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ABSTRACT 
Random perturbation is a promising technique for privacy 
preserving data mining. It retains an original sensitive value with 
a certain probability and replaces it with a random value from the 
domain with the remaining probability. If the replacing value is 
chosen from a large domain, the retention probability must be 
small to protect privacy. For this reason, previous randomization-
based approaches have poor utility. In this paper, we propose an 
alternative way to randomize sensitive values, called small 

domain randomization. First, we partition the given table into 
sub-tables that have smaller domains of sensitive values. Then, we 
randomize the sensitive values within each sub-table 
independently. Since each sub-table has a smaller domain, a larger 
retention probability is permitted. We propose this approach as an 
alternative to classical partition-based approaches to privacy 
preserving data publishing. There are two key issues: ensure the 
published sub-tables do not disclose more private information 
than what is permitted on the original table, and partition the table 
so that utility is maximized. We present an effective solution.  

1. INTRODUCTION 
The objective of privacy preserving data mining (PPDM) is to 
discover interesting patterns in a given dataset T, without deriving 
any sensitive information. To achieve this goal, input perturbation 

[3][4][8][9][12][14][17][21] converts T to another dataset T* that 
permits effective PPDM, and at the same time, protects the 
sensitive information in T. Random perturbation [3][4][8][9] is a 
promising input perturbation method, due to strong privacy 
guarantees. We focus on a specific, widely adopted, random 
perturbation technique, called Uniform Perturbation [3].  

Consider a sensitive attribute SA in T. For a given retention 

probability p, Uniform Perturbation retains the sensitive value x 
 SA in a record with probability p and replaces x with a random 
value chosen from the domain of SA with probability (1  p). The 
value of p represents the tradeoff between the utility of the 
perturbed T* and the strength of privacy protection; when p = 1, 
all sensitive values are revealed (no privacy) and when p = 0, all 
sensitive values are completely randomized (no utility). 

1.1 Notoriously Low Retention 
Random perturbation was initially used for collecting sensitive 
binary survey results [22] and later extended to a categorical 

attribute with an arbitrary domain size [3]. As the domain size 
increases, the retention probability p diminishes in order to 
protect privacy. Consider a sensitive attribute SA with the domain 
size m. The probability that the original value x is replaced with a 
specific value y chosen from the entire domain of SA is q = (1  
p)/m, where (1  p) is the probability that x will be replaced by 
any value from the domain of SA. To hide x, the total probability 
(p + q) that x remains unchanged should not be “much larger” 
than the replacing probability q, i.e., the ratio  = (p + q) / q 
should be a “small” value. Solving these equations, we get q = 
1/(m – 1 + ) and p = (  1)/ (m  1 + ).  

In practice, these probabilities can be too small due to a large m. 
Consider the 8 discrete attributes of the CENSUS dataset (see 
Appendix 10.8 for details). Assuming ratio  = 5, Table 1 shows 
the domain size m and the probabilities p and q for each attribute. 
Unless the domain size m is very small (< 10), the retention 
probability p is very low (< 30%), rendering the perturbed T* too 
noisy for data mining.  

Table 1 Probabilities p and q for CENSUS,  = 5  

 A1 A2 A3 A4 A5 A6 A7 A8 

m 77 70 50 14 9 7 6 2 

p 5% 5% 7% 22% 31% 36% 40% 67% 

q 1% 1% 2% 6% 8% 9% 10% 17% 

The above situation can get much worse in some practical 
scenarios. The standardized medical diagnoses ICD-9 codes 
(http://icd9cm.chrisendres.com) consist of over m = 15,000 
different values. With  = 5, q = 6.710-5 and (p + q) = 3.310-4. 
In the case of multiple sensitive attributes, previous studies 
[4][24] suggest considering the “compound attribute” SA with a 
domain equal to the cross-product of sensitive attributes. For 
example, the compound attribute for Age and Country has domain 
size m = 77  70 = 5390. With  = 5, q = 1.910-4, (p + q) = 
7.410-4. In both cases, the uncertainty created by such a low 
retention probability is far more than what is required for privacy 
and the perturbed data is nearly completely random and useless.  

The above analysis shows that low retention probability is caused 
by randomization over the entire domain of SA. To address this 
problem, the first thought is partitioning the domain of SA into 
disjoint subsets dom1,…,domk and perturbing the records Ti for 
domi independently. However, this approach is dangerous if Ti has 
a more skewed distribution of sensitive values. Suppose H1N1, 
SARS, HIV, and cancer occurs in 40%, 30%, 29%, and 1% of 
records in T, respectively. After partitioning the domain into dom1 
= {H1N1, cancer} and dom2 = {SARS, HIV}, H1N1 occurs in 
98% of records in T1, compared to only 40% in T. The increased 
dominance of H1N1 in T1 leads to a similar increase in the 
perturbed data, which poses a larger threat to the records in T1. 
The other partitioning has a similar problem. Thus, the approach 
of simply partitioning the domain of SA is not a solution. 
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1.2 Contributions 
Instead of partitioning the domain of SA, the key to our approach 
is to partition the table T into disjoint sub-tables T1,...,Tk and 
perturb each Ti independently within SAi, where SAi denotes the 
subset of SA that occur in Ti. Since T1,...,Tk is a partitioning of T, 
SAi is allowed to overlap. With a reduced domain SAi, both the 
retention probability (p + q) and the replacing probability q for Ti 
will increase (more utility), whereas the ratio (p + q)/q will remain 
unchanged (same privacy). We refer to this approach as Small 

Domain Randomization. Our contributions are as follows. 

Privacy We ensure that the adversary learns no more sensitive 
information from the perturbed sub-tables T1*,...,Tk*, than what is 
permitted by the privacy requirement on T. We consider a 
restricted form of (1, 2)-privacy [9] and we derive a new privacy 
requirement for each Ti such that enforcing the new privacy on Ti 
is sufficient for enforcing the given privacy requirement on T.  

Utility We ensure partitioning {T1,...,Tk} minimizes the error of 
reconstructing SA’s probability distribution in T. The challenge is 
that T1*,...,Tk* is a random instance and minimizing error for such 
a specific instance makes little sense. We derive a probabilistic 

error bound that holds with a given probability over all instances 
and search for a partitioning {T1,...,Tk} that minimizes this bound.  

Algorithm Finding {T1,...,Tk} described above is a clustering 
problem with a global error metric under a privacy constraint. 
Such problems are unlikely to have an efficient optimal solution. 
We present a practical and efficient solution by employing several 
non-trivial techniques, namely, distribution-aware partitioning, 
band matrix technique, and dynamic programming. 

Results We demonstrate that our algorithm’s perturbed data can 
be used to answer count queries more accurately than traditional 
randomization and partition-based approaches. Such queries 
concern a subset of records satisfying a condition on some non-
sensitive and sensitive attributes and are crucial for data analysis. 

In the rest of this paper, Section 2 reviews related work, Section 3 
provides background knowledge, Section 4 defines the problem, 
Section 5 describes our algorithm, Section 6 presents the 
experimental evaluation, and we conclude the paper in Section 7.  

2. RELATED WORK 
We study input perturbation, where publishing data is essential, 
as in most data mining applications, and perturbation is applied to 
the data to protect privacy. In contrast, output perturbation 
perturbs and publishes the answer to a query, where the data is not 
published. An example of output perturbation is query answering 
under differential privacy [16]. Input perturbation can be divided 
into two categories: partition-based and randomization-based.  

Partitioned-based approaches partition the set of records into 
anonymity groups and release only some information about 
groups. These approaches include generalization [19][20], 
anatomy [13][23], and condensation [1]. Since the partitioning is 
deterministic and binds individuals to small anonymity groups, it 
is vulnerable to attacks when the adversary possesses additional 
background knowledge [5][14][21] on group members. The 
corruption attack [21] is an example.  

Randomization-based approaches have been used in collecting 
survey results [22], in privacy preserving data mining [3][8][9], 

and more recently in privacy preserving data publishing 
[17][21][24]. Either random noise is added to numeric values [2], 
or categorical values are randomly replaced with other values in 
the domain [3][8][9][12]. Randomization-based approaches are 
less vulnerable to attacks like corruption attacks because each 
record is randomized independently and the non-determinism 
makes it more difficult to corrupt individuals with deterministic 
background knowledge.  

Initial steps have been taken to find optimal randomization 
schemes for improving data utility [4][12][17]. However, all 
previous works perform randomization over the entire domain of 
the sensitive attribute, which leads to a low retention probability, 
as discussed in Section 1.1. To our knowledge, our work is the 
first to improve utility through randomization in small domains. 

3. PRELIMINARY 
The dataset T consists of one sensitive attribute SA and several 
non-sensitive attributes; multiple sensitive attributes can be 
treated as one compound sensitive attribute with a domain defined 
by the cross-product of all sensitive attributes. We assume that SA 
has the domain {x1,…,xm}, or simply SA = {x1,…,xm}. SA’s 
domain size is |SA| = m and each xi is called a SA-value. |T| 
denotes the number of records in T. The frequency of xi refers to 
the number of records in T having xi, and the relative frequency of 
xi refers to the frequency of xi normalized by |T|. As in [3][4][8] 
[9][12][24], each SA-value xi is chosen independently at random 

according to some fixed probability distribution denoted by pX. 
The publisher allows the researcher to learn pX, but wants to hide 
the SA-value of an individual record.  

3.1 Uniform Perturbation 
Like [3][4][8][17][21][24], we focus on Uniform Perturbation, 
because it maximizes retention probability [4]. In this perturbation 
scheme, SA-value x in record r  T is processed by tossing a coin 
with head probability p, called retention probability. If the coin 
lands on heads, x is retained in perturbed record r*; otherwise, x is 
replaced with a random value in SA in r*. Non-sensitive values 
are unchanged and T* contains all perturbed records r*, |T*| = |T|. 

Let X and Y be random variables denoting the original and 
perturbed values, respectively. Both X and Y have domain SA. 
The probability of perturbing value x  SA to y  SA is given by: 
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/)1(
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Recall m is the domain size of SA. In the case of x = y, p + (1-
p)/m is the sum of the probability that x is retained and the 
probability that x is replaced with a specific value y from SA, 
where y happens to be equal to x. We refer to the set {Pr[x  y] | 
x, y  SA} as the perturbation operator, or matrix. 

3.2 Privacy 
(1, 2)-privacy [9] Let Q(X) be a predicate on any sensitive 
value X in the original data T, Y be a perturbed version of X in 
the perturbed data T*, Pr[Q(X)] be the adversary’s belief in Q(X) 
before observing Y = y (i.e., the prior), and Pr[Q(X) | Y = y ] be 
the adversary’s belief in Q(X) after observing Y = y (i.e., the  
posterior). The (1, 2)-privacy in [9] states that 

       Pr[Q(X)] ≤ ρ1 implies Pr[Q(X) | Y = y ] ≤ ρ2, 
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where ρ1 and ρ2 are two constants in (0, 1] such that ρ1 < ρ2. In 
essence, (1, 2)-privacy limits the increase of the degree of the 
adversary’s belief after observing the published data. Notice (1, 
2)-privacy bounds the posterior Pr[Q(X) | Y = y ] by 2 only if 
the prior Pr[Q(X)] is not more than 1.  

A key requirement for ensuring (1, 2)-privacy is that Pr[xky] 
and Pr[xjy] for two distinct SA-values xk and xj should not 
differ  “too much”. This requirement is formalized by the 
following -amplification condition in [9],   1: for all y  SA,  
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The next theorem shows that, for a “suitably small”  value, the 
condition in (2) ensures (1, 2)-privacy. 

Theorem 1 [9] Assume that for every y  SA, there exists xj  
SA such that Pr[xj  y] > 0. Suppose that the -amplification 
condition holds and 
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Then (1, 2)-privacy is ensured. 

With Theorem 1, we can derive the optimal Uniform Perturbation 
matrix for ensuring (1, 2)-privacy. From Equation (1), if x = y, 
Pr[x  y] = p + q, and if x  y, Pr[x  y] = q, where q = (1  
p)/m.  Since (p + q) ≥ q, Equation (2) reduces to (p + q) / q ≤ , 
and to maximize (p + q), let (p + q) / q = . Solving these 
equations, we get  

q = 1 / (m – 1 + ) and p = ( – 1) / (m  1 + ). (4) 

With Equation (4), we rewrite the matrix defined in Equation (1) 
as the following m  m matrix: 
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Let both xi and yi be the ith value in SA, where xi occurs in T and 
yi occurs in T*. Each entry P[j][i] stores  Pr[xi  yj], for i, j = 
1,…,m. To ensure (1, 2)-privacy, Theorem 1 suggests that the 
maximum  value satisfying Equation (3) is given by 
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(6) 

From the above derivation, the matrix P in Equation (5) with the  
value in Equation (6) ensures (1, 2)-privacy. This P looks the 
same as the gamma-diagonal matrix in [4], which was shown to 
maximize the retention probability [4]. However, there is one 
important difference: the randomization in [4] is over the domain 
defined by the cross-product of all attributes, whereas the 
randomization defined by Equation (5) is over the domain of SA. 
Thus, the domain size m for the gamma-diagonal matrix is much 
larger the domain size m in Equation (5), which means that the 
retention probability in [4] is much smaller. 

Restricted (1, 2)-privacy used in this paper We consider the 
restricted form of (1, 2)-privacy in which the predicate Q(X) has 

the form X = x and x is a specific SA-value. Specifically, we want 
to ensure 

     Pr[X = x] ≤ ρ1 implies Pr[X = x | Y = y ] ≤ ρ2. 

This restricted version assumes the adversary’s goal is to infer an 
individual SA-value x, and the publisher wants to limit the 
posterior probability of such inferences. Note, the L-diversity 
principle [15] also aims to limit the inference of an individual SA-
value. We will show that, under this restricted privacy notion, 
small domain randomization will provide the same level of 
privacy as the table-wise randomization approach. In the rest of 
the paper, the term (1, 2)-privacy refers to this restricted form.  

In the absence of further knowledge, X with distribution pX(x) is 
the best description of the adversary’s prior knowledge. Therefore, 
we model the prior Pr[X = x] by pX(x), i.e., the relative frequency 
of x in T. 

3.3 Reconstruction Model 
We evaluate the utility of perturbed data T* for reconstructing the 
SA probability distribution pX(x) and for answering count queries. 
Let F = <f1,…,fm> denote the frequencies of SA-values x1,...,xm in 
T. Let F* = <f1*,…,fm*> denote the estimate of F reconstructed 
using T* and P. The reconstruction error of fi* is defined by |fi – 
fi*| / |fi|, i=1,…,m. We can estimate F* from T* and P as follows 
(see more details in Appendix 10.2). Let o = <o1,…,om> be the 
observed frequencies from a specific published instance of T*. 

1

|*|)1(*






 Tom

f i
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(7) 

Let {A1, …, Ad} be a subset of all non-sensitive attributes, aj be a 
value from the domain of Aj,  j = 1,...,d, and xi be a SA-value.  

A count query has the form 

Q: SELECT COUNT(*) FROM T 
WHERE A1 = a1 AND … AND Ad = ad AND SA = xi 

(8) 

In other words, each query counts the size of one group defined 
by a GROUP-BY query with {A1,…,Ad, SA} being the GROUP-
BY list. To compute the estimate est of the query result, we 
consider the set of records, Res, from T* satisfying the condition 
A1 = a1 AND … AND Ad = ad as a sample of T* and apply the 
above reconstruction to Res. Specifically, we instantiate oi with 
the frequency of xi in Res and replace |T*| with |Res| in Equation 
(7). The estimated frequency fi* of xi in the query condition is 
returned as the query answer. We can treat Res as a sample of T* 
because the randomization on SA is entirely independent of the 
non-sensitive attributes A1, …, Ad; therefore, the randomization 
for Res follows exactly the same probability distribution as for T.  

4. THE PROBLEM STATEMENT 
As illustrated in Section 1.1, the retention probability for Uniform 

Perturbation in Equation (5) diminishes as the domain size m of 
SA increases. To boost the retention probability, we propose to 
partition the input T into disjoint sub-tables T1,…,Tk such that 
each Ti involves a small sub-domain SAi of SA with the size mi, 
and perturb each Ti independently with perturbation matrix Pi 
over SAi (more details later). Since SAi has a smaller size m, Pi 
has a larger retention probability. The researcher can reconstruct 
the probability distribution pX(x) for T by computing an estimate 
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estj
 from Tj* and Pj, as described in Section 3.3, for each j=1,…,k. 

The estimate on T is the sum ∑j estj.  

What properties must the partitioning T1,…,Tk satisfy? Assuming 
a (1, 2)-privacy requirement is specified on T by the publisher, 
two issues arise. First, a skewed SA distribution in a sub-table Ti 
may expose the records in Ti to a greater privacy risk than 
permitted by the given privacy requirement on T (see Section 1.1). 
Second, the reconstruction error defined in Section 3.3 is for a 
given instance of the perturbed data, but the perturbed instance 
actually published is randomly determined, thus, is unknown prior 
to randomization. Therefore, our partitioning problem must 
answer two questions: 

Question 1: What privacy requirement must be ensured on each 

Ti in order to ensure the given privacy requirement on T?  

Question 2: What metrics should be used to quantify the utility of 

the partitioning T1,…,Tk? 

In the rest of this section, we answer these questions. Let Pri[X = 
x] and Pri[X = x | Y = y] denote the adversary’s belief on X = x in 
Ti before and after seeing Y = y in Ti*, respectively.  

4.1 Privacy Requirement 
Recall that the (restricted) (1, 2)-privacy requirement on T states 
that if Pr[X = x]  1, Pr[X =x | Y = y] ≤ 2. Since Ti’s are disjoint 
and are perturbed independently, it suffices to enforce Pri[X = x | 
Y = y] ≤ 2 for Ti, i = 1,…,k. Therefore, to ensure (1, 2)-privacy 
on T, we can ensure a new (1i, 2)-privacy on Ti, i=1,…,k, such 
that (a) 1i < 2 and (b) Pr[X = x] ≤ 1 implies Pri[X = x] ≤ 1i. To 
see this, suppose Pr[X = x]  1. Our choice of 1i implies Pri[X = 
x] ≤ 1i, and then (1i, 2)-privacy implies Pri[X = x | Y = y] ≤ 2, 
as required. This discussion leads to the next definition. 

Definition 1 (1i, 2)-privacy on Ti acts as (1, 2)-privacy on T if 
1i < 2, and Pr[X = x] ≤ 1 implies Pri[X = x] ≤ 1i.  

Simply speaking, if (1i, 2)-privacy on Ti acts as (1, 2)-privacy 
on T, (1i, 2)-privacy on Ti ensures (1, 2)-privacy on T. 
Therefore, to ensure (1, 2)-privacy on T, for i=1,…,k, we look 
for a 1i such that 1i < 2 and for every SA-value x with Pr[X = 
x] ≤ 1, Pri[X = x] ≤ 1i. Among all such 1i, we prefer the 
smallest one in order to maximize i (Equation (6)), thus, 
maximize retention probability pi (Equation (4)). This smallest 1i 
is determined as follows. Let  

}'|][max{Pr

}]Pr[|{'
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1
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SA’ is the set of SA-values x with Pr[X = x] ≤ 1, that is, the set 
of SA-values for which (1, 2)-privacy places the bound 2 on 
Pr[X = x | Y = y]. 1i is the maximum relative frequency of such 
values in Ti. To ensure (1, 2)-privacy, it suffices to ensure (1i, 
2)-privacy because Pr[X = x] ≤ 1 implies Pri[X = x] ≤ 1i. With 
Definition 1 and this discussion, we have 

Corollary 1 Let 1i be defined in Equation (9). If 1i < 2, (i) (1i, 
2)-privacy on Ti acts as (1, 2)-privacy on T, (ii) (1i, 2)-privacy 
ensures that if Pr[X = x] ≤ 1, Pri[X = x | Y = y] ≤ 2.  

Therefore, given the partitioning T1,…,Tk and 1i defined in 
Equation (9), our privacy goal is to ensure (1i, 2)-privacy on Ti, 

i=1,…,k. To this end, we perturb Ti using the mi  mi matrix 
perturbation matrix Pi defined in Equation (5), with m being 
replaced with mi (the domain size of SAi) and  being given by 
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Example 1 Consider the following partitioning {T1, T2} of T = 
{12, 8, 6, 5, 4, 3, 0, 0, 0, 0}, where the numbers inside brackets 
indicate the frequency of SA-values x1,…, x10 in Ti in order: 

T1: {12, 8, 6, 4, 4, 2, 0, 0, 0, 0} 
T2: {  0, 0, 0, 1, 0, 1, 1, 1, 1, 1} 

|SA| = 10, |T| = 42, SA1 = {x1,…,x6}, SA2 = {x4, x6,…,x10}. Notice 
that SA1 and SA2 are not disjoint. Suppose the publisher specifies 
(1/3, 2/3)-privacy on T. Since the relative frequency of all SA-
values is no more than 1, SA’ = SA. The maximum frequency in 
T1 = 12 and |T1 | = 36, so 11 = 1/3. Similarly, 12 = 1/6. Let us 
derive P1 and P2 for T1 and T2 using Equations (5) and (6). For T1, 
m1 = 6 and 1 = (2  (1  11)) / ( 11  (1  2)) = 4. For T2, m2 = 
6 and 2 = (2  (1  12)) / ( 12  (1  2)) = 10. Therefore 

       
P1[j][i] =   
       

    
P2[j][i] =   
    

If T is not partitioned,   = 4, m = 10, and P[j][i] = 4/13 if j = i, 
and P[j][i] = 1/13, otherwise. As we can see, by partitioning T 
into T1 and T2, the retention probabilities on the main diagonal 
(i.e., for j = i) increase from 4/13 to 4/9 for T1 and to 2/3 for T2.  

4.2 Utility Requirement 
The utility metrics in Section 3.3 are difficult to incorporate into 
the search for an optimal partitioning because we do not know the 
count queries in advance. Even for reconstructing the probability 
distribution pX(x), the reconstruction error defined in Section 3.3 
is for a specific instance of T1*,…,Tk*;  minimizing this error is 
not meaningful because the published instance is randomly 
generated by our perturbation matrix. It makes more sense to 
minimize a probabilistic error bound that holds with a certain 
probability over all possible random instances generated by the 
perturbation matrix. We now develop this metric. 

We first consider T and then the partitioning T1,…,Tk. Let Yi be a 
random variable representing the event that record ri in T has 
perturbed SA-value y after perturbation, 1 ≤ i ≤ n, where n = |T|. 
Let Y = Y1 + … + Yn be the frequency of y in T*. The mean of Y, 
E[Y], is  = E[Y1] +…+ E[Yn]. According to Chernoff bound [6], 
the probability that the error of Y is larger than a fraction  of  is 
≤ 2exp(-2/4), i.e., Pr[|Y  | > ] < 2 exp(-/4) [3]. This error 
bound is for the observed frequency on the perturbed T*; however, 
we are interested in an error bound for the reconstructed 
frequency on the original data T. Theorem 2 gives such a bound.     

Theorem 2 Consider the data T and the perturbed T* produced by 
applying Uniform Perturbation in Equation (1) on T, with 
retention probability p. Let f be the frequency of a SA-value x in 
T and f* be the estimate of f using T*. For a allowable error  and 
confidence level (1   ), 
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(See Appendix 10.2 for proof).  

4/9, if j = i 

1/9, otherwise 

2/3, if j = i 

1/15, otherwise 
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The tightest bound  is obtained by taking the equality in the if-
condition. Substituting p in Equation (4) into this equality, we get: 
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where a = 2  (log(2 / ))½. Now consider a partitioning Part = 
{T1,...,Tk} of T. Let mi and i on Ti be the counterparts of m and  
on T defined in Section 3. Adapting Equation (11) to Ti, we get 
the error bounds for Ti and the partitioning Part = {T1,…,Tk}: 
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(Part) is a probabilistic error bound, in that, minimizing this 
bound will minimize the error on a randomly generated instance 
with confidence level (1  ). The equation for i reveals two 
interesting points: first, the i is expressed explicitly in terms of 
|Ti|, mi and i, which are easily computed from Ti; second, i 
linearly decreases as mi decreases and i increases, but decreases 
much slower as |Ti| increases. We will exploit this relationship to 
find a good partitioning in Section 5. 

4.3 The Problem 
Definition 2 (Small Domain Randomization) Given a dataset T, 
a (1, 2)-privacy requirement on T, and confidence level (1   ), 
find a partitioning {T1,…,Tk} of T, such that (i) for i = 1,…,k,  1i 
< 2,  where 1i is defined by Equation (9), and (ii) ({T1,…,Tk}) 
defined by Equation (12) is minimized.  

From Corollary 1(ii), if 1i < 2, (1i, 2)-privacy on Ti ensures (1, 
2)-privacy on T. Thus the condition (i) and (1i, 2)-privacy on Ti 
together ensure the (1, 2)-privacy on T. A summary of the 
notation used in this paper can be found in Appendix 10.1. 

We note that for reconstruction purposes, SAi and Pi will be made 
public. With such information, the adversary can infer Pr[X = x1 
… X = xk | Y = y] = 1 for Ti where SAi= {x1,…,xk} is the 
subset of SA-values that occur in Ti. We will discuss this 
disclosure in Appendix 10.3 and show that as far as protecting 
individual values xi is concerned, small domain randomization 
provides the same level of protection as table-wise randomization. 

5. THE ALGORITHM 
We now present a solution to the Small Domain Randomization 
problem in Definition 2. This is a clustering problem with a global 
utility metric subject to a privacy constraint. Such problems are 
unlikely to have efficient optimal solutions because the number of 
plausible partitionings is too large for a large T. We propose an 
efficient solution that heuristically minimizes the global metric. 

Given a (1, 2)-privacy requirement on T, we want to find a 
partitioning Part = {T1,…,Tk} of T such that (Part)  is minimized 
and 1i < 2, where 1i , i=1,…,k, is defined by Equation (9). 
Minimizing (Part) requires minimizing the error bound i, thus, 
minimizing mi and maximizing i (Equation (12)). From Equation 
(10), i is maximized if 1i is minimized (for the fixed 2). 
Therefore, our algorithm must find a partitioning {T1,…,Tk} 
satisfying the following two requirements: 

Requirement I: Ti contains as few distinct SA-values as possible, 
in order to minimize mi. This requirement calls for partitioning the 
records according to the similarity of their SA-values. 

Requirement II: the maximum relative frequency of an SA’-value 
in Ti is as small as possible, in order to minimize 1i. Recall SA’ 
defined in Equation (9) is the set of SA-values with a relative 
frequency ≤ 1 in T. This requirement calls for distributing the 
records for the same SA’-value among T1,…,Tk.  We use the 
following terminology to express Requirement II.  

Definition 3 (-balanced) Let R be a set of records and let  be an 
integer > 0.  R is -balanced wrt SA’ if f / |R| ≤ 1/ for every SA’-
value x, where f is the frequency of x in R. 

Consider  = |T| / fm where fm is the maximum frequency of any 
SA’-value in T. T is -balanced wrt SA’ (because |T|/fm ≤ |T|/fm) 
and T is not ’-balanced wrt SA’ for ’ > . So  represents the 
maximum balancing level of SA’-values in T.  Requirement II 
requires that each Ti is -balanced wrt SA’. Intuitively, this means 
that each Ti is as balanced as T.  

Our algorithm, called Perturbation Partitioning (PP), finds the 
partitioning Part = {T1,...,Tk} of T in three phases. 

5.1 Phase 1: Balancing Phase 
This phase partitions T into disjoint initial groups {g1,…,gt}, 
where each gj contains the fewest possible SA-values and is -
balanced wrt SA’ and  = |T| / fm, as defined above. The purpose 
of this phase is to break T into -balanced groups that have a 
minimum number of distinct SA-values, so that they can later be 
merged according to the similarity of SA-values (Requirement I). 
For ease of presentation, we first consider the case of SA’ = SA; 
so we only refer to SA in the discussion below. 

The initial groups gj are created iteratively as follows (see Figure 
1). Initially, T0 = T and T0 is -balanced wrt SA. In the jth 
iteration, gj is created by selecting h records for each of the  most 
frequent SA-values from T0. h is defined in Equation (12) and, as 
shown in Lemma 1, is the maximum number such that the 
remaining data T0  gj is -balanced. The purpose of maximizing h 
is twofold: (1) maximizing the number of records in gi without 
increasing the number of distinct SA-values (small mi implies 
small i), and (2) minimizing the number of initial groups, which 
is a key factor in reducing the complexity of subsequent phases.  

 

 

 
 

 

 

 

Figure 1: Balancing Phase  

Let i denote the ith highest frequency of SA-values in T0, then 

1. T0  T; j = 1;  

2. While T0   do 
3.   Let x1,…,x be the  most frequent SA-

values in T0; 

4.   Compute h by Equation (12); 

5.   If h = 0 then gj  T0 else gj contains h 

records in T0 for each of x1,…,x; 
6.   j++; 

7.   T0  T0 – gj; 
8. Return all gj; 
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where (v) = |T0| /   max(1  v, +1). h ≥ 0 because |T0|/-µ+1 
≥ 0 (T0 is -balanced wrt SA). Now we show several important 
properties of this phase. First, generated groups are -balanced 
wrt SA; second, after each iteration, the remaining data is -
balanced wrt SA for the next iteration and there are indeed h 
records for each of the  most frequent SA-values in T0; third, h is 
maximized. 

Lemma 1 Let gj be the initial group created by the jth iteration of 
the balancing phase and let h be computed by Equation (13). (i) gj 
is -balanced wrt SA. (ii) If T0 is -balanced wrt SA before the 
jth iteration, T0  gj is -balanced wrt SA and h ≤ , and (iii) h 
is maximum such that (ii) holds. (See Appendix 10.5 for proof).  

Example 2 Continue with the dataset T and (1/3, 2/3)-privacy in 
Example 1. SA’ = SA, fm = 12, |T| = 42, and   = |T|/ fm = 3. 
Initially, T0 = T. In the first iteration, |T0| = 42,  = f3 = 6, and 
+1 = f4 = 5, so  () = 42/3 – max (12 – 6, 5) = 8, which is 
greater than  = 6, so we set h to 6. Therefore, g1 contains 6 
records for each of the first  = 3 SA-values. Then we remove 
these records from T0 and repeat the process. After five iterations, 
we generate the five initial groups: 

g1: {6, 6, 6, 0, 0, 0, 0, 0, 0, 0} 
g2: {4, 0, 0, 4, 4, 0, 0, 0, 0, 0} 
g3: {2, 2, 0, 0, 0, 2, 0, 0, 0, 0} 
g4: {0, 0, 0, 1, 0, 1, 1, 0, 0, 0} 
g5: {0, 0, 0, 0, 0, 0, 0, 1, 1, 1}   

In the case of SA’  SA, only a proper subset of SA has a relative 
frequency ≤ 1 and only these values are required to have the 
posterior bounded by 2. Therefore, the creation of initial groups 
only need to minimize the maximum relative frequency for the 
SA’-values. Extension details can be found in Appendix 10.7. 

5.2 Phase 2: Rearranging Phase 
Initial groups often are too small to perform random perturbation 
because small |Ti| implies a large error bound I; therefore, we 
have to merge them to minimize the error bound. Requirement I 
implies that merging groups should have common SA-values. In 
this phase, we first rearrange the initial groups g1,…,gt into a 
sequence g1’,…,gt’ so that adjacent groups share common SA-
values as much as possible. Later in the next phase we merge 
adjacent groups to minimize (Part). 

We model the rearranging problem as finding the band matrix [7] 
of a square and symmetric matrix. Informally, the band matrix of a 
symmetric matrix is a permutation of rows/columns so that the 
non-zero entries are clustered along the main diagonal as much as 
possible. First, we represent the initial groups g1,...,gt by the 
following t  m matrix A: A[i][j] = f, if xj  gi, otherwise A[i][j] = 
0, where a row corresponds to an initial group gi and a column 
corresponds to a SA-value xj, and the entry A[i][j] stores the 
frequency of xj in gi. We apply the band matrix technique to the 
symmetric matrix B = A × AT, as suggested in [18]. In our context, 

a band matrix corresponds to a rearrangement of rows (i.e., initial 
groups) such that adjacent rows share common SA-values as 
much as possible. We use the Reverse Cuthill-McKee (RCM) 

algorithm, a variation of the Cuthill-McKee algorithm [7]. A band 

matrix was recently used in [11] to group sparse set-valued data. 
Notice that the dimensionality of our matrix, t  m, is much 
smaller than the data cardinality |T|, as Phase 1 minimizes the 
number of initial groups t by maximizing the size of initial groups. 

Example 3 Let A be the matrix for the initial groups g1,...,g5 in 
Example 2. Applying RCM to A × AT gives us the rearranged 
order  g1, g3, g2, g4, g5.  

5.3 Phase 3: Merging Phase 
Finally, we merge adjacent initial groups in the sequence g1,…,gt 
returned by the rearranging phase in order to minimize (Part). 
We model the optimal merging by dynamic programming. Let 
g[i..j] denote the merged group gi … gj, i ≤ j, and |g[i..j]| 
denote the number of records in g[i..j]. A merging of g1,…,gi  is a 
partitioning of g[1..i] of the form g[1..r1] ,…, g[rj-1 + 1..rj], g[rj + 
1..rj+1],…, g[rk-1 + 1..i], where 1 ≤ r1 < r2 <…< rk-1 < i. Let 
O([1..i]) denote the minimum error bound for any partitioning 
produced by a merging of g1,…,gi. Let (g[i..j]) be the i defined 
by Equation (12) with Ti= g[i..j]. The following dynamic 
programming finds the optimal merging of g1,…,gt that has the 
minimum error O([1..t]).   
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The first case in Equation (14) selects one boundary point r and 
the second case selects no boundary point. The final partitioning 
{T1,…,Tk} is determined by all boundary points r1 < r2 <…< rk-1. 

Example 4 The optimal merging of the sequence g1, g3, g2, g4, g5 
in Example 3 is {T1 = g1  g3  g2, T2 = g4  g5}, which gives the 
partitioning in Example 1. 

5.4 Analysis 
The next theorem summarizes some properties of the partitioning 
{T1,…,Tk} produced by the PP algorithm. 

Theorem 3 Let SA’ = SA, {T1,…,Tk} be the partitioning of T 
returned by PP, and  = |T | /f m , where fm is the maximum 
frequency of a SA-value in T. (i) Ti is -balanced wrt SA, and 1i 
≤ 1/. (ii) If 2 > 1/, 1i < 2. (See Appendix 10.6 for proof). 

(i) ensures that Ti is as balanced as T, which is good for 
maximizing i (Equation (10)), therefore, minimizing the error 
bound i (Equation (12)). The inequality 1i < 2 in (ii) is required 
by Definition 2. The question is how likely the condition 2 > 1/ 
holds. The answer is as likely as the gap 2  1 is greater than 1/ 
 fm/|T|. The latter is the gap created by the effect of the floor  = 
|T|/fm, and such gap is typically small. The counterpart of 
Theorem 3 for the case of SA’  SA is given in Appendix 10.7.  

Theorem 4 The time complexity of the PP algorithm is O(t2log t 
+ t2m + n + mlogm), where n = |T|, m is the domain size of SA, 
and t is the number of initial groups produced by the balancing 
phase. (See Appendix 10.6 for proof). 
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Our experiments show that the number of initial groups, t, is quite 
small on real life datasets (no more than 20). This is because the 
balancing phase aims to maximize the size of each initial group. 
Therefore, the PP algorithm is linear in the cardinality of T. 

6. EXPERIMENTAL EVALUATION 

6.1 Experimental Setup 
We compare our Perturbation Partitioning (PP) algorithm against 
two competitors. The first is Anatomy (Ana) [23] (code 
downloaded from the author’s website), a partition-based 
algorithm known to have lower error for count queries than 
generalization [23]. The second is the optimal Uniform 

Perturbation (UP) defined by Equation (5) without data 
partitioning, which is known to maximize retention probability for 
ensuring (1, 2)-privacy [9]. Our code is written in C++ and all 
experiments were run on a Core(TM) 2 Duo CPU 3.00 GHZ PC 
with 4GB of RAM. For PP, we use  = 0.05 for the confidence 
level (1  ) of the error bound defined in Section 4.2. 

We use the CENSUS dataset (see Appendix 10.8 for more details) 
like previous work [23]. Specifically, we use datasets of varied 
cardinality |T| = 100k-500k: OCC-|T| and EDU-|T| denote datasets 
having |T| records, with SA = Occupation (m = 50) and SA = 
Education (m = 14), respectively. Occupation is a balanced 
dataset, while Education is more skewed. In other real datasets, m 
can be much larger, which leaves more room for the proposed 
small domain randomization to increase retention probability. 

We consider the utility of answering count queries, a metric used 
in both partition-based [13][23] and randomization-based [17] 
approaches. For this purpose, we generate a query pool of count 
queries and report the average relative error of query estimates 
for queries that pass a selectivity s = 0.1%, 0.5%, 1%, where 
selectivity of a query is defined as the % of records satisfying the 
query condition. See Appendices 10.9 and 10.10 for more details.  

6.2 Publishing the Balanced Data 
The balanced OCC-|T| datasets have a maximum relative 
frequency of 7%. For (1, 2)-privacy (used by UP and PP), to 
protect all SA-values, we set 1 = 1/13, so SA’ = SA, and we set 
2 = 1/6, 1/5, 1/4, 1/3. Ana uses the L-diversity [15] privacy 
requirement to limit the probability of inferring an SA-value by 
1/L. We set L = 6, 5, 4, 3 for Ana, to match the above setting of 2. 
Notice 1/L and 2 = 1/L equally bound posterior probability. For 
this reason, we simply refer to L. Figure 2 shows the comparison 
of errors for various L (upper part) and |T| (lower part).  

We observe that PP incurs less error than Ana and UP. As L 
decreases for Ana (thus, 2 increases for UP and PP), PP benefits 
from a weaker privacy requirement, whereas Ana has little change. 
Also, PP benefits from a larger minimum selectivity s (more 
random trials available for reconstruction), whereas the same 
trend is less obvious for Ana. In fact, [10] shows Ana’s 
performance deteriorates for GROUP-BY queries. This study 
shows that PP is useful for aggregate data analysis. 

To get a better understanding of the reason for the smaller errors 
of PP, Table 2 compares the retention probability of UP and PP, 
and Table 3 shows statistics for Ti produced by PP. The average 
retention probability for Ti in Table 2 is significantly larger than 
for T. As shown in Table 3, this is because the domain sizes mi for 

Ti is much smaller than m = 50 for T, whereas i for Ti is very 
close to  = 2.5 for T. This characteristic is exactly what is 
required to minimize the error bound i in Equation (12). 
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 Figure 2. OCC: Error vs. L (|T|=300k), Error vs. |T| (L=6) 

 

Table 2. Retention Probability, OCC-300k 
L 6 5 4 3 

UP 2.9% 4.0% 5.9% 9.4% 
PP 9.0% 12.3% 17.3% 25.7% 

Table 3. Statistics for PP, OCC-|T|, 2 = 1/6 
|T| 100K 200K 300K 400K 500K 

# init. grps t 17 18 19 20 20 

# of Ti* 15 8  10 11 12 

avg. mi 15.0 20.9 17.3 17 18.4 

avg. i 2.6 2.7 2.6 2.6 2.8 

Figure 3 plots one point (act, est) for each query passing 
minimum selectivity s = 0.1%, where est and act are the estimated 
and actual query answers, respectively. The diagonal line act = est 
represents the perfect case of no error. PP has the best 
concentration of points near the diagonal line. 
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Figure 3. est vs. act: OCC-300k, L = 6, s = 0.1% 

6.3 Publishing the Skewed Data 
The skewed EDU-|T| datasets have a highest relative frequency = 
27%, and 9 SA-values have relative frequency < 3.33%. 
Protecting all SA-values requires 1  27%, but such (1, 2)-
privacy is too weak to protect the less frequent SA-values since 2 
> 1. It is more meaningful to protect the less frequent SA-values 
because the adversary has poorer prior knowledge on them. 
Therefore, we set 1 = 1/30 to ensure the above 9 SA-values are 
protected by a tighter bound 2 = 1/L, L = 10, 8, 6, 4. In this 
setting, SA’ contains the 9 least-frequent SA-values.  

The L-diversity privacy used by Ana requires that T satisfy the 
eligibility condition [23]: 1/L  highest relative frequency of any 
SA-value in T. This condition is not satisfied by the above 
settings of L, therefore, Ana cannot be directly applied. This 
reveals a drawback of L-diversity and Ana in particular: they 
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cannot be applied on skewed data while providing sufficient 
protection for less frequent SA-values. To run Ana, we have no 
choice but to first suppress records with the most-frequent SA-
values until the highest relative frequency in the remaining data is 
 1/L. The following refers to Ana with this pre-processing step.  

Figure 4 shows the comparison of errors. In this experiment, PP 
degenerates into UP because the small domain size m = 14 make 
it unnecessary to partition T. Ana has a significantly larger error 
than PP and UP because record suppression leads to a significant 
under-estimation of query counts.  
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Figure 4. EDU: Error vs. L (|T|=300k), Error vs. |T| (L=10) 

6.4 Perturbation Time 
PP finishes in no more than 30 seconds for all cardinalities tested 
and is comparable to Ana and UP (see Figure 5). Ana is faster on 
EDU because pre-processing decreases the table size, at a heavy 
cost of a much larger error for count queries (see Figure 4). 
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Figure 5. Runtime vs. |T| 

7. CONCLUSION 
Random perturbation has been extensively studied in the literature 
as an important technique for privacy protection; however, 
previous methods suffer from a notoriously low retention 
probability under most practical scenarios, due to “over-
randomization” over the entire sensitive attribute domain. To 
address this problem, we proposed small domain randomization, 
which randomizes a sensitive value only within a subset of the 
entire domain. This approach retains more data while providing 
the same level of privacy. With improved utility, we proposed this 
approach as an alternative to classical partition-based approaches 
to privacy preserving data publishing. On CENSUS datasets, we 
observed a relative increase of over 100% in retention probability, 
compared to the optimal Uniform Perturbation. The higher 
retention probability translates into a relative decrease of over 
200% in the reconstruction error for answering count queries. 
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10. APPENDIX 
10.1 Table of Notations 
Table 4 summarizes the notations used in this paper. 

   Table 4: Notations 
SA - the set of SA-values for T; m = |SA|. 

(1, 2) - privacy parameters on T, specified by the publisher 

SA’ - the set of SA-values with f / |T | ≤ 1 in T. 
f m – the maximum frequency of SA’-values in T. 
T’– the set of records in T for SA’-values. 

 = |T | / fm and ’= |T’| / fm. 
SAi - the set of SA-values for Ti; mi = |SAi|. 

(1i, 2) – derived privacy parameters on Ti. 
Pi – the perturbation matrix for Ti. 

i - the probabilistic error bound for Ti. 
Pri[A] – the probability of event A occurring on Ti 

10.2 Reconstruction Error 
Let F = <f1,…,fm> denote the frequencies of SA-values x1,...,xm in 
T. Let F* = <f1*,…,fm*> denote the estimate of F reconstructed 
using T* and P. All vectors are column vectors. The 
reconstruction error of fi* is defined by |fi – fi*| / |fi|, i=1,…,m. F* 
is reconstructed from T* and P as follows. Let Oi be the random 
variable representing the frequency of a SA-value yi in T*, let 
E(O) = <E(O1),…,E(Om)>, where E(Oj) = i=1…m Pr[xi  yj]  fi 
is the mean of Oj. Note E(O) = P  F. The researcher has only a 
specific instance o = <o1,…,om> of O = <O1,…,Om> observed on 
the published instance of T*, so the researcher resorts to the 
approximation o = P  F*. Applying P in Equation (5) to this 
equation and observing f1*+…+fm*=|T*|, we get 
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Notice that everything on the right hand side is directly obtained 
from T*, or Equation (6), or the domain size of SA. Thus, this 
reconstruction is extremely efficient because it does not require 
computing the inverse matrix P-1 [12] or any iterative computation 
as suggested in [3]. 

10.3 Disclosure in Our Privacy Model 
For reconstruction purposes, SAi and Pi will be made available to 
the researcher. With such information, the adversary can infer 
Pr[X = x1 … X = xk | Y = y] = 1 for Ti where SAi= {x1,…,xk} 
is the subset of SA-values that occur in Ti; that is, the original 
value must be one of  x1,…,xk. This kind of disclosure is not 
specific to our approach; in fact, all partition-based approaches 
have similar disclosures (e.g., [19][20][23]) in which SAi is the 
set of sensitive values occurring in an anonymity-group. What is 
important is that the threat of guessing an individual value xi is 
still bounded by Pr[X = xi | Y = y] ≤ 2, thanks to the restricted 
(1i, 2)-privacy for Ti. As far as protecting individual values xi is 
concerned, small domain randomization provides the same level 
of protection as table-wise randomization. This is why we 
consider the restricted form of (1, 2)-privacy, where the 
predicate Q(X) has the form X = x.  

We also note that our sub-tables Ti are different from anonymity 
groups in the classical partition-based approaches (e.g., 
[19][20][23]) in two major aspects. First, each Ti is much larger 
than an anonymity group because accurate reconstruction depends 

on having a large table size |Ti| (Equation (12)). Second, the 
published version Ti* is produced by randomizing the SA-value in 
each record in Ti and is robust to corruption attacks [21]. Since 
each record is randomized independently, even if the adversary 
succeeds in inferring the SA-value of some record in Ti, this 
information does not help to infer the SA-value of other records in 
Ti. In contrast, the SA-values associated with an anonymity group 
are not randomized; therefore, corrupting one record will lead to 
the increased threat of remaining records in the same anonymity 
group [21]. 

10.4 Proof of Theorem 2 
Theorem 2 Consider the data T and the perturbed T* produced by 
applying Uniform Perturbation in Equation (1) on T, with 
retention probability p. Let f be the frequency of SA-value x in T 
and f* be the estimated frequency using T*. For an allowable error 
 and confidence level (1  ), 
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Proof: Let n = |T|. From Equation (1), the probability that the kth 
row in T* has x, denoted Pr[Yk = 1], is t = p  f/n + (1  p)/m. 
Yk’s are independent Bernoulli random variables, so is Y = ∑kYk, 
and the mean of Y is  = nt. Applying Chernoff bounds [6] from 
[3], we get 

).4/exp(2]Pr[ 2 Y  

Let  = t/p.  = nt = np. With t ≤ 1, 2exp(-n(p)2/4) = 2exp(-
t2/4) ≥ 2exp(-2/4). For any  ≥ 2exp(-n(p)2/4), the above 
inequality implies  

pnntYpn    

with probability ≥ (1  ). Notice that  ≥ 2exp(-n(p)2/4) is 
exactly the if-condition of the theorem.  

Now let us rewrite pnntYpn    into the bound for the 

error of f*. Substituting t = p  f/n + (1  p)/m, we get 
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Let o be the observed frequency of xi in T*. Applying Equation 
(1), we have the  
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Instantiating the variable Y to the observed frequency o in 
Equation (15) and applying the above equation, we 

get   nfnfnf /// * , as required.  

616



 

 

10.5 Proof of Lemma 1 
Lemma 1 (SA’ = SA) Let gj be the initial group created by the jth 
iteration of the balancing phase and let h be computed by 
Equation (13). (i) gj is -balanced wrt SA. (ii) If T0 is -balanced 
wrt SA’ before the jth iteration, T0  gj is -balanced wrt SA and h 
≤ , and (iii) h is the maximum such that (ii) holds.  

Proof:  If gi is the last initial group, gi = T0, so gj is -balanced wrt 
SA. If gi is not the last initial group, gj contains h records for each 
of the  most frequent SA-values in T0. Therefore, gj is also -
balanced wrt SA. This shows (i). 

Now we show (ii). To show that T0  gj is -balanced wrt SA, we 
show max{1  h, +1} / (|T0|    h) ≤ 1/, where max{1  h, 
+1} is the maximum frequency of SA-values in T0  gj and |T0|  
  h is the size of T0  gj. This condition reduces to h ≤ (h), 
where (h) = |T0| /   max(1  h, +1). In the following, we 
show h ≤ (h).  

Consider the two cases for computing h in Equation (13). In the 
first case, ()   and h = , so h ≤ (h). Also, h =  is 
maximum such that h ≤ , thus, (iii) is also shown for this case.  

In the second case, () <  and h = |T0|/  +1. First, we 
show h ≤ . () <  implies 

max{1  , +1} > T0/ -  (16) 

Suppose 1   > +1, Equation (16) becomes 1   > T0/  
, which contradicts 1 ≤ T0/ (the -balancing of T0). Therefore, 
1   ≤ +1, in which case Equation (16) becomes +1 > T0/  
, i.e.,  > T0/  +1 ≥ |T0|/  +1 = h. This shows h ≤ . 
Finally, we show that h = |T0|/  +1 is the maximum such that 
(h)  h. Let (v) ≥ v, i.e., 

max{1  v, +1} ≤ T0/ – v. (17) 

If 1  v > +1, Equation (17) becomes 1  v ≤ T0/  v, which 
is trivial because T0 is -balanced. Since we are interested in the 
largest v such that Equation (17) holds, we assume 1  v ≤ +1. 
Then Equation (17) becomes +1 ≤ T0/ – v, or v ≤ T0/  +1. 
The largest v satisfying this condition is v = h = |T0|/  +1.  

10.6 Analysis 
Theorem 3 Let SA’ = SA, {T1,…,Tk} be the partitioning of T 
returned by PP, and  = |T | /f m , where fm is the maximum 
frequency of a SA-value in T. (i) Ti is -balanced wrt SA, and 1i 
≤ 1/. (ii) If 2 > 1/, 1i < 2. 

Proof: From Lemma 1, every initial group created in the 
balancing phase is -balanced wrt SA’. Ti is the union of one or 
more initial groups, therefore, is -balanced wrt SA’ due to the 
inequality (f1 + f2) / (|g1| + |g2|) ≤ max{f1 / |g1|, f2 / |g2|}, where fj is 
the frequency of a SA’-value in an initial group gi. Therefore, 1i ≤ 
1/. (ii) follows from 2 > 1/. 

Theorem 4 The time complexity of the PP algorithm is O(t2log t + 
t2m + n + mlogm), where n = |T|, m is the domain size of SA, and t 
is the number of initial groups produced by the balancing phase. 

Proof: The balancing phase examines each record only once after 
SA-values are sorted initially, so it takes time O(n + mlogm). In 
the rearranging phase, the matrix multiplication takes time O(t2m) 

and the RCM takes time O(t2log t) [7], where t is the number of 
initial groups. The merging phase is dominated by the recursion in 
Equation (14), which takes time O(t2), since there are t different 
values of i. The overall time is O(t2log t + t2m + n + mlogm). 

10.7 Balancing Phase for SA’  SA 
In the case of SA’  SA, only a proper subset of SA has a relative 
frequency ≤ 1 and only these values are required to have the 
posterior knowledge bounded by 2. Therefore, we only need to 
minimize the maximum relative frequency of such values in Ti. 
Let T’ denote the set of records in T for the values in SA’, and let 
T” = T  T’. First, we apply the balancing phase to T’ to ensure 
that the distribution of SA’-values is balanced in the initial 
groups. Let g1,…,gt be the initial groups created. Then, we 
distribute the records in T” = T  T’ to the initial groups 
proportionally to the size |gi|: for each gj, j = 1,...,t, distribute 
(|gj|/|T’|)  |T”| records in T” to gj. This proportional distribution 
ensures a minimum change of relative frequency of SA’-values in 
gj. To minimize the number of distinct SA-values in each gj, we 
first distribute all the records for the most frequent SA-value in 
T”, then all the records for the second most frequent SA-values, 
and so on. We distribute any residue records to the last group gt. 

Recall that fm is the maximum frequency of a SA’-value in T. fm is 
also the maximum frequency in T’. Define ’ = |T’|/fm. As 
before, let  = |T|/fm. Then T is -balanced wrt SA’ and T’ is ’-
balanced wrt SA’. The next lemma shows that the initial groups in 
the case of SA’  SA are “nearly” -balanced wrt SA’.  

Lemma 2 (SA’  SA) Let g and ga denote the corresponding 
initial groups before and after distributing the records in T”. Let f 
be the frequency of a SA’-value in g and let  = 1 / (1 – (1/’)). If 
(|g|/|T’|)  |T”| = (|g|/|T’|)  |T”|, f/|ga| ≤ /, otherwise, f/|ga| ≤ 
/( – ). 

Proof: Since g and T’ are ’-balanced wrt SA’, f ≤ |g|/’, |g| ≥ ’, 
and fm/|T’| ≤ 1/’. Since T is -balanced wrt SA’, fm/|T| ≤ 1/. 
Since ’ = |T’|/fm, ’ ≥ |T’|/fm  1, thus 1/’ ≤ fm/ (|T’|  fm). 
Consider two cases.  

 Case 1: (|g|/|T’|)  |T”| = (|g|/|T’|)  |T”|. In this case, |ga| = 
|g| + (|g|/|T’|)  |T”| = |g|(|T|/|T’|). With the above inequalities, 
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In the case of SA’ = SA, Lemma 1 bounds the maximum relative 
frequency of a SA’-value in an initial group by 1/. In 
comparison, Lemma 2 gives the looser bounds / or /(  ), 
where   = 1 / (1 – (1/’)). For a large ’,  approaches to 1 and 
these bounds approach 1/ or 1/(  1). The next theorem is the 
counterpart of Theorem 3 for the case of SA’  SA. 

Theorem 5  Let SA’  SA, {T1,…,Tk} be the partitioning of T 
returned by the PP algorithm, and  = 1 / (1 – (1/’)). (i) 1i ≤ 
/(  ). (ii) If 2 > /(  ), 1i < 2.  

Proof: From Lemma 2, an SA’-value has a relative frequency ≤ 
/(  ) in an initial group. This remains true for a final group 
after the merging phase, for the same reason as in the proof of 
Theorem 3. Therefore, 1i ≤ /(  ), so (i) is proved. (ii) follows 
from (i) and the assumption on 2 > /(  ).  

10.8 Description of CENSUS 
The CENSUS dataset has 8 discrete attributes (domain size in 
brackets): Age (77), Gender (2), Education (14), Marital (6), 
Race (9), Work-class (7), Country (70), and Occupation (50).  We 
used two datasets of varied cardinality |T| downloaded from [23]. 
OCC denotes the dataset with Occupation as SA and all other 
attributes as non-sensitive attributes. EDU denotes the dataset 
with Education as SA and the remaining attributes as non-
sensitive attributes. OCC-|T| and EDU-|T| denote the samples of 
OCC and EDU with the size |T|, where |T| ranges over 
100K,…,500K. Figure 6 shows that OCC-300K has a more 
balanced SA distribution, whereas EDU-300K has a much more 
skewed SA distribution. The choice of these datasets enables us to 
evaluate the utility for both balanced distribution and skewed 
distributions. 
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Figure 6. Frequency distributions 

10.9 Generating the Query Pool 
A count query has the following form 

Q: SELECT COUNT(*) FROM T 
WHERE A1 = a1 AND … AND Ad = ad AND SA = xi 

(18) 

where {A1, …, Ad} is a subset of non-sensitive attributes and aj is 
a value from the domain of Aj,  j = 1,...,d, and xi is a SA-value. 
We generated a random query pool of count queries as follows. 
First, we created 200 random conditions of the form A1 = a1 AND 
… AND Ad = ad. Specifically, we randomly select a value d from 
{1, 2, 3} (with equal probability), randomly sample d non-
sensitive attributes A1,…,Ad without replacement, and for each Ai, 
we randomly select a value ai from Ai’s domain. Then, for each of 
these 200 conditions, and for each of the m values xi in the 
domain of SA, we generated a count query following the template 
in Equation (18).  

10.10 Estimating Count Queries 
In Section 3.3, we discussed how to estimate the answer for the 
count query Q in Equation (18) for Uniform Perturbation. Let us 
explain how to estimate the answer for Perturbation Partitioning 
and Anatomy.  

Perturbation Partitioning Let T1*,…,Tk* be produced by 
perturbing each sub-table Ti using Pi. An estimate estj for each Tj*, 
j=1,…,k, can be computed as discussed in Section 3.3. The sum 
∑j estj is returned as the estimate for the query answer. 

Anatomy Assume that the table T contains a set of non-sensitive 
attributes denoted QI and the sensitive attribute SA. Anatomy 

partitions T into anatomized groups, or groups for short, and 
publishes such groups in two tables. Let GID be the new attribute 
for storing the group identifier. The first table QIT contains all 
non-sensitive attributes and GID. The second table ST contains 
GID and SA. Suppose that a group g with GID = i contains the 
records r1,…,rk. Then (r1[QI], i),…,(rk[QI], i) belong to QIT, and 
(r1[SA], i),…,(rk[SA], i) belong to ST. Let g(QIT) denote the set 
of records for g in QIT, and g(ST) denote the set of records for g 
in ST.  

Given a query Q in Equation (18), a group gi matches Q if some 
record in gi(QIT) satisfies the query condition on the non-
sensitive attributes in Q (i.e., A1 = a1 AND … AND Ad = ad) and 
gi(ST) contains the SA-value xi. Let g1,…,gk be all the groups that 
match the query. Let c(gi, SA = xi) be the count of xi in gi(ST) and 
let  c(gi, A1 = a1,…, Ad = ad) be the number of records in gi(QIT) 
satisfying the query condition on non-sensitive attributes. Then 
the query answer is estimated by  

est = ∑i c(gi, A1 = a1,…,6 Ad = ad)  c(gi, SA = x) / |gi|. 

See more details in [23].
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