necessarily a practical implementation: issues of numerical stability are ignored;
most likely we should replace one of the recursions by iteration; employing the
indeterminate 2 also slows down the algorithm.

Below we detail a function LP that takes as inputs a positive integer d, a d-vector
c = (c 1 ca), and a set A of (d + 2)-vectors. LP either returns a pair of d-vectors
u, w that have the property that for all sufficiently large reals 2 the d-vector u + 2w
is the lexicographically largest vector x that maximizes ~ <_~<_d C~X~ subject to the
parametrized constraints

E aixi<--ad+l +ad+z 2 foreach a = (a l a d + 2) E A
l < i < d

and

- - 2 < x i < 2 for l < i < d ,

or LP determines eventual infeasibility, i.e., for all sufficiently large 2 the para-
metrized constraints do not admit a common solution. ("For all sufficiently large
reals 2" is to mean "for all 2 > 2o," where 2 0 is some real number.)

Note that the variable bounds - 2 < xl < 2 imply that for any 2 the system
either has an opt imum solution or is infeasible. Unboundedness is impossible.

Of course we are really interested in solving (possibly unbounded) linear
programs of the form maximize ~l<_i<_a c~x~ subject to the nonparametrized
constraints

~, a ix i<aa+l foreach a = (a l aa+l)eA,
l < i < d

where A is a set of (d + 1)-vectors. This problem can be solved by our function
LP if we extend every a ~ A to a (d + 2)-vector by appending 0 as the (d + 2)nd
coordinate. In other words, formally all constraints are now parametrized as

aixi < ad+l + 0"2.
l<i_<d

If a set A of such extended vectors is supplied to our function LP along with the
dimension d and the objective vector c, then either LP(d, c, A) determines eventual
infeasibility, in which case the original problem is infeasible, or LP(d, c, A) returns
a pair of d-vectors (u, w) with w = 0, in which case the original problem is bounded
and u is the optimal solution, or LP(d, c, A) returns a pair of d-vectors (u, w) with

Small-Dimensional Linear Programming and Convex Hulls Made Easy 433

w r 0, in which case the original problem is unbounded and there is some number
2o so that the ray {u +).wl). >_ 'i-o} is contained in the feasible region.

The function L P specified below uses the test "_< L" which, given real numbers
p, q, r, s, is to decide whether for all sufficiently large). we have (p + 2q) < (r + 2s).
Of course this just amounts to a lexicographic compar i son between the pairs (q, p)
and (s, r). The operat ions " < L , " "maxL," and "minL" are to be unders tood and
performed analogously.

LP(d, c, A)
Base case d = I:

let (h + h').) = minL({(a2/a , + (a 3 / a ,) 2) l a e A , a, > 0} w {(0 + 1.2)})
let (l + l').) = maxL({(aE/a 1 + (a j a ,) 2 1 a e A , a 1 < 0} w {(0 - 1 -).)})
let (z + z'2) = minL{(a2 + a 3) .) l a e A , al = 0}
if (z + z'2) < L (0 + 0 ') .) or (h + h').) < L (l + l').) then stop and report

infeasibility
if c >_ 0 then return the pair of 1-vectors ((h), (h'))

else return the pair of 1-vectors ((1), (l'))
Case d > 1'

if A is empty then return the pair of d-vectors (u, w), where, for
O < _ i < _ d , u i = O , a n d w i = 1 i f c i > _ O a n d w i = - 1 otherwise

Select some a ~ A uniformly at r andom and remove it f rom A to ob-
tain A'.

let (u, w) be the pair of d-vectors returned by LP(d, c, A')

if ((21 ~i ~d aiui) + (~ l <_ i<_a ai wi)).) <- L (% +1 + ad +22) then return (u, w)
else (* (u +).w) violates the constraint a. *)

let 1 < k _< d be maximal such that ak d = 0
if no such k exists then stop and report infeasibility

(* Eliminate variable Xk from constraints in A' and from c. *)
let A ' = { (b - (bk/ak)a) with the kth componen t removed I b e A ' }
let • = (c - (ck/ak)gO with the kth componen t removed, where

= (a 1 ad)
(* Incorpora te the constraints - , i . _< Xk --< 2 into A'. *)

let f be the (d + 2)-vector with fk = fd+ 2 = 1 and all other compo-
nents 0

let g be the (d + 2) - v e c t o r with g k = g d + 2 = --1 and all other
componen t s 0

let /1 = A--Vw{(f - - (1 /ak)a) , (g -- (1/a~)a) with the kth componen t
removed}

(* Solve the (d - 1)-dimensional p rob lem and "lift" the solution. *)
let (ti, #) be the pair of (d - 1)-vectors returned by LP(d - 1, g , / t)
let u be the d-vector obta ined from ~ by inserting 0 as the kth

componen t
let w be the d-vector obtained from # by inserting 0 as the kth

componen t
let u k = (1/ak)(ad+ 1 -- ~ l <i<<.d aiui)
let w k = (1/ak)(ad§ 2 -- ~ l <i<_d aiwi)
return the pair of d-vectors (u, w)

434 R. Seidel

References

[AS]

[CK]

[c i]
[c2]

C. R. Aragon and R. G. Seidel, Randomized Search Trees, Proc. 30th IEEE Symp. on
Foundations of Computer Science (1989), pp. 540-545.
D. R. Chand and S. S. Kapur, An Algorithm for Convex Polytopes, J. Assoc. Comput. Mach.
17 (1970), 78-86.
K. L. Clarkson, Linear Programming in O(n3 d2) Time, Inform. Process. Lett. 22 (1986), 21-24.
K. L. Clarkson, Las Vegas Algorithms for Linear and Integer Programming when the
Dimension is Small, Manuscript (Oct. 1989); a preliminary version appeared in Proc. 29th
IEEE Symp. on Foundations of Computer Science (1988), pp. 452-456.

[CS] K. L. Clarkson and P. W. Shor, Applications of Random Sampling in Computational Geometry,
II, Discrete Comput. Geom. 4 (1989), 387-422.

[D1] M. E. Dyer, Linear Algorithms for Two- and Three-Variable Linear Programs, S lAM J.
Comput. 13 (1984), 31~,5.

[D2] M. E. Dyer, On a Multidimensional Search Technique and Its Applications to the Euclidean
One-Centre Problem, SIAM J. Comput. 15 (1986), 725-738.

[DF] M. E. Dyer and A. M. Frieze, A Randomized Algorithm for Fixed-Dimensional Linear
Programming, Math. Programming 44 (1989), 203-212.

[E] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York (1987).
[G] R. L. Graham, An Efficient Algorithm for Constructing the Convex Hull of a Finite Planar Set,

Inform. Process. Left. 1 (1972), 132-133.
[K] M. Kallay, Convex Hull Algorithms in Higher Dimensions, Manuscript (1981).

[Mc] P. McMullen, The Maximum Number of Faces of a Convex Polytope, Mathematika 17 (1971),
179-184.

[M1] N. Megiddo, Linear-Time Algorithms for Linear Programming in ~3 and Related Problems,
SIAM ,L Comput. 12 (1983), 759-776.

[M2] N. Megiddo, Linear Programming in Linear Time when the Dimension is Fixed, J. Assoc.
Comput. Mach. 31 (1984), 114-127.

I-PHI F. P. Preparata and S. J. Hong, Convex Hulls of Finite Point Sets in Two and Three Dimensions,
Comm. A C M 20 (1977), 87-93.

[S1] R. Seidel, A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions, Technical
Report 81-14, Department of Computer Science, University of British Columbia (1981).

[$2] R. Seidel, Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face, Proc.
18th ACM Symp. on Theory of Computing (1986), pp. 404~13.

[$3] R. Seidel, Backwards Analysis of Randomized Geometric Algorithms (Manuscript).
[Sw] G. Swart, Finding the Convex Hull Facet by Facet, J. Algorithms 6 (1985), 17~,8.

[T] R. E. Tarjan, Data Structures and Network Algorithm, Society for Industrial and Applied
Mathematics Philadelphia, PA (1983).

Received September I, 1990, and in revised form March 4, 1991.

