Small distortion and volume preserving embedding for Planar and Euclidian metrics

Satish Rao

presented by Fjóla Rún Björnsdóttir

CSE 254 - Metric Embeddings

Winter 2007

Overview

- Definitions
- Main Results
- Proof
- Further Results
- Open Problems

Main Result

Definition. Let \mathcal{G} be a class of graphs and let $G \in \mathcal{G}$.

A graph metric is the shortest distance metric d on the vertices V(G) of G.

Definition. A planar metric is a graph metric on the class of all planar graphs.

Theorem. (Rao's Theorem) Any finite planar metric of cardinality n can be embedded into ℓ_2 with distortion $\mathcal{O}(\sqrt{\log n})$.

This improves on the general $\mathcal{O}(\log n)$ distortion bound obtained by *Bourgain* for all metrics.

Proof - Outline

We will outline a decomposition method

- which has some nice properties (for planar graphs in particular)
- a repeated number of decompositions provide coordinates for embedding
- distant vertices will have independent coordinates

Each decomposition satisfies our purpose with a constant probability

We then estimate the distortion of the composed embedding

Decomposition

Pick $\Delta \in \{1, 2, 4, \dots n\}$

Pick $v_0 \in V(G)$ arbitrarily

Pick $r \in \{0, 1, 2, \dots \Delta - 1\}$ uniformly at random

Let

$$S_1 = \{ v \in V(G) : d(v_0, v) \equiv r \pmod{\Delta} \}$$

Partition $G \setminus S_1$ into connected components

For each component, repeat this procedure twice (with the same Δ)

Let finally $S = S_1 \cup S_2 \cup S_3$

Decomposition is connected components of $G \setminus S$

Properties

 ${\color{red} \bullet}$ Each connected component in the decomposition has diameter at most $\mathcal{O}(\Delta)$

This results from a theorem by Klein, Plotkin and Rao We will sketch the proof shortly

• For each $x \in V(G)$ we have $\mathbb{P}[d(x,S) \geq c_1\Delta] \geq c_2$

Given a Δ ,

$$d(v_1, x) \pmod{\Delta}$$

will depend upon the choice of BFS-tree root v_1

Property 1 - Outline of proof

We do a proof by contradiction We assume the existence of a component of diameter greater than $k\Delta$

We will use the BFS-trees on which we constructed the decomposition to expose a $K_{3,3}$ minor in G

This implies that the graph can not be planar

The diameter of each component therefore has to be bounded

Property 1 - Proofsketch

Suppose there is a component C containing u, v such that

$$d(u,v) \ge 34\Delta$$

Let w be the midpoint of the path between them (within C)

$$d(u, w), d(w, v) \ge 17\Delta$$

Let v_3 be the root of the last BFS-tree used to obtain the component

 \exists disjoint paths ut_1, wt_2, vt_3 of length 4Δ in the tree Let h_1,h_2,h_3 be their midpoints, i.e. $d(u,h_1)=2\Delta$, etc We then have that

$$d(h_i, h_j) > 12\Delta$$
 for all $i \neq j$

Property 1 - Diagram 1

Property 1 - Proofsketch

Now, let v_2 be the root of the BFS-tree of the previous level It has disjoint paths h_1t_1' , h_2t_2' , h_3t_3' of length 4Δ and if we let h_1' , h_2' , h_3' be their midpoints

$$d(h_{i}^{'},h_{j}^{'}) > 8\Delta \quad \text{for all} \quad i \neq j$$

Similarly, for the first BFS-tree of the decomposition

Look at disjoint paths in the tree Define h_1'', h_2'', h_3'' as before h_1'', h_2'', h_3'' are pairwise more than 4Δ apart

Property 1 - Diagram 2

Property 1 - Diagram 3

Red super nodes

Definition. A super node of a graph G is a connected subgraph

Let us define the following *red* super nodes:

$$A(v_1), A(v_2), A(v_3)$$

 $A(v_3)$ is the union of three paths of the tree T_3

- from the root v_3 to vertices t_1, t_2, t_3
- (but not including t_1, t_2, t_3)
- ullet each of t_1, t_2, t_3 is at distance 4Δ from one of u, v, w

Similarly, define $A(v_2), A(v_1)$ with respect to the t'_i 's and t''_i 's

Blue super nodes

Let us define the following *blue* super nodes:

A(u) is the union of

- the path on tree T_3 joining u and t_1
- the path on tree T_2 joining h_1 and t'_1
- the path on tree T_1 joining h'_1 and t''_1

A(v) and A(w) are defined similarly

Super nodes

Super nodes are disjoint

Claim. A(u), A(v), A(w) (Blue super nodes) are pairwise disjoint

Proof. Each blue node is only 8Δ in diameter (see diagram)

Yet, they each contain one of u,v,w, any two of which are $>16\Delta$ apart

Claim. $A(v_1), A(v_2), A(v_3)$ (Red super nodes) are pairwise disjoint

Proof. $A(v_1), A(v_2), A(v_3)$ are separated by the decomposition

Each of h_1, h_2, h_3 is $> 4\Delta$ away from $A(v_2)$

Thus $A(v_2) \cap T_3 = \emptyset$ and a fortiori $A(v_2) \cap A(v_3) = \emptyset$

Same argument applies to $A(v_1)$ with respect to either of $A(v_2)$ and $A(v_3)$

Finally, similar arguments will show that any red super node is disjoint from any blue super node

Super nodes

Red nodes, blue nodes

Claim. $A(v_1)$ is disjoint from blue nodes A(u), A(v), A(w)

Proof. Visibly, the parts that belong to trees T_2 and T_3 can not intersect with $A(v_1)$ (because they are all within the same $\Delta-1$ levels of vertices 4Δ apart from $A(v_1)$)

Question is:

could a vertex x of $A(v_1)$ belong to one of $t_1''h_1'$, $t_2''h_2'$, $t_2''h_2'$, say $t_1''h_1'$? Then, $d(x,h_1')\leq 4\Delta$, thus $d(x,u)\leq 8\Delta$

Without loss of generality, let's say x is on path $v_1h_2^\prime$

Now
$$d(x,h_2')\leq 5\Delta-1$$
 (because h_1' and h_2' are within consecutive $\Delta-1$ levels) So, $d(x,v)\leq 9\Delta-1$ and thus $d(u,v)\leq 17\Delta-1$, a contradiction

Red nodes, blue nodes

Claim. $A(v_2)$ is disjoint from blue nodes A(u), A(v), A(w)

Proof. Repeating the arguments for $A(v_1)$,

we only need to worry about paths $t_1''h_1'$, $t_2''h_2'$, $t_2''h_2'$ intersecting $A(v_2)$

Pick an x in T_2 on $t_1^{\prime\prime}h_1^{\prime}$ and y in $A(v_2)$

Without loss of generality, let's say y is on path v_2h_2

Then, restricting our distance metric to T_2 we get:

$$d(v_2,x) \ge d(v_2,h_1') - (\Delta-1)$$
 (consecutive $\Delta-1$ levels)

So,
$$d(v_2, x) \ge d(v_2, h_1) - 2\Delta - (\Delta - 1) = d(v_2, h_1) - 3\Delta + 1$$

But then
$$d(v_2, x) \ge d(v_2, h_2) - (\Delta - 1) - 3\Delta + 1 = d(v_2, h_2) - 4\Delta + 2$$

But, y being in
$$A(v_2)$$
, $d(y, h_2) \ge 4\Delta$, so $d(v_2, h_2) - 4\Delta + 2 \ge d(v_2, y) + 2$

Thus,
$$d(v_2, x) \ge d(v_2, y) + 2$$
, x and y are therefore distinct

Red nodes, blue nodes

Claim. $A(v_3)$ is disjoint from blue nodes A(u), A(v), A(w)

Proof. The exact same technique as in the previous proof covers all the cases we need to consider ...

Property 1 - End of Proofsketch

By contracting the super nodes, we observe a $K_{3,3}$ This violates the assumption of the graph being planar

(Kuratowski)

 \therefore For each component C, we have $Diam(C) < 34\Delta$

By induction, Klein, Plotkin and Rao in their paper actually proof the following stronger statement:

Theorem. If G excludes $K_{r,r}$ as a minor, any connected component obtained through r iterations of the described decomposition method has diameter $\mathcal{O}(r^3\Delta)$

Properties

Given a random decomposition, with parameter Δ

- **Proof** Each component in the decomposition has diameter at most $\mathcal{O}(\Delta)$
- **●** For each $x \in V(G)$ we have $\mathbb{P}[d(x,S) \geq c_1\Delta] \geq c_2$

We now furthermore have: For any $x, y \in V(G)$, with $d(x, y) \geq 34\Delta$

- $m{y} \in S$ with constant probability
- lacksquare x,y are in different connected components C_i,C_j

Now, for r_i, r_j random numbers chosen uniformly from [1, 2] $|r_i d(x, S) - r_j d(y, S)| \ge c_1 \Delta$ with constant probability

Embedding

We will now define the embedding:

For each $\Delta \in \{2^j | 1 \le 2^j \le Diam(G)\}$

ightharpoonup perform $4 \log n$ random decompositions

For each component C_k in a decomposition

• uniformly pick a random r_k from [1, 2]

For $x \in C_k$ define its coordinate as $r_k \cdot d(x, S)$ This defines a mapping

$$f_{\Delta,i}: x \mapsto r_k \cdot d(x,S)$$

for all Δ and all $i \in \{2^j | 1 \le 2^j \le \log n\}$

Finally, let

$$f: x \mapsto \left(\frac{1}{2\log n} f_{\Delta,i}(x) : \Delta, i\right)$$

Embedding

The embedding is a contraction

Let x, y in V(G), then

$$||f(x) - f(y)||^2 = \sum_{\Delta,i} \frac{1}{(2\log n)^2} (f_{\Delta,i}(x) - f_{\Delta,i}(y))^2$$

$$\leq \frac{1}{4\log^2 n} \sum_{\Delta,i} (2d(x,y))^2$$

$$\leq \frac{1}{4\log^2 n} 4\log^2 n (4d(x,y)^2) = d(x,y)^2$$

Embedding

The embedding has distortion $\mathcal{O}(\sqrt{\log n})$

Let x, y in V(G), and pick a Δ such that

$$34\Delta < d(x,y) < 68\Delta$$

then

$$||f(x) - f(y)||^2 \ge \sum_{i} \frac{1}{(2\log n)^2} (f_{\Delta,i}(x) - f_{\Delta,i}(y))^2$$

$$\ge \sum_{i} \frac{1}{(2\log n)^2} (\Omega(1)d(x,y))^2$$

$$\ge \frac{1}{\Omega(1)\log n} (d(x,y))^2$$

Applications

Using this result, we can obtain a $\mathcal{O}(\sqrt{\log n})$ -approximative max flow min cut theorem for multicommodity flow problems in planar graphs

Further results

Definition. For a set of k points S in \mathbb{R}^L the volume Evol(S) is the k-1 dimensional ℓ_2 - volume of the convex hull of S

Definition. The volume of a k-point metric space (S,d) is

$$Vol(S) = \sup_{f:S \to \ell_2} Evol(f(S))$$

(the maximum being taken over all contractions f)

Further results

Definition. A (k,c)-volume preserving embedding of a metric space (S,d) is a contraction $f: X \mapsto \ell_2$ where for all $P \subset S$ with |P| = k,

$$\left(\frac{Vol(S)}{Evol(f(S))}\right)^{1/(k-1)} \le c$$

The k-distortion of f is

(2)
$$\sup_{P\subseteq S, |P|=k} \left(\frac{Vol(S)}{Evol(f(S))}\right)^{1/(k-1)}$$

With the help of some results from Feige, we can prove the following: **Theorem.** Rao's Theorem For every finite planar metric of cardinality n there exists a (k,c)-volume preserving embedding of k-distortion $\mathcal{O}(\sqrt{\log n})$

References

- S. Rao. Small distortion and volume preserving embeddings for planar and euclidean metrics. In *Proceedings of the 15th Annual Symposium on Computational Geometry*, ACM Press, 1999
- P. Klein, S. Rao and S. Plotkin. Excluded minors, network decompositions, and multicommodity flow. In *Proceedings of the 25th Annual ACM Symposium on Theory of Computing*, 1993
- U. Feige. Approximating the bandwidth via volume respecting embeddings. In *Proceedings of the 30th Annual ACM Symposium on Theory of Computing*, 1998
- J. Matousek. Lectures on Discrete Geometry. Springer-Verlag, New York, 2002