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Abstract 
The starting points of this paper are two size-optimal solu- 

tions: (i)  one for implementing arbitrary Boolean functions 

[12]; and (ii) another one for implementing certain sub- 

classes of Boolean functions [Is]. Because VLSI implemen- 

tations do not cope well with highly interconnected 

nets-the area of a chip grows with the cube of the fan-in 

[Ill-this paper will analyse the influence of limited fan-in 

on the size optimality for the two solutions mentioned. First, 

we will extend a result from Horne & Hush [I21 valid for 

fan-in A = 2 to arbitrary fan-in. Second, we will prove that 

size-optimal solutions are obtained for small constant fan- 

ins for both constructions, while relative minimum size so- 
lutions can be obtained for fan-ins strictly lower that linear. 

These results are in agreement with similar ones proving 

that for small constant fan-ins (A  = 6.. .9) there exist VLSI- 

optimal (i.e., minimising AT2) solutions [6], while there 

are similar small constants relating to our capacity of proc- 

essing information [16]. 

1: Introduction 

In this paper we shall consider feedforward neural networks 
(NNs) made of linear threshold gates (TGs), or perceptrons. 
A TG is computing a Boolean function (BF): 

f :  I0,11”+{0,11, 

f (2,) = sgn ( E;:; wi 2e.i + 0). 

where an input vector is Z ,  = (z,.~, . . ., z,,,-J, and: 

The notations used are wi EIR for the synaptic weights, 

0 EIR for the thresholds , and sgn for the sign (nonlinear 
activation) function. 
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The cost functions commonly associated to a N N  are: 

depth (i.e., number of edges on the longest input-to- 

size (i.e., number of neurons). 

output path, or number of layers); and 

However, the area of the connections counts, and the 
area of one neuron can be related to its associated weights, 
thus “comparing the number of nodes is inadequate for 
comparing the complexity of NNs as the nodes themselves 
could implement quite complex functions” [25]. That is 
why several authors have taken into account the total num- 
ber-ofconnections [1, 11, 15, 171, or the total number-of 
bits needed to represent the weights and the thresholds [9, 
lo], or the sum of all the weights and the thresholds [3]. 
The sum of all the weights and the thresholds (also applied 
for defining the minimum-integer TG realisation of a BF) 
has been recently used-under the name of “total weight 
magnitude”-in the context of computational learning the- 
ory for improving on several VC-theory bounds [2]. A quite 

similar definition of ‘complexity’ wi2 has also been ad- 
vocated [27]. Such approximations can easily be related to 
assumptions on how the area of a chip scales with the 
weights and the thresholds [5, 81: 

for digital implementation, the area scales with the 

cumulative storage of weights and thresholds (as the 

bits for representing those weights and thresholds 

have to be stored); 

for analog implementations (e.g., using resistors or 

capacitors) the same type of scaling is valid (al- 

though it is possible to come up with implementa- 

tions having binary encoding of the parameters-for 

which the area would scale with the cumulative log- 

scale size of the parameters); 

some types of implementations (e.g., transconduc- 

tance ones) even offer a constant size per element, 

thus in principle scaling only with the number of pa- 

rameters (i.e., with the total number-ofconnections). 

With respect to delay, two VLSI models have been 

commonly in use [22]: 



. -  

the simplest one assumes that delay is proportional 

to the input capacitance, hence a TG introduces a 

delay proportional to its fan-in; 

a more exact one considers the capacitance along 

any wire, hence the delay is proportional to the 

length of the connecting wires. 

It is worth emphasising that it is anyhow desirable to 

limit the range of parameter values [26] for VLSI imple- 

mentations because: ( i )  the maximum value of the fan-in 

[ 13,241; and (ii) the maximal ratio between the largest and 

the smallest weight cannot grow over a certain (technologi- 

cal) limit [ lo ,  141. 

The focus of this paper will be on NNs having limited 

fan-in (the fun-in will be denoted by A), and we will discuss 

the influence of limiting the fan-in on the size optimality cf 

two different size-optimal solutions. We will present both 

theoretical proofs and simulation results in support of our 

claim that the two size-optimal NN solutions can be ob- 

tained for small fan-ins. For simplification, we shall con- 

sider only NNs having n binary inputs and m binary outputs 

(if real inputs and outputs are needed, it is always possible 

to quantize them up to a certain number of bits such as to 

achieve a desired precision [8]). Section 2 will present two 

pervious results dealing with arbitrary BFs [12], and with 

Fn,,, functions [18].  In Section 3 we will first generalize 

those results to arbitrary fun-ins, and then show that the size 

can be minimized for small fan-ins. Conclusions, and a dis- 

cussion of open questions and further directions for re- 

search complete the paper. Due to space limitations some 

of the lengthy mathematical proofs have been omitted, but 

the interested reader can find them in [5,  6, 81. 

2: Previous results 

One starting point is a classic construction for synthesising 
one BF with fun-in 2 AND-OR gates. It was extended to the 
multioutput case and modified to apply to NNs. 

Proposition 1 (Theorem 3 from [12]) Arbitrary Boolean 

functions of the form f: [O,  1)" + [ O ,  1)"' can be imple- 

mented in u neural network of perceptrons restricted to 

A = 2, with u node complexity of 0 [ m 2 / ( n  + logm)}, 
and requiring 0 (n)  layers. 

Sketch ofproof The idea is to decompose each BF into 
two subfunctions using Shannon's Decomposition [20]: 

By doing this recursively for each subfunction, the output 
BFs will be implemented by binary trees. Horne & Hush 
[12] use a trick for eliminating most of the lower level 
nodes by replacing them with a subnetwork that computes 
all the possible BFs needed by the higher level nodes. Each 
subcircuit eliminates one variable and has three nodes (one 

f (XI x2 ... xn-lxn) = X,f0 (x  z... X,_lX") + x ,  f l  (x2 ... X,-IX,). 

OR and two ANDS). Thus the upper tree has: 

(1) n - q - l  

size,,,,,,, = 3 m x  2' = 3 m ( 2 n - q - 1 )  
i = O  

nodes, and depth = 2 (n  - 4). These subfunctions now 

depend on only q variables, and a lower subnetwork that 
computes all the possible BFs of q variables is built. It has: 

' i  (2) 
sizero,,, = 3 x  2 2  < 4 . 2 2 q  

i = l  

nodes, and depth rower = 2 q (see also Figure 2 in [ 121). 

determined by solving d (size,,) / d q  = 0, and gives: 

That q which minimises size BFs = size upper + size lower is 

(3) q = log[ n + logm - 2log(n + logm)). 

By substituting (3)  in (1) and (2),  the minimum size 

size,, = 3m2"-q  = 3rn2"/(n+logm) 

can be determined. ci 

Proposition 2 (Theorem 1 from [IS]) The complexity re- 

alisation (i.e., number of threshold elements) of Fn,,, (the 

class of Boolean functions f (x ,  x2. . .X~-~X , , )  that have ex- 

actly m groups of ones) is at most 2 (2m) ' I2 + 3. 

The construction has: a first layer of r(2m)lI2l TGs 

(COMPARISONS) with fan-in = n and weights 5 2 '- '; a sec- 

ond layer of 2 r(m / 2 )  "'1 TGs of fun-in = n + r(2m) 

and weights I 2 "; one more TG of fun-in = 2 T(m /2) 'I2.] 

and weights E [ -1, +1) in the third layer. 

3: Limited fan-in and optimal solutions 

Proposition 3 (this paper) Arbitrary Boolean functions 

f : (0 ,  1 }" +[ 0, 1 }"' can be implemented in a neural net- 

work of perceptrons having the fan-in limited to A in 

0 (n  / logA) layers. 

Proof We use the same approach as Home & Hush [12] 

for the case when the fan-in is limited to A. Each output 

BF can be decomposed in 2 A - 1  subfunctions (Le., 

2A-  1 AND gates). The OR gate would have 2 A -  inputs. 

Thus we have to decompose it in a A - a q  tree of fm- 
in = A OR gates. This decomposition step eliminates 

A -  1 variables and generates a A-ary tree having: 

depth = 1 + r(A - 1) / logA1, and 

size = 2 A - 1 + r ( 2 A - 1 -  I> / (A-  1)1. 

Repeating this procedure recursively k times: 

depth upper = k . { 1 + r(A - 1 )  / logA1) 

size,,,,,,, = { 2 A -  * + r p A - l -  I ) / (A-  I ) ] )  x 

(4)  

2 ' ( A - 1 )  
k- 1 

i = O  



=size.(2k("-l)-  1)/(2'-1- 1) 

- - - 2k(A-1) (1 + l /A)  = 2 u - k  ( 5 )  

where the subfunctions depend only on q = n - kA vari- 

ables. We now generate all the possible subfunctions of q 
variables with a subnetwork of 

depthlower = L(n-kA)/Al. { 1 +r (A-  l)/logAl} (6) 

size lower 

2 n  - kA -iA Ln/Al-k 

= {2A-1+r(2A-1- i ) / ( ~ -  i)i) x c 2 

i = I  

2 n - ( k + l ) A  

2 n  - (k+ I )  A 

< (size + 1) . 2 

2n-kA-A 

= 2 4 2  

(7) 

The inequality (7) can be proved by induction; clearly: 

Consider the statement true for a; we prove it for a + 1 : 

2 ( a + O d  

s i z e . [ 2 2 ' + 2 ~ ~ + . . . + 2 2 * }  + size.2 

2(@-+l)A (a+ 1) A 

< (size + 1) . 2  

< size. 2 + 2  

2* size + [ 2 2' + 2 2' + . . . + 2 z'} 

(due to hypothesis), thus: 

and computing the logarithm of the left side: 

2 txI + log(size + 1) 

= 2txI + 1 0 g { 2 A - 1 + r ( 2 A - 1 - i ) / ( ~ - 1 ) i }  

< 2 &  + 1 0 g { 2 ~ - ' + 2 " - ' / A +  11 

< 2 * + A  

< 2(U+l)A 

From (4) and (6) we can estimate depth,,, and from ( 5 )  

and (8) size BFs as: 

depth,,= [k+L(n-kA)/Al) . { 1 +[(A- l)/logAl} 

= (n/A).  (A/lOgA+ 1) (9) 

= n/logA = 0 (n/logA) 

size BFs 

= m . size . (2 k ( A - l ) - ~ ) / ( ~ - ~ )  + (size+1).2 
2 n - ( k + l ) A  

concluding the proof. CI 

Proposition 4 (this paper) All the cr i t ical  points  of 

size BFs (m, n, k, A) are relative minimum, and are situated 

in the vicinity of the parabola kA = I !  - log(n + logm). 

Proof To determine the critical points, we equate the par- 
tial derivatives to zero. Starting frorn the approximation 
of size,, we compute asize,, /ak := 0, which gives: 

m . 2 k A - k  (ln2) (A - 1)  + 

+ 2'. 22"-"-'(ln2). 2 n - u - ~  (ln2) . (-A) = 0 

2n-M-A 
{m (A- l)/A/(ln2)) . 2 m - k - n  = 2 

Using the following notations: 

kA = Y, 

p = m (A- l)/(AIn2), 

and taking logarithms of both sides: 

logP+2y-k-n = 2n-y-A (1 1) 

an approximaye solition is: 

y = n-log(n+logm). 

An alternate solution leading to the same result can be 

obtained by computing with finite differences: 

size,, (m, n, k + 1, A) - size,, (m, n, k, A) = 0 

2 n - M - A  

m .  2kA-k = 2  

which-after taking twice the logarithm of both sides, and 
using the same notations-gives: 

log{logm + y(1 - l / A ) }  

y = n - [A+log( l - l /A))  - 

= n-y-A 

- log{y+A/(A- 1) .  logm) (12) 

= n - A - log(y+logm). 

AN approximate solution is: 

y = n - log(n + logm). 

we compute asize,, / aA = 0. We have: 

Starting again from size,, as given by equation (lo), 

2 n - ! d - A  

m2U-k((ln2)k + 2A(1n2)2 + 

+ 2 A 2 2 n - k A - A  (ln2) 2 n - U - A  (ln2) (- k) = 0 

mk.2Y-k  

- 2 A .  2n-y-A 
n -y- A 

= k (ln2) . 2 n-Y.22 

,,n-y-A n-y-A 

= k (ln2) . 2  - - 2" .  27-n.  22  



Figure 1 : (a) Exact size as a function of the fan-in A and k, for n = 64 and m = 1 ; (b) contour plot. 
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(m/m).22Y-k-n= 1 - 2r+A-n /(k ln2)}. 2 2 n - r - b  I 
which-by neglecting 2Y+A/  {k (ln2) . 2  n)-gives: 

logP+2y-k-n = 2n-y-A 

i.e., the same equation as (1 1). 
These show that the critical points are situated in the 

(close) vicinity of the parabola kA = n - log(n + logm). The 

fact that they are relative minimum has also been proven 

171. cl 

The size has been computed for many different values 

of n, my A and k. One example of those extensive simula- 

tions is plotted in Figure 1. From Figure l(a) it may seem 

that k and A have almost the same influence on size BFs. The 

discrete parabola-like curves (the one closer to the axes is 

approximately kA = n - log(n + logm)) can be seen in Fig- 

ure le)). 

Proposition 5 (this paper) The absolute minimum size BFs 

is obtained for fan-in A = 2. 

Sketch ofproof We will analyse only the critical points 
by using the approximation M = n - logn. Intuitively the 
claim can be understood if we replace this value in (10): 

+ 2 A .  2 2 n - n + l o g n - A  
= m .  2n-lop-k 

< m .2n- lop + 2A.22I0@ 

= m.2"/n + 2 A . 2 n ,  

which clearly is minimised for A = 2. 

I 
1 

The detailed proof relies on computing the size given 

by equation (10) size BFs (n, m, k, A) for k = (n - l o p )  /A, 

and then showing that: 

size;Fs (n, m, A + 1) - sizeiFs (n, m, A) > 0. 

Hence, the function is monotonically increasing and the 

minimum is obtained for the smallest fan-in A = 2. Because 

the proof has been obtained using successive approxima- 
tions, several simulation results are presented in Table 1. It 
can be seen that while for relatively small n the size-optimal 

solutions are obtained even for A =  16, starting from 

n 2 64 all the size-optimal solutions are obtained for A = 2. 
The other relative minima (on, or in the vicinity of the pa- 

rabola M = n - logn) are only slightly larger than the ab- 
solute minimum. They might be of practical interest as 

leading to networks having fewer layers: n /lo@ instead 
of n. Last, but not least, it is to be mentioned that all these 
relative minimum are obtained for fan-ins strictly lower 

that linear (as A I n - logn). 

A similar result can be obtained for Fn,,,, as the first 

layer is represented by COMPARISONS (i.e., Fh 1) which can 

be decomposed to satisfy the limited fan-in condition [4]. 

Proposition 6 (Lemma 1 from [3]) The COMPARISON of 

two n-bit numbers can be computed by a A-ary tree neu- 

ral network of perceptrons having integer weights and 
thresholds bounded by 2A/2  for any fan-in in the range 

3 I A I n .  

The size complexity of the NN implementing one 

Fn,,, function is [3]: 

Table 1: Minimum size, for m = 1 and different values of n. 



Figure 2: (a) Size of NNs implementing /K, for m = 2 (almost completely specified BFs); (b) contour plot. 

where depth , = rlogn / (logA - 1)l. A substantial enhance- 

ment is obtained if the fan-in is limited. The maximum 
number of different BFs which can be computed in each 
layer is: 

2n/A , 2  A (A/2)depthp -’ 
depthp - 1 

(A 12)  

For large m (needed for achieving a certain precision [lo]), 
andor large n, the first terms of the sum (13) will be larger 
than the equivalent ones from (14). This is equivalent to the 
trick from [12], as the lower levels will compute all the 
possible functions using only limited fan-in COMPARISONS. 

Hence, the optimum size becomes: 

.. 
i = k + l  

Following similar steps to the ones used in Proposition 

5, it is possible to show that the minimum size is obtained 

for A = 3. To get a better understanding, we have done 

simulations by considering that m = 2 wt. Some results can 

be seen in Figure 2 (for E = 0.99). 

We mention here that similar results (A = 6.. .9), based 

on closer estimates of area and delay have been proved for 

VLSI-efficient implementations of Fn, functions [5, 61. 

Different complexity estimates for COMPARISON can be 

seen in Table 2. All of these support the claim that small 

constant fan-in NNs can be size- and VLSI-optimal, while 

there are similar s m d  constants relating to our capacity of 

processing information [ 161. 

4: Conclusions and open problems 

In this paper, we have extended a result from Home & Hush 

[ 121 valid for fan-in A = 2 to arbitrary fan-ins, and have 

shown that the minimum size is obtained for small  (con- 
stant) fan-ins. We have also shown that, using their con- 
struction, it is possible to obtain ‘good’ (i.e., relative 
minimum) solutions forfan-ins strictly lower than hear. 
The same results have been obtained for the size-optimal 
solution from [18]. The main conclusions are that (9 there 
are interestingfan-in dependent depth-size (and area-delay) 
tradeoffs; and (ii) there are optimal solutions having small  

constant fan-in values. Future work will concentrate on 
linking these results with the entropy of the data-set, and 
with principles like “Occam’s razoi’ [27], and “minimum 
description length”, as well as trying to find closer esti- 
mates for mixed analogldigital implementations. 
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