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Abstract 

Thousands of papers using resting-state functional magnetic resonance imaging (RS-fMRI) have 

been published on brain disorders. Results in each paper may have survived correction for 

multiple comparison. However, since there have been no robust results from large scale 

meta-analysis, we do not know how many of published results are truly positives. The present 

meta-analytic work included 60 original studies, with 57 studies (4 datasets, 2266 participants) 

that used a between-group design and 3 studies (1 dataset, 107 participants) that employed a 

within-group design. To evaluate the effect size of brain disorders, a very large neuroimaging 

dataset ranging from neurological to psychiatric disorders together with healthy individuals have 

been analyzed. Parkinson’s disease off levodopa (PD-off) included 687 participants from 15 

studies. PD on levodopa (PD-on) included 261 participants from 9 studies. Autism spectrum 

disorder (ASD) included 958 participants from 27 studies. The meta-analyses of a metric named 

amplitude of low frequency fluctuation (ALFF) showed that the effect size (Hedges’ g) was 0.19 - 

0.39 for the 4 datasets using between-group design and 0.46 for the dataset using within-group 

design. The effect size of PD-off, PD-on and ASD were 0.23, 0.39, and 0.19, respectively. Using 

the meta-analysis results as the robust results, the between-group design results of each study 

showed high false negative rates (median 99%), high false discovery rates (median 86%), and low 

accuracy (median 1%), regardless of whether stringent or liberal multiple comparison correction 

was used. The findings were similar for 4 RS-fMRI metrics including ALFF, regional 

homogeneity, and degree centrality, as well as for another widely used RS-fMRI metric namely 

seed-based functional connectivity. These observations suggest that multiple comparison 

correction does not control for false discoveries across multiple studies when the effect sizes are 

relatively small. Meta-analysis on un-thresholded t-maps is critical for the recovery of ground 

truth. We recommend that to achieve high reproducibility through meta-analysis, the 

neuroimaging research field should share raw data or, at minimum, provide un-thresholded 

statistical images. 

 

Introduction 

Meta-analysis is the process of combining the results of independently conducted studies
1
. 

Resting-state functional magnetic resonance imaging (RS-fMRI), a technique to examine the 

spontaneous brain activity
2
 non-invasively with high spatial and temporal resolution, is available 

in most hospitals, and easy for patients to tolerate. Thousands of papers using RS-fMRI for 

research on brain disorders have been published since the seminal RS-fMRI study of Biswal and 

colleagues 23 years ago
3
. Meta-analysis can provide robust results of brain disorders. However, 

few high-quality meta-analytical papers using RS-fMRI to study brain disorders have been 

published on account of two main reasons. 

 

First, there are countless analytical methods and options. For example, seed-based functional 

connectivity is the most widely used method in RS-fMRI studies. However, the locations of 

seed-regions vary substantially from study to study
4,5

; therefore, it is impossible to perform 

high-quality meta-analysis for a fixed seed location. While various analytical methods may help 

investigate the complexity of human brain function from different angles, few papers have used 
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very similar analytical methods. Hence, it is difficult for a meta-analysis to include an adequate 

number of original studies. To date, we have found only 7 RS-fMRI meta-analysis papers
6-12

 in 

which the original studies used highly comparable analytical methods. 

 

Second, almost all published papers have only reported a limited number of brain regions that 

survived multiple comparison correction (MCC). This means that the effect size for all other 

voxels was essentially reported as zero, and hence, it is highly likely that a “positive or zero” bias 

will occur in subsequent meta-analysis. The effect size remains unknown for most RS-fMRI 

studies of brain disorders. If the effect size is not large enough, some reported brain areas are very 

likely to be false positives and, meanwhile, some true positive brain regions may not survive the 

multiple comparison correction. 

 

Here, we performed a high-quality RS-fMRI meta-analysis to approximate the effect size of 

60 studies from 5 datasets (total N = 2373). To evaluate the effect size of brain disorders, a very 

large neuroimaging dataset ranging from neurological (PD) to psychiatric disorders (ASD) 

together with healthy individuals were included. To avoid the issue of “positive or zero” bias, we 

performed the meta-analysis on unthresholded t-maps. We evaluated four metrics, including three 

whole-brain voxel-wise metrics, i.e., amplitude of low frequency fluctuation (ALFF)
13

, regional 

homogeneity (ReHo)
14

, degree centrality (DC)
15,16

 and a mostly used functional connectivity 

metric, i.e., seed-based functional connectivity (SFC)
3
. 

 

Results 

 The 5 datasets were Parkinson’s disease off levodopa (PD-off) vs. healthy controls (HC), PD 

on levodopa (PD-on) vs. HC, autism spectrum disorder (ASD) vs HC, healthy male vs. female 

(MF), and eyes open vs. eyes closed (EOEC) (Table 1). The details are listed as the supplementary 

information (Supplementary Note 1). 
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Table 1. Information for each dataset. 

 
Dataset 

Number 

of studies 
N 

Between-group design PD-off 15 687 

 
PD-on 9 261 

 
ASD 27 958 

 
MF 6 360 

Within-group design EOEC 3 107 

  
60 2373 

PD-off, Parkinson’s disease off levodopa vs. healthy controls (HC). PD-on, PD on levodopa 

vs. HC. ASD, autism spectrum disorder vs. HC. MF, healthy male vs. female. EOEC, eye open vs. 

eyes closed. 

 

Effect size of each dataset 

For the 4 datasets of between-group design, the effect size of the meta-analysis was very 

small overall (Fig. 1), and only a small number of voxels had an effect size of > 0.5. For example, 

for a typical ALFF metric, the median effect size of the PD-off, PD-on, ASD, and MF was 0.19 - 

0.39. For the within-group design, EOEC showed a higher median effect size (0.46) (Fig. 1a). The 

most widely used RS-fMRI metric, i.e., seed-based functional connectivity (SFC), showed similar 

results (Fig. 1b), as did the other 2 metrics, i.e., ReHo and DC (Supplementary Fig. 5). 

 

 

 

Figure 1 Effect size (Hedges’ g) of meta-analyses for ALFF (a) and SFC (b). Red indicates 
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higher ALFF or SFC in PD (PD-off and PD-on) than controls, ASD than control, males than 

females, and EO than EC, respectively. Blue indicates the opposite. The white dot in the violin 

plot indicates the median, and the black bar indicates the interquartile range. SFC was not 

analyzed for PD-off and PD-on datasets (Please see Supplementary Note 1). The plot was created 

by R package vioplot 0.2 (https://cran.r-project.org/web/packages/vioplot/index.html). PD-off, 

Parkinson’s disease off levodopa vs. healthy controls (HC). PD-on, PD on levodopa vs. HC. ASD, 

autism spectrum disorder vs HC. MF, healthy male vs. female. EOEC, eye open vs. eyes closed. 

ALFF, amplitude of low frequency fluctuation. SFC, seed-based functional connectivity. 

 

High false negative rate and high false discovery rate 

 Using meta-analytical results as the robust result, we calculated the false negative rate (FNR), 

accuracy, and false discovery rate (FDR) for each study in each dataset. We used 3 methods for 

multiple comparison correction, including permutation test with threshold-free cluster 

enhancement (TFCE) (corrected P < 0.05)
17

, false discovery rate correction (FDR-c, q < 0.05)
18

, 

and an arbitrary threshold (Arbi, individual voxel P < 0.01 and cluster size > 50 voxels). As shown 

in Fig. 2a-c of ALFF results, all between-group design studies showed very high FNR and very 

low accuracy. The within-group design, i.e., EOEC, showed better performance than the 

between-group design. The above results were similar for SFC (Fig. 2d-f), ReHo, and DC 

(Supplementary Fig. 6 - 10). 

 

 
Figure 2 FNR, accuracy, and FDR of ALFF and SFC. Using meta-analytical results as the 

robust result, the mean FNR (a, d), accuracy (b, e), and FDR (c, f) were calculated from 

thresholded t-images of all studies for each dataset. SFC was not analyzed for PD-off and PD-on 

datasets (Please see Supplementary Note 1). GraphPad Prism 7.00 was used for plotting 

(http://www.graphpad.com). *: No voxels survived FDR-c for any study of ASD (c) and MF (f). 

PD-off, Parkinson’s disease off levodopa vs. healthy controls (HC). FNR, false negative rate. FDR, 

false discovery rate. PD-on, PD on levodopa vs. HC. ASD, autism spectrum disorder vs HC. MF, 

healthy male vs. female. EOEC, eye open vs. eyes closed. ALFF, amplitude of low frequency 

fluctuation. SFC, seed-based functional connectivity. Arbi, arbitrary threshold. FDR-c, false 

discovery rate correction. TFCE, threshold-free cluster enhancement. 
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Exemplar brain regions of meta-analysis 

We took ALFF as an exemplar metric to show the pattern of differences for a few datasets. 

Significant differences were found between PD patients and controls in the bilateral putamen, 

bilateral sensorimotor cortices, and other areas (Fig. 3). Patients with ASD showed decreased 

ALFF in the posterior cingulate cortex (PCC) and increased ALFF in the cerebellum and frontal 

cortex. EC showed higher ALFF than EO in the sensorimotor cortex and lower ALFF in the lateral 

occipital cortex. All detailed differences in brain patterns were shown in Supplementary Fig. 3 

(between-group design) and Supplementary Fig. 4 (within-group design). All resultant 

un-thresholded statistical images can be downloaded at 

https://github.com/jiaxize/MetaAnalysisPaper. 

 

Figure 3 Exemplar brain regions of meta-analyses of ALFF. Warm colors indicate higher ALFF in 

PD than control, ASD than control, and EO than EC. Cold colors indicate the opposite. (a) The 

most evident finding in the PD group during OFF- dopaminergic phase was the presence of lower 

ALFF in the bilateral putamen and pallidum; (b) High ALFF in the orbitofrontal cortex critically 

involved in pathophysiological mechanisms of ASD; (c) The results of EOEC data revealed higher 

ALFF in the sensorimotor cortex and lower ALFF in the lateral occipital cortex in EC than in EO. 

A combination threshold P < 0.005, z > 1, and cluster size > 10 voxels was used. L: left side of the 

brain. R: right side of the brain. ES: Effect size (Hedges’ g). PD-off, Parkinson’s disease off 

levodopa vs. healthy controls (HC). ASD, autism spectrum disorder vs HC. EOEC, eye open vs. 

eyes closed.  

 

Discussion 

Possible reasons for high FNR and FDR. Regardless of stringent (i.e., FDR-c and TFCE) or 

liberal (i.e., Arbi) thresholds for multiple comparison correction, we found a very high FNR and 
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FDR for each study, especially for studies of brain disorders (Fig. 2a-f). The overall results were 

similar with or without accounting for head motion parameters or global mean time course. The 

high FNR could be explained by the small effect size because most voxels will not survive an 

uncorrected threshold of P < 0.05. The high FDR could also be due to the high dimensionality 

(tens of thousands of voxels). The high FNR and high FDR could be among the most important 

explanations for low reproducibility in RS-fMRI studies of brain disorders. This concern has 

frequently been addressed in biomedical research
19-26

. 

 In the present study, we analyzed 60 studies from multiple research centers and provided 

strong empirical evidence that the results of a single RS-fMRI study with between-group design 

have high risk for FNR and FDR. 

 

Despite the small effect size for RS-fMRI, the results of image-based meta-analyses 

revealed some convergent results. PD-off meta-analysis showed decreased ALFF in the bilateral 

putamen (Fig. 3), a key region which has been well-documented in previous dopaminergic 

positron emission tomography (PET)
27

 and meta-analysis of RS-fMRI
11

. The results of EOEC data 

were very consistent with those of previous RS-fMRI studies
28,29

, e.g., higher ALFF in the 

sensorimotor cortex and lower ALFF in the lateral occipital cortex in EC than in EO (Fig. 3). The 

consistent results of EOEC are probably attributable to relatively larger effect size of EOEC data 

(Fig. 1). The ABIDE initiative provided a large-scale dataset comprised of data from over 24 

international brain imaging laboratories (http://fcon_1000.projects.nitrc.org/indi/abide). However, 

few studies have reported large-scale meta-analytical results based on whole-brain voxel-wise 

(WBVW) analytical metrics of RS-fMRI. ALFF, ReHo, and DC are three widely used WBVW 

analytical metrics of RS-fMRI data. These metrics are more suitable for meta-analysis
4
. The 

current meta-analysis found convergent abnormal brain activity in autism patients in a few brain 

regions, e.g., the PCC (Fig. 3). These brain regions could be used to inform a priori hypothesis of 

the location of an expected effect in future autism neuroimaging studies. 

 

In the RS-fMRI community, some multi-center and large-scale raw data datasets of health 

adults are publicly available (e.g., http://fcon_1000.projects.nitrc.org, 

https://www.humanconnectome.org/). However, very limited number of brain disorder datasets 

have been made publicly available. ABIDE provided a large open access dataset of ASD, but, few 

studies have performed large-scale image-based meta-analysis using WBVW metrics. Despite the 

small effect size and variations in clinical features from site to site for PD and ASD patients, 

meta-analysis can provide valuable robust results from multi-center datasets and would help 

precisely localize the abnormal brain activity common to a specific disorder beyond subtype for 

comorbidity. 

 

Limitations and future directions. First, we examined only three WBVW RS-fMRI metrics 

and one functional connectivity metric, i.e., seed-based functional connectivity analysis. Thus, 

future studies should investigate whether the magnitude of the effect size is similarly small for 

other metrics. Further, based on large, multicenter datasets or strong hypotheses regarding a 

specific brain region or network, meta-analysis could help researchers to discover more robust 

results. Based robust results (e.g., putamen for PD), methodology studies could provide new 

analytical methods which could yield larger effect sizes. Second, for the patient datasets of PD and 
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ASD, we did not take the disease subtype or symptoms severity into account. Future studies 

should investigate the subtype- or symptom-specific abnormalities. Third, sharing raw data is 

critical for large-scale image-based meta-analysis. It has been proposed that the neuroimaging 

research field should develop an effective mechanism for sharing image data
30

. Given the current 

social and technical difficulties in sharing data, publicly sharing the unthresholded statistical maps 

may be more feasible in most instances. WBVW analytical methods are more suitable for 

meta-analysis
4
. Therefore, we suggest that future RS-fMRI studies should publish their 

unthresholded statistical images with WBVW analysis, even though the WBVW analysis is not the 

main focus of a given study. 
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ONLINE METHODS 

Datasets 

  There were 5 datasets in the current study: PD-off, PD-on, ASD, MF, and EOEC (See 

Supplementary Note 1 for details). Some participants were excluded (Supplementary Table 1 - 

4). The remaining data were summarized in Supplementary Table 5 - 9. 

 

Preprocessing 

All preprocessing was performed by RESTplus V1.2 

(http://www.restfmri.net/forum/RESTplusV1.2). RESTplus was based on SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12) and REST V1.8 

(http://www.restfmri.net/forum/REST_V1.8). Preprocessing steps included: 

1) Discarding the first 10 timepoints. 

2) Slice timing correction. 

3) Head motion correction. 

4) Spatial normalization. Briefly, individual T1-weighted image was co-registered to the mean 

functional image and then segmented into gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). Using y_*.nii, all EPI images were spatially normalized to the Montreal 

Neurological Institute (MNI) space and voxel size was resampled to 3 × 3 × 3 mm
3
, for all 

datasets except PD datasets. Because of ethical issues, the raw data of most studies of PD-off 

dataset and PD-on dataset was not sent to Hangzhou Normal University. Instead, the data was 

analyzed in each research center by using the pipeline (rest_metabatch.m). The resultant images 

and relevant information (e.g., head motion parameters, spatial normalization, and log files) were 

sent to Hangzhou Normal University. To reduce the probability of errors during spatial 

normalization, the RS-fMRI was spatially normalized to EPI template. The amplitude of low 

frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) images 

were sent to Hangzhou Normal University and were analyzed together.  

5) Spatial smoothing with an isotropic Gaussian kernel with an FWHM of 6 mm before ALFF and 

seed-based functional connectivity (SFC) calculation. But for the ReHo and DC images, 

smoothing was performed after ReHo or DC calculation because smooth can artificially increase 

the localized similarity of the original time.  

6) Removing the linear trend within the time course. 

7) Regressing out covariates. The results in the main content of the article were without regressing 

out of covariates. The supporting information included results of both with and without regressing 

out covariates. We had two sets of covariates. One set consisted of Friston-24 head motion 

parameters
31

, white matter (WM) signal, and cerebrospinal fluid (CSF) signal. Another set of 

parameters included global mean time course, WM signal, and CSF signal. 

8) Band-pass filtering (0.01-0.08Hz, for ReHo, DC and SFC). 

 

Calculation of metrics 

ALFF calculation was based on fast Fourier transform (FFT)
13

. Using FFT, each time course 

was converted to frequency domain. Then, the square root of power spectrum at each frequency 

was averaged across a specific frequency band (0.01-0.08 in current study). This averaged square 

root was taken as ALFF. ALFF represents the strength of low frequency oscillations. The ALFF 
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maps were Z-standardized, i.e., subtracting the mean value of entire brain and divided by the 

corresponding standard deviation. 

ReHo measures the local synchronization of spontaneous brain activities of neighboring 

voxels
14

. The Kendall’s coefficient of concordance
32

 of the time course of every 27 nearest 

neighboring voxels was calculated. A larger ReHo value for a given voxel means the higher 

regional coherence. ReHo maps were Z-standardized as did for ALFF maps. 

DC is the total number or weighted sum of significant connections of a voxel with all 

voxels
15,33

. We calculated the weighted sum of positive correlations using a threshold r > 0.2. 

Z-standardized DC maps were created as did for ALFF and ReHo.  

Due to ethical issue, most of the PD datasets were analyzed in each research center (Please 

see Supplementary Note 1 for details). And because the SFC was a post-hoc analysis, SFC 

analyses were performed for ASD, FM, EOEC, but not for PD-off and PD-on. The seed-ROIs 

were listed Supplementary Table 10. 

 

 

T-tests and multiple comparison corrections for each study 

DPABI V2.3
34

 was used for t-tests. Two-sample t-tests were performed for studies of 

between-group design datasets (PD-off, PD-on, ASD, and FM datasets). And paired t-tests were 

performed for studies of within-group design (EOEC dataset). 

Three multiple comparison methods were used. One was an arbitrary threshold (Arbi, 

individual voxel P < 0.01, cluster size > 50 voxels and edge connected). The second one was false 

discovery rate correction (FDR-c, q < 0.05)
18

. The Arbi and FDR-c were performed by RESTplus 

V1.2. The third one, threshold-free cluster enhancement (TFCE)
17

, was performed by DPABI V2.3. 

The TFCE of DPABI V2.3 was based on integrating PALM package
35

. TFCE used the following 

parameters: no acceleration, 5000 permutation tests, FWER-correction P < 0.05, and two tailed. 

 

Meta-analysis and FNR, accuracy and FDR 

Anisotropic effect size signed differential mapping (AES-SDM 5.141)
36-38

 was used to 

perform meta-analysis on the unthresholded t-maps for all the studies in each dataset. AES-SDM 

assigns each voxel a measure of effect size, namely the standardized mean difference, known as 

Hedge's δ
39

. AES-SDM used the random-effects model to combine the statistical parametric maps. 

A recommended threshold P < 0.005, z > 1, cluster size > 10 voxels was used
37

.  

 

We took the meta-analytical results of each dataset as robust result. Then, the false negative 

rate (FNR) was defined as 

��� �
��

�����
   (formula 1) 

 

The FN is the number of false negative voxels. The TP is the number of true positive voxels. 

The false discovery rate (FDR) was defined as 

��� � 1 � ��	 � 1 �
��

�����
    (formula 2) 

For each dataset, FDR was calculated on those studies which have voxels survived the 

correction. If a study has no any voxel surviving the correction, FDR was not computed for that 
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study. The positive predictive value (PPV) is the probability that a positive finding reflects a true 

effect
25

. The FP is the number of false positive voxels. 

The accuracy is defined as,  


������ �  
���

	�
��
�

��	� ����

���	�
 � ��� ��� � ����� ���� ���    (formula 3)  

The hit is equal to TP. The false alarm is equal to FP. Signal is the number of voxels of true 

positive in the robust result. Noise is the number of voxels outside the robust result, i.e., true 

negative. 

 

 It should be noted that the voxel size in the results of AES-SDM software was 2 × 2 × 2 

mm
3
, but the voxel size of other images was 3 × 3 × 3 mm

3
. So we re-sampled the AES-SDM 

voxel size into 3 × 3 × 3 mm
3
 by using nearest neighboring method in RESTplus. 
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