
Page 1/14

Small Files Access E�ciency in Hadoop Distributed
File System a Case Study performed on British
Library .rtf �les
Neeta Alange (neetaalange@gmail.com)

Koneru Lakshmaiah Education Foundation, KL Deemed To Be University
P. Vidya Sagar

Koneru Lakshmaiah Education Foundation, KL Deemed To Be University

Research Article

Keywords: HDFS, Small �les, Bucket Chain Technique, British Library

Posted Date: January 12th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2453995/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2453995/v1
mailto:neetaalange@gmail.com
https://doi.org/10.21203/rs.3.rs-2453995/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/14

Abstract
In today’s world storing a large amount of data, large datasets, handling data in various forms is a
challenging task. Data is getting produced rapidly with major small sized �les. Hadoop is the solution for
the big data problem except few limitations. This method is suggested to provide a better one for small
�le sizes in terms of storage, access effectiveness, and time. In contrast to the current methods, such as
HDFS sequence �les, HAR, and NHAR, a revolutionary strategy called VFS-HDFS architecture is created
with the goal of optimizing small-sized �les access problems. The existing HDFS architecture has been
wrapped with a virtual �le system layer in the proposed development. However, the research is done
without changing the HFDS architecture. Using this proposed system, better results are obtained in terms
of access e�ciency of small sized �les in HDFS. A case study is performed on the British Library
datasets on .txt and .rtf �les. The proposed system can be used to enhance the library if the catalogue is
categorized as per their category in a container reducing the storage, improving the access e�ciency at
the cost of memory.

1. Introduction
The HDFS of Hadoop works at storage level which enables high amount access to application data, while
Hadoop is an open source framework that aids in the storage, processing, and analysis of huge volumes
of data. HDFS is a module in hadoop which handles large data sets. The main mechanism for storing
data in Hadoop applications is called HDFS. Application data access with high throughput is made
possible. It offers a mechanism to manage huge amounts of organized and unstructured data and is a
component of big data. HDFS is made for processing massive amounts of data when scalability,
�exibility, and performance are essential. Hadoop is based on the idea of keeping a small number of very
large �les and utilizes a master/slave architecture to store data in HDFS. While the NameNode, the
master node in HDFS, only maintains the metadata of HDFS—the directory tree of all �les in the �le
system—while the DataNode, a slave node, stores the actual data as instructed by the NameNode.
NameNode does not store the actual data or the dataset. A single NameNode, a master server that
manages the �le system namespace and regulates client access to �les, makes up an HDFS cluster. A
number of DataNodes, typically one per node in the cluster, are also present and manage storage relevant
to the nodes that they run on. In the data center, all of the nodes are typically arranged in the same
physical rack. Then, the data is divided into distinct blocks and distributed among the numerous data
nodes for storage. HDFS has two main components – data blocks and nodes storing those data blocks.
Hadoop is lightning fast because of data locality – move computation to data rather than moving the
data, as it is easier and make processing lightning fast. The Same algorithm is available for all the nodes
in the cluster to process on chunks of data stored in them. HDFS differs from other �le systems, Small
data blocks are the norm for �le systems. (Around 512 bytes), however HDFS's block sizes are higher
(Around 64 MB). In conventional �le systems, many discs seek for larger �les, whereas in HDFS, data is
read sequentially after each seek [1].

Page 3/14

2. Hdfs File Storage
Files storage in HDFS:
Files are divided into blocks by DFS, and each block is kept on a DataNode. The NameNode, the cluster's
master node, is connected to numerous DataNodes. These data blocks are replicated and dispersed
throughout the cluster by the master node.

Block Storage in HDFS:

Large �les are to be continuously stored by HDFS across numerous machines in a large cluster. Every �le
is stored as a series of blocks, with the exception of the last block in each �le being the same size.
DataNodes' blocks are copied for fault tolerance. Block size and replication factor can be customized for
each �le.

Storage of 1GB �le in HDFS:

File Size: 1GB =1024 MB

Con�gured block size: 128 MB

Total blocks needed: 1024 MB/128 MB = 8 Blocks.

1 DataNode will contain 8 blocks to store 1 GB �le.

If the Replication Factor is set to 3.

1 GB �le is -> 8 Blocks * 3(RF) =24 Blocks.

Total Memory on different DataNodes: 128 MB * 24 Blocks = 3072 MB.

Table 1. HDFS Block and Memory Requirement with Replication Factor

File
Size
in MB

Con�gured
Single Block
Size in MB

Blocks Required
to Store speci�ed
�le

Replication
Factor

Total Blocks
Required with
Replica

Memory
Required to store
blocks in MB

(1) (2) (3) = (1) / (2) 4 5 6

1024 128 8 3 24 3072

 Table 1 shows the HDFS Block and memory requirement with replication factor with 1GB �le.

Metadata:

Metadata are facts about other facts. It is kept in NameNode, where information about the DataNodes
data, including the data's storage location and replicas, is kept. NameNode uses 150 bytes for �le
metadata storage and 150 bytes for block metadata storage for each replica.

Page 4/14

What are Small Files?

A �le that is considerably smaller than the HDFS block size is referred to as a small �le (default 64MB).
Storing of small �les and the problem is that HDFS can’t handle lots of �les.

3. British Library: An Introduction
The most complete research collection in the world is available at the British Library, the country's
national library. It offers information services to the scienti�c, business, academic, and research
communities. Artifacts from every period of written civilization are included in the collection's estimated
170 million + objects. The library maintains the country's collection of printed and digital publications and
adds about three million new items each year. Inspiring exhibitions at the library contextualize these
holdings and share their narratives with the public [2].

4. Proposed System
Figure 1. Shows the architecture of proposed system. In this proposed architecture just a virtual �le
system layer integrated as a wrapper at the top of the Original HDFS without altering the HDFS
architecture. Client application interact with the system through VFS-HDFS API. This virtual �le system
layer consists of the Virtual File Table. File table is maintained per container (as per category). This �le
table per container maintains information such as File name, Offset, Length and Category of all the �les
stored on VFS. File table is a linked list of buckets. Each bucket refers to previous bucket. File entries in
newly added buckets get precedence over entries from previous bucket. This will allow to modify �le
contents of already stored �les.

Need of Classi�ers?

Files containing similar contents have a high probability that those �les are used by same client. For
grouping similar �les (as per their category) in a same container different text classi�ers are used. For
this experiment Naïve Bayes, Random Forest, J48 and Ensemble classi�ers are used.

Motivation to use Ensemble Classi�cation?

No single classi�er is found to be su�cient for classifying text contents, therefore combination of
multiple classi�ers have been used.

Bucket Chain Methodology:

In this system, a single �le called File Table stores all of the �le's metadata. The tables in this �le are
connected together to form a table chain. Another �le, known as a container �le, is used to store the
actual contents of other �les. Each category has a single container �le. File table and bucket �le table
both contain �lename, offset, and length as well as other �le metadata.

Page 5/14

The category to which each �le belongs is determined using an ensemble classi�er as the �le is being
stored. The associated �le table is likewise updated, and the �le is then saved in a container for the
category.

Each category's �le table is loaded into memory at launch. The most recent �le table is found �rst, and its
contents are added to the in-memory �le table. The next �le table is then found, and the process is
repeated until the �rst �le table is reached. When doing this, if the metadata for a �le is already present in
the in-memory �le table, that entry is removed (as it has become old due to updating or deletion of �le).

Each iteration generates a fresh in-memory �le table for each category to keep track of newly added or
modi�ed �les. On this in-memory �le table, all metadata creation and update operations are carried out in
real time. The container �le contains the actual contents of the �les. The contents of the in-memory �le
table are added to the HDFS �le table upon termination. This establishes a chain of buckets, each of
which has a list of �le tables that may be updated and deleted.

Pruning is a method for recovering space that has been occupied by updated or deleted �les. This
method creates fresh copies of �le tables while omitting the changed or removed items. As a result, �le
tables and containers will take up less space.

By using caching, reading �les from previously received blocks takes less time. Every cache entry has a
tuple including the category, �le, location, length, and the entire block content. This will speed up the
process but require more RAM [6]

5. Experiments And Results

Page 6/14

Table 2
Data with Standard Deviation

Data with Standard Deviation

(from SQL Server STDDEV function) included

File No. of
Files

Average File
Size

Minimum File
Size

Maximum File
Size

Standard
Deviation

Type

doc 13348 272343 0 42811904 674660.289

docm 1 601859 601859 601859 N/A

docx 211 507997 6308 46311671 3466513.39

epub 510027 14610136 0 4167084940 54934421.6

htm 1 15449 15449 15449 N/A

html 154375 57658 0 3610704 105079.177

lit 1 288171 288171 288171 N/A

mobi 3 16651147 1227878 28513943 13987139.4

msg 36 99271 26624 1056256 205015.358

pdf 19312072 1715613 0 3820163267 8907656.73

ppt 5 623718 30208 2112000 855216.223

pub 3 3318272 1403904 7147008 3315782.64

rtf 1733 401837 827 6596844 400088.727

Txt 112521 6592 0 1297185 11162.5078

xls 8225 95370 10283 6989824 324501.987

xlsx 27 46569 12819 840704 159359.731

Total 20112589 2018563 0 4167084940 12525185.1

Table 2 shows the data with standard deviation which is collected from the SQL server STDDEV function
included and this information for this case study is received from the research group of British Library [2].

The proposed system is tested using .txt and .rtf �les. For the experimentation purpose the parameters
used are File Type, No. of Files, Average File Size, and Minimum & Maximum File Size of the .txt and .rtf
�le format of British Library shown in Table 3 below.

Page 7/14

Table 3
Test Case Data from British Library datasets for speci�ed �les (Bytes)

File Type No. of Files Average File Size Minimum File Size Maximum File Size

.txt 112,521 6,592 0 1,297,185

.rtf 1,733 401,837 827 6,596,844

Table 3 provides the test case data from British library datasets for .txt and .rtf �les including minimum,
maximum and average �le size [2].

Table 4
Metadata per block along with Replication Factor (Bytes)

Metadata Per Block Metadata Per File Replication Factor

150 32 3

Table 4 shows the metadata considered per �le along with the replication factor. Metadata per block is
considered as 150 Bytes for the experimentation. Default value of Replication Factor is 3. Metadata per
�le is considered as 32 Bytes which includes (Filename = 20 Bytes, length = 4 Bytes, offset = 8 Bytes)
shown in above Table 4.

Table 5
Test Case data from British Library Datasets for speci�ed �les

with Average File Size, No. of Files and total size (Bytes)
File Type Average File Size No. of Files Total Size

txt 6,592 112,521 741738432

rtf 401,837 1,733 696383521

Table 5 gives the information about File Type, Average File Size, No. of Files and the total size of the .txt
and .rtf �les.

Metadata/�le is calculated as per the formula given:

Metadata/File = No. of �les*Metadata/�le for container*Replication Factor

Metadata/Container is calculated as per the formula given:

Metadata for Container = (Metadata/Block * Total Size / (128 * 1024 *1024) * Replication Factor)

Total Metadata is calculated as per the formula given:

Total Metadata = Metadata Per for container Files + Metadata for Container

Page 8/14

Table 6
Total metadata required for existing system and proposed system

File
Type

HDFS Existing System Proposed System

Metadata Per
Replica in Bytes

Total
Metadata in
Bytes

Metadata Per for
container Files in
Bytes

Metadata for
Container in
Bytes

Total
Metadata in
Bytes

.txt 16878150 50634450 10802016 2487 10804503

.rtf 259950 779850 166368 2335 168703

Table 6 gives the results of existing HDFS and proposed system for .txt and .rtf �les respectively.

For the Existing HDFS System, the Metadata per replica required is 16.88 MB and the total metadata
required to store the �les is 50.63 MB. While in the proposed system as it uses the per category container
�les the metadata required to store the container �les is 10.80 MB and metadata required to for storing
the container �les is 0.00249 MB (2487 Bytes) which results the total metadata required to store the �les
is 10.80 MB. The results for .rtf �les type is also shown in Table 6.

Table 7
Total metadata required for existing system and proposed

system.
Parameters Existing HDFS Proposed System

Time in Seconds 1015 480

Memory in MB 15.41 52.35

Table 7 shows the comparative table for Time and Memory required for accessing and storing the �les
with respect to existing and proposed system.

Figure 3 shows the comparative chart for existing versus proposed system in terms of time and memory.

Page 9/14

Table 8
Comparative chart for existing versus proposed system

Sr.

No.

Parameters Used Flat Table Table Chain Bucket Chaining

(Existing
Technique)

(Existing
Technique)

(Proposed
Technique)

1 Method Flat Chaining Table Chaining Bucket Chaining

2 Access Time

(Lesser is Better)

Very High High Low

3 File Indexing
Overhead

Slight (Very Less) Moderate Increased (High)

4 Memory Footprint Low Low High

5 Read/write E�ciency Low Low High

6 Storage E�ciency Very Low Low High

7 Scalability Very Low Moderate High

8 Data Mutability No Yes Yes

Table 8 describes the comparative chart of the existing techniques- �at and table chain techniques and
the proposed system-bucket chain technology [4] [5].

6. Conclusion
Experimentation is done on Existing System and the Proposed System, results are compared from the
experiment and it is found that storage required to store the �les as per their category is condensed and
the metadata required to store the per container �le is increased. The memory requirement is increased
while storage is reduced and the access time required to access per container �le is improved. If the
proposed system is implemented on British library dataset there is a chance of reducing the storage and
improving time needed to access documents at the cost of increased memory requirement. In the future
the system will be useful for the effective implementation of e-Library in education, Health Care centers
etc. to give the e�cient output in terms of access time and the storage of the �les.

Declarations
Ethics declarations:

Authors Contribution:

Each author contributed equally in each part.

Con�ict of interest

Page 10/14

The authors declare that they have no con�icts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the
authors.

Consent for publications

The authors claim that none of the material in the paper has been published or is under consideration for
publication elsewhere.

Funding

Author declared that no funding was received for this Research and Publication.

Acknowledgment

The authors thank for providing characterization supports to complete this research work.

References
1. Online Reference Apache Hadoop:, http://hadoop.apache.or/

2. https:// andE-mail Reference

3. Lian, X., et al.: “A Small File Merging Strategy for Spatiotemporal Data in Smart Health”, IEEEAccess
Special Section on Advanced Information Sensing and Learning Technologies for Data-Centric Smart
Health Applications, Volume 7, (2019)

4. Neeta Alange, A., Mathur: “Small Sized File Storage Problems in Hadoop Distributed File System” 2nd
International Conference on Smart Systems and Inventive Technology (ICSSIT 2019) IEEE Xplore
Part Number: CFP19P17-ART; ISBN: 978-1-7281-2119-2

5. Neeta Alange, A., Mathur: “Access e�ciency of small sized �les in Big data using various techniques
on Hadoop Distributed File System Platform”,International Journal of Computer Science and Network
Security Volume.21, No.7, (2021)

�. Neeta Alange, A., Mathur: “Optimization of Small Sized File Access E�ciency in Hadoop Distributed
File System by Integrating Virtual File System Layer”,International Journal of Advanced Computer
Science and Applications (IJACSA), Vol. 13, No. 6, (2022)

7. N. Saravanan et. al “Performance and Classi�cation Evaluation of J48 Algorithm and Kendall’s
Based J48 Algorithm (KNJ48)”International Journal of Computational Intelligence and Informatics,
Vol.7:No.4, (2018)

�. Zhipeng, et al.: pp. 327–331. (2016)

Page 11/14

9. Alam, et al.: "Hadoop Architecture and its issues." International Conference on Computational
Science and Computational Intelligence (CSCI), 2. IEEE, 2014. (2014) Vol

10. Sachin, et al.: “Dealing with small �les problem in hadoop distributed �le system”, Procedia
Computer Science Volume 79, Ankita “A Novel Approach for E�cient Handling of Small Files in
HDFS”, IEEE International Advance Computing Conference (IACC, 2015), pp.1258–1262. (2016)

11. Bullarao Domathoti, C., Madala, C.S.R., Berhanu, A.A.: Yamarthi Narasimha Rao, "Simulation Analysis
of 4G/5G OFDM Systems by Optimal Wavelets with BPSK Modulator", Journal of Sensors, vol. Article
ID 8070428, 13 pages, 2022. (2022). https://doi.org/10.1155/2022/8070428

12. Anuradha, T., Lakshmi Surekha, T., Nuthakki, P., Domathoti, B., Ghorai, G., Shami, F.A.: "Graph Theory
Algorithms of Hamiltonian Cycle from Quasi-Spanning Tree and Domination Based on Vizing
Conjecture", Journal of Mathematics, vol. 2022, Article ID 1618498, 7 pages, (2022).
https://doi.org/10.1155/2022/1618498

13. Saba, T., Rehman, A., Haseeb, K., et al.: Cloud-edge load balancing distributed protocol for IoE
services using swarm intelligence. Cluster Comput. (2023). https://doi.org/10.1007/s10586-022-
03916-5

14. Braik, M.: Hybrid enhanced whale optimization algorithm for contrast and detail enhancement of
color images. Cluster Comput. (2022). https://doi.org/10.1007/s10586-022-03920-9

15. Jia, Z., Fan, X., Wang, H.: Retraction Note: Multimedia and multi-feature cluster fusion model based
on saliency for mobile network applications. Cluster Comput. (2022).
https://doi.org/10.1007/s10586-022-03945-0

1�. Oyelade, O.N., Ezugwu, A.E.-S., Mohamed, T.I.A., Abualigah, L.: "Ebola Optimization Search Algorithm:
A New Nature-Inspired Metaheuristic Optimization Algorithm," in IEEE Access, vol. 10, pp. 16150–
16177, doi: (2022). 10.1109/ACCESS.2022.3147821

17. Jeffrey, O., Agushaka, A.E., Ezugwu: Laith Abualigah, warf Mongoose Optimization Algorithm,
Computer Methods in Applied Mechanics and Engineering,Volume 391,2022,14570,ISSN 0045-7825,
https://doi.org/10.1016/j.cma.2022.114570

1�. Laith Abualigah, M.A., Elaziz, P., Sumari, Z.W., Geem, A.H.: Gandomi,Reptile Search Algorithm (RSA):
A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. Volume 191. 116158, 0957–4174
(2022). https://doi.org/10.1016/j.eswa.2021.116158

Figures

Page 12/14

Figure 1

Proposed System Architecture [6]

Page 13/14

Figure 2

shows the bucket chain technique which is used in the proposed system.

Page 14/14

Figure 3

Existing versus Proposed System chart

