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| Main Result

Definition. Let G be a class of graphs and let G € G.

A graph metric is the shortest distance metric d on the vertices V (G) of G.
Definition. A planar metric is a graph metric on the class of all planar graphs.

Theorem. (Rao’s Theorem) Any finite planar metric of cardinality n can be

embedded into £o with distortion O(4/logn).

This improves on the general O(logn) distortion bound obtained

by Bourgain for all metrics.



| Proof - Outline

We will outline a decomposition method

®» which has some nice properties
(for planar graphs in particular)

» arepeated number of decompositions provide coordinates
for embedding

» distant vertices will have independent coordinates

Each decomposition satisfies our purpose with a constant
probability

We then estimate the distortion of the composed embedding |



| Decomposition

Pick A € {1,2,4,...n}
Pick vg € V(G) arbitrarily
Pick r € {0,1,2,...A — 1} uniformly at random

Let
S1={veV(G):dvo,v) =r (mod A)}

Partition G \ S; into connected components

For each component, repeat this procedure twice
(with the same A)

Let flnaIIy S =51US5U .S535
Decomposition is connected components of G\ S



| Properties

# Each connected component in the decomposition has
diameter at most O(A)

This results from a theorem by Klein, Plotkin and Rao
We will sketch the proof shortly

#® Foreachx € V(G) we have Pld(x,S) > c1A] > ¢

Given a A,
d(vi,x) (mod A)

will depend upon the choice of BFS-tree root v,

—



| Property 1 - Outline of proof

We do a proof by contradiction

We assume the existence of a component of diameter greater
than kKA

We will use the BFS-trees on which we constructed the
decomposition to expose a K33 minor in G

This implies that the graph can not be planar
The diameter of each component therefore has to be bounded

—



| Property 1 - Proofsketch

Suppose there is a component C' containing u, v such that
d(u,v) > 34A
Let w be the midpoint of the path between them (within C')
d(u,w),d(w,v) > 17A

Let v3 be the root of the last BF'S-tree used to obtain the component

3 disjoint paths ut,, wts, vtz of length 4A in the tree
Let hq,ho,h3 be their midpoints, i.e. d(u, hy) = 2A, etc

We then have that
d(hi, hj) > 12A forall i # j |



I Property 1 - Diagram 1




| Property 1 - Proofsketch

Now, let v, be the root of the BF'S-tree of the previous level
It has disjoint paths h,t}, hot,, hst, Of length 4A and if we
let h},hy,hs be their midpoints

d(h;,h;) > 8A forall ¢ # j
Similarly, for the first BF'S-tree of the decomposition

Look at disjoint paths in the tree
Define h|,h,,h, as before
hi,h,,hs are pairwise more than 4A apart

—



I Property 1 - Diagram 2




I Property 1 - Diagram 3




| Red super nodes

Definition. A super node of a graph (G is a connected subgraph

Let us define the following red super nodes:

A(vy), A(ve), A(v3)
A(wvs) is the union of three paths of the tree T3
» from the root v to vertices tq, to, t3

$» (but not including t1, %2, t3)

® cachoftq,ts,tsis at distance 4A from one of u, v, w

Similarly, define A(vsy), A(v1) with respect to the ¢;’'s and ¢"’s |



| Blue super nodes

Let us define the following blue super nodes:
A(u), A(v), A(w)

A(u) is the union of

®» the path on tree 73 joining u and t4

® the path on tree T5 joining h; and ¢/,

® the path on tree T; joining A} and ¢/

A(v) and A(w) are defined similarly






| Super hodes are digoint

Claim. A(u), A(v), A(w) (Blue super nodes) are pairwise disjoint

Proof. Each blue node is only 8A in diameter (see diagram)

Yet, they each contain one of u, v, w, any two of which are > 16 apart ]
Claim. A(vy), A(vs), A(vs) (Red super nodes) are pairwise disjoint

Proof. A(v1), A(vs), A(vs) are separated by the decomposition

Each of hy, ha, h3 is > 4/ away from A(vs)

Thus A(ve) N T3 = () and a fortiori A(vg) N A(vsg) = ()
Same argument applies to A(vy ) with respect to either of A(vs) and A(v3) O

Finally, similar arguments will show that any red super node is disjoint

from any blue super node |






Red nodes, blue nodes

Claim. A(wvq) is disjoint from blue nodes A(u), A(v), A(w)

Proof. Visibly, the parts that belong to trees 15 and 73 can not intersect with A(ful)

(because they are all within the same A — 1 levels of vertices 4A apart from A(v1))

Question is:
could a vertex = of A(wv1) belong to one of thY, t5hs, thhl, say t]h}?
Then, d(z, h}) < 4A, thus d(x,u) < 8A

Without loss of generality, let’s say x is on path vy h’2

Now d(z, hy) < HBA —1
(because h} and hl, are within consecutive A — 1 levels)
So, d(x,v) < 9A — 1 and thus d(u,v) < 17TA — 1, a contradiction ]



| Red nodes, blue nodes

Claim. A(vs) is disjoint from blue nodes A(u), A(v), A(w)

Proof. Repeating the arguments for A(v1),

we only need to worry about paths ¢/ k', t hl, t5 hl intersecting A(v2)

Pick an x in T5 on t// A’ and y in A(v2)

Without loss of generality, let's say y is on path v ho

Then, restricting our distance metric to 15 we get:

d(vy, x) > d(ve, h}) — (A — 1) (consecutive A — 1 levels)

So, d(vg,x) > d(va,hy) —2A — (A —1) =d(vg,hy) —3A + 1

But then d(vsa, ) > d(va, ho) — (A —1) —3A 4+ 1 =d(ve, hy) —4A + 2
But, y being in A(vz), d(y, ho) > 4A, so d(va, ho) — 4A 4+ 2 > d(ve,y) + 2
Thus, d(va, x) > d(ve,y) + 2, x and y are therefore distinct O

—



| Red nodes, blue nodes

Claim. A(wvs) is disjoint from blue nodes A(u), A(v), A(w)

Proof. The exact same technigque as in the previous proof covers all the cases we

need to consider ...



| Property 1 - End of Proofsketch

By contracting the super nodes, we observe a K3 3
This violates the assumption of the graph being planar

(Kuratowski)

For each component C, we have Diam(C) < 34A

By induction, Klein, Plotkin and Rao in their paper actually proof
the following stronger statement:
Theorem. If G excludes Kr,r as a minor, any connected component obtained

through r iterations of the described decomposition method has diameter

O(r3A)



| Properties

Given a random decomposition, with parameter A

® Each component in the decomposition has diameter at most O(A)
® Foreachz € V(G) we have Pld(z,S) > c1A] > ¢

We now furthermore have: For any x,y € V(G), with d(x,y) > 34A

® 1,y ¢ S with constant probability

® 2,y are in different connected components C;, C;

® d(x,5),d(y,S) > ci A with constant probability

Now, for r;, r; random numbers chosen uniformly from [1, 2]

rid(z,S) — r;d(y, S)| > c1 A with constant probability |



I Embedding

We will now define the embedding:
For each A € {27|]1 < 2/ < Diam(G)}

P perform 4log n random decompositions
For each component C'x, in a decomposition
B uniformly pick a random rj, from [1, 2]

For x € () define its coordinate as ry, - d(x, .S)
This defines a mapping

faiixzr—rg-d(z,S)

forall A and all i € {27|1 < 27 < logn}

Finally, let




I Embedding

The embedding is a contraction

Let x,y in V(G), then

I£@) = I = 3 oz (fas(@) = fa,)?
A.i

5 2{: 2d(x, 1))

4log

1
4log n

< 41log? n(4d(z,y)?) = d(z,y)?

—



I Embedding

The embedding has distortion O(/logn)

Let z,y in V(G), and pick a A such that
34A < d(z,y) < 68A

then

1£@) = LI 2 3 oz (fail@) = faiw)°

D3 e COL G

1

2Q(l)logn(d(x’y))2 |




| Applications

Using this result, we can obtain
a O(y/log n)-approximative max flow min cut theorem
for multicommodity flow problems in planar graphs

—



| Further results

Definition. For a set of k points .S in R” the volume Evol(S) is

the &k — 1 dimensional {5 - volume of the convex hull of .S

Definition. The volume of a k-point metric space (S,d) is

Vol(S) = f%upg Evol(f(S5))

(the maximum being taken over all contractions f)



| Further results

Definition. A (k,c)-volume preserving embedding of a metric space (S,d) is a
contraction f : X +— {5 where for all P C S with | P| = k,

Vol(S) \“*
@ <Ewl(f(5)) =

The k-distortion of f is

(2) sup
PCS,|P|=k

(meatrs)

With the help of some results from Feige, we can prove the following:

Theorem. Rao’s Theorem For every finite planar metric of cardinality n there exists a

(k,c)-volume preserving embedding of k-distortion O(+1/log n) |
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