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ABSTRACT

Our application requires a keyword spotting system with a small

memory footprint, low computational cost, and high precision. To

meet these requirements, we propose a simple approach based on

deep neural networks. A deep neural network is trained to directly

predict the keyword(s) or subword units of the keyword(s) followed

by a posterior handling method producing a final confidence score.

Keyword recognition results achieve 45% relative improvement with

respect to a competitive Hidden Markov Model-based system, while

performance in the presence of babble noise shows 39% relative im-

provement.

Index Terms— Deep Neural Network, Keyword Spotting, Em-

bedded Speech Recognition

1. INTRODUCTION

Thanks to the rapid development of smartphones and tablets, inter-

acting with technology using voice is becoming commonplace. For

example, Google offers the ability to search by voice [1] on Android

devices and Apple’s iOS devices are equipped with a conversational

assistant named Siri. These products allow a user to tap a device and

then speak a query or a command.

We are interested in enabling users to have a fully hands-free

experience by developing a system that listens continuously for spe-

cific keywords to initiate voice input. This could be especially use-

ful in situations like driving. The proposed system must be highly

accurate, low-latency, small-footprint, and run in computationally

constrained environments such as modern mobile devices. Running

the system on the device avoids latency and power implications with

connecting to the server for recognition.

Keyword Spotting (KWS) aims at detecting predefined key-

words in an audio stream, and it is a potential technique to provide

the desired hands-free interface. There is an extensive literature in

KWS, although most of the proposed methods are not suitable for

low-latency applications in computationally constrained environ-

ments. For example, several KWS systems [2, 3, 4] assume offline

processing of the audio using large vocabulary continuous speech

recognition systems (LVCSR) to generate rich lattices. In this case,

their task focuses on efficient indexing and search for keywords in

the lattices. These systems are often used to search large databases

of audio content. We focus instead on detecting keywords in the

audio stream without any latency.

A commonly used technique for keyword spotting is the Key-

word/Filler Hidden Markov Model (HMM) [5, 6, 7, 8, 9]. Despite

being initially proposed over two decades ago, it remains highly

competitive. In this generative approach, an HMM model is trained

∗The author performed the work as a summer intern at Google, MTV.

for each keyword, and a filler model HMM is trained from the non-

keyword segments of the speech signal (fillers). At runtime, these

systems require Viterbi decoding, which can be computationally ex-

pensive depending on the HMM topology. Other recent work ex-

plores discriminative models for keyword spotting based on large-

margin formulation [10, 11] or recurrent neural networks [12, 13].

These systems show improvement over the HMM approach but re-

quire processing of the entire utterance to find the optimal keyword

region or take information from a long time span to predict the entire

keyword, increasing detection latency.

We propose a simple discriminative KWS approach based on

deep neural networks that is appropriate for mobile devices. We

refer to it as Deep KWS . A deep neural network is trained to directly

predict the keyword(s) or subword units of the keyword(s) followed

by a posterior handling method producing a final confidence score.

In contrast with the HMM approach, this system does not require

a sequence search algorithm (decoding), leading to a significantly

simpler implementation, reduced runtime computation, and smaller

memory footprint. It also makes a decision every 10 ms, minimizing

latency. We show that the Deep KWS system outperforms a standard

HMM based system on both clean and noisy test sets, even when a

smaller amount of data is used for training.

We describe our DNN based KWS framework in Section 2, and

the baseline HMM based KWS system in Section 3. The experimen-

tal setup, results and some discussion follow in Section 4. Section 5

closes with the conclusions.

2. DEEP KWS SYSTEM

The proposed Deep KWS framework is illustrated in Figure 1. The

framework consists of three major components: (i) a feature extrac-

tion module, (ii) a deep neural network, and (iii) a posterior handling

module. The feature extraction module (i) performs voice-activity

detection and generates a vector of features every frame (10 ms).

These features are stacked using the left and right context to cre-

Fig. 1. Framework of Deep KWS system, components from left to

right: (i) Feature Extraction (ii) Deep Neural Network (iii) Posterior

Handling



ate a larger vector, which is fed as input to the DNN (Section 2.1).

We train a DNN (ii) to predict posterior probabilities for each out-

put label from the stacked features. These labels can correspond to

entire words or sub-words for the keywords (Section 2.2). Finally,

a simple posterior handling module (iii) combines the label posteri-

ors produced every frame into a confidence score used for detection

(Section 2.3).

In the example of Figure 1, the audio contains the key-phrase

“okay google”. The DNN in this case only has 3 output labels:

“okay”, “google”, and “filler”, and it generates frame-level poste-

rior scores shown in (iii). The posterior handling module combines

these scores to provide a final confidence score for that window.

2.1. Feature Extraction

The feature extraction module is common to our proposed Deep

KWS system and the baseline HMM system.

To reduce computation, we use a voice-activity detection system

and only run the KWS algorithm in voice regions. The voice-activity

detector, described in [14], uses 13-dimensional PLP features and

their deltas and double-deltas as input to a 30-component diagonal

covariance GMM trained, which generates speech and non-speech

posteriors at every frame. This is followed by a hand-tuned state

machine (SM), which performs temporal smoothing by identifying

regions where many frame speech posteriors exceed a threshold.

For the speech regions, we generate acoustic features based on

40-dimensional log-filterbank energies computed every 10 ms over

a window of 25 ms. Contiguous frames are stacked to add sufficient

left and right context. The input window is asymmetric since each

additional frame of future context adds 10 ms of latency to the sys-

tem. For our Deep KWS system, we use 10 future frames and 30

frames in the past. For the HMM baseline system we use 5 future

frames and 10 frames in the past, as this provided the best trade-off

between accuracy, latency, and computation [15].

2.2. Deep Neural Network

The deep neural network model is a standard feed-forward fully con-

nected neural network with k hidden layers and n hidden nodes per

layer, each computing a non-linear function of the weighted sum of

the output of the previous layer. The last layer has a softmax which

outputs an estimate of the posterior of each output label. For the

hidden layers, we have experimented with conventional logistic and

rectified linear unit (ReLU) functions [16], and consistently found

that ReLU outperforms logistic on our development set, while re-

ducing computation. We present results with ReLU activations only.

The size of the network is also dictated by the number of output

labels. In the following sub-sections we describe in detail the label

generation and training for our neural network. We also describe a

learning technique that further improves the KWS performance.

Labeling. For our baseline HMM system, as in previous work [8,

9, 17] the labels in the output layer of the neural network are context-

dependent HMM states. More specifically the baseline system uses

2002 context dependent states selected as described in [15].

For the proposed Deep KWS , the labels can represent entire

words or sub-word units in the keyword/key-phrase. We report

results with full word labels, as these outperform sub-word units.

These labels are generated at training time via forced alignment

using our 50M parameter LVCSR system [18]. Using entire word

labels as output for the network, instead of the HMM states, has sev-

eral advantages: (i) smaller inventory of output labels reduces the

number of neural network parameters in the last layer, which is com-

putationally expensive (ii) a simple posterior handling method can

be used to make a decision (as explained in Section 2.3), (iii) whole

word models achieve better performance, assuming the training data

is adequate for each word label considered.

Training. Suppose pij is the neural network posterior for the ith

label and the jth frame xj (see Section 2.1), where i takes values

between 0, 1, ..., n − 1, with n the number of total labels and 0 the

label for non-keyword. The weights and biases of the deep neural

network, θ, are estimated by maximizing the cross-entropy train-

ing criterion over the labeled training data {xj , ij}j (previous para-

graph).
F (θ) =

∑

j

log pijj . (1)

The optimization is performed with the software framework DistBe-

lief [19, 20] that supports distributed computation on multiple CPUs

in deep neural networks. We use asynchronous stochastic gradient

descent with an exponential decay for the learning rate.

Transfer learning. Transfer learning refers to the situation where

(some of) the network parameters are initialized with the corre-

sponding parameters of an existing network, and are not trained

from scratch [21, 22]. Here, we use a deep neural network for

speech recognition with suitable topology to initialize the hidden

layers of the network. All layers are updated in training. Trans-

fer learning has the potential advantage that the hidden layers can

learn a better and more robust feature representation by exploiting

larger amounts of data and avoiding bad local optima [21]. In our

experiments we find this to be the case.

2.3. Posterior Handling

The DNN explained in Section 2.2 produces frame-based label pos-

teriors. In this section we discuss our proposed simple, yet effective,

approach to combine DNN posteriors into keyword/key-phrase con-

fidence scores. A decision then will be made if the confidence ex-

ceeds some predefined threshold. We describe the confidence com-

putation assuming a single keyword. However, it can be easily mod-

ified to detect multiple keywords simultaneously.

Posterior smoothing. Raw posteriors from the neural network are

noisy, so we smooth the posteriors over a fixed time window of size

wsmooth. Suppose p′ij is the smoothed posterior of pij (Eq. 1). The

smoothing is done with the following formula:

p
′
ij =

1

j − hsmooth + 1

j
∑

k=hsmooth

pik (2)

where hsmooth = max{1, j−wsmooth +1} is the index of the first

frame within the smoothing window.

Confidence. The confidence score at jth frame is computed within

a sliding window of size wmax, as follows

confidence = n−1

√

√

√

√

n−1
∏

i=1

max
hmax≤k≤j

p′ik (3)

where p′ij is the smoothed state posterior in Eq. (2), hmax =
max{1, j−wmax+1} is the index of the first frame within the slid-

ing window. We use wsmooth = 30 frames, and wmax = 100, as

this gave best performance on the dev set; however the performance

was not very sensitive to the window sizes. Eq. (3) does not enforce

the order of the label sequence, however the stacked frames fed as

input to the neural network help encode contextual information.



3. BASELINE HMM KWS SYSTEM

We implement a standard Keyword-Filler Hidden Markov Model as

our baseline. The basic idea is to create a HMM for the keyword and

a HMM to represent all non-keyword segments of the speech signal

(filler model). There are several choices for the filler model, from

fully connected phonetic units [6] to a full LVCSR system where the

lexicon excludes the keyword [23]. Obviously, the latter approach

yields a better filler model, however it requires higher computational

cost at runtime, and significantly larger memory footprint. Given

the constraints of our application, we implemented a triphone-based

HMM model as filler. In contrast to previous work [6, 23], our im-

plementation uses a Deep Neural Network to compute the HMM

state densities.

The Keyword-Filler HMM topology is shown in Figure 2. Key-

word detection is achieved by running Viterbi decoding with this

topology and checking if the best path passes through the Keyword

HMM or not. The trade-off between false alarms (a keyword is not

present but the KWS system gives a positive decision) and false re-

jects (a keyword is present but the KWS system gives a negative

decision) is controlled by the transition probability between key-

word and filler models. High transition probability leads to high

false alarm rate and vice versa.

An important advantage of the Keyword-Filler model is that it

does not require keyword-specific data at training time. It simply

learns a generative model for all triphone HMM states through like-

lihood maximization on general speech data. Knowledge of the key-

word can be introduced only at runtime, by specifying the keyword

in the decoder graph. However, if keyword-specific data is avail-

able for training, one can improve system performance using trans-

fer learning (Section 2.2), i.e., by initializing the acoustic model net-

work with a network trained on the general speech data and then

continue training it using the keyword-specific data.

Keyword HMMs

Filler HMMs

HMM HMM

HMM

HMM

end

HMM

......

HMM

start

Fig. 2. HMM topology for KWS system, which consists of a key-

word model and a triphone filler model

4. EXPERIMENTAL RESULTS

Experiments are performed on a data set which combines real voice

search queries as negative examples and phrases including the key-

words, sometimes followed by queries, as positive examples. A full

list of the keywords evaluated is shown in Table 1. We train a sep-

arate Deep KWS and build a separate Keyword-Filler HMM KWS

system for each key-phrase. Results are presented in the form of a

modified receiver operating characteristic (ROC) curves, where we

replace true positive rate with the false reject rate on Y-axis. Lower

curves are better. The ROC for the baseline system is obtained by

sweeping the transition probability for the Keyword HMM path in

Figure 2. For the Deep KWS system, the ROC is obtained by sweep-

ing the confidence threshold. We generate a curve for each keyword

and average the curves vertically (at fixed FA rates) over all key-

words tested.

Table 1. Keywords used in evaluation

answer call dismiss alarm

go back ok google

read aloud record a video

reject call show more commands

snooze alarm take a picture

We compare the Deep KWS system and the HMM system with

different size neural networks (Section 4.3), evaluate the effect of

transfer learning for both systems (Section 4.2), and show perfor-

mance changes in the presence of babble noise (Section 4.4).

4.1. Data

We use two sets of training data. The first set is a general speech

corpus, which consists of 3,000 hours of manually transcribed utter-

ances (referred to as VS data). The second set is a keyword specific

data (referred to as KW data), which included around 2.3K train-

ing examples for each keyword, and 133K negative examples, com-

prised of anonymized voice search queries or other short phrases.

For the keyword “okay google”, 40K positive examples were avail-

able for training.

The evaluation set contains roughly 1K positive examples for

each keyword and 70K negative examples, representing 1.4% of pos-

itive to negative ratio, to match expected application usage. Again,

for keyword “okay google” we used instead 2.2K positive examples.

The noisy test set was generated by adding babble noise to this test

set with a 10db Signal to Noise Ratio (SNR). Finally, we use a sim-

ilar size non-overlapping set of positive and negative examples as

development set to tune decoder parameters and DNN input window

size parameters.

4.2. Results

We first evaluate the performance of the smaller neural network

trained for the baseline HMM and the Deep KWS systems. Both

systems used the frontend described in 2.1. They both used a net-

work with 3 hidden layers and 128 hidden nodes per layer with

ReLU non-linearity. However, the number of parameters for both

networks is not identical. The DNN acoustic model used for the

baseline HMM system uses an input window size of 10 left frames

and 5 right frames, and outputs 2,002 HMM states, resulting in

around 373M parameters. The Deep KWS uses instead a 30 left

frames and 10 right frames, but only produces word labels reducing

the output label inventory to 3 or 4 depending on the key-phrase

evaluated. The total number of parameters for Deep KWS is no

larger than 244M parameters.

Figure 3 shows the performance for both systems. Baseline

3x128 (VS) refers to the HMM system with a DNN acoustic model

trained on the voice search corpus. Baseline 3x128 (VS + KW) is

this same system after adapting the DNN acoustic model using key-

word specific data. Deep 3x128 (KW) refers to the proposed Deep

KWS system trained on keyword specific data. Finally, Deep 3x128

(VS + KW) shows the performance when we initialize the Deep

3x128 KW network with a network trained on VS data as explained

in Section 2.2.

It is clear from the results that the proposed Deep KWS out-

performs the baseline HMM KWS system even when it is trained

with less data and has fewer number of parameters. For example,

see Deep 3x128 (KW) vs Baseline 3x128 (VS + KW) in Figure 3.

The gains are larger at very low false alarm rate, which is a desir-

able operating point for our application. At 0.5% FA rate, Deep



Fig. 3. HMM vs. Deep KWS system with 3 hidden layers, 128

hidden nodes neural network

Fig. 4. HMM vs. Deep KWS system with 6 hidden layers, 512

hidden nodes neural network

3x128 (VS + KW) system achieves 45% relative improvement with

respect to Baseline 3x128 (VS + KW). Training a network on the

KW data takes only a couple of hours, while training it on VS +

KW takes about a week using our DistBelief framework described

in Section 2.2.

4.3. Model Size

Figure 4 presents the performance when evaluating both systems

with a 6x512 network. In this case the number of parameters for

the baseline increases to 2.6M while the Deep models reach 2.1M.

Deep 6x512 (KW) system, actually performs worse than the smaller

3x128 models, we conjecture this is due to not enough KW data to

train the larger number of parameters. However when both systems

are trained on VS + KW data, we observe a consistent improvement

with respect to their corresponding 3x128 systems. Here again, the

Deep KWS system has superior performance to the baseline.

4.4. Noise Robustness

We also test the same models on a noisy test set, generated by adding

babble noise to the original test set with a 10db SNR. Comparing

Baseline 3x128 (VS + KW) in Figure 3 and Figure 5, at 0.5% FA

Fig. 5. HMM vs. Deep KWS system with 3 hidden layers, 128

hidden nodes neural network on NOISY data

Fig. 6. HMM vs. Deep KWS system with 6 hidden layers, 512

hidden nodes neural network on NOISY data

rate, the FR rate of the HMM doubles from 5% FR to 10% FR. The

Deep KWS system suffers similar degradation. However it achieves

39% relative improvement with respect to the baseline.

5. CONCLUSION

We have presented a new deep neural network based framework

for keyword spotting. Experimental results show that the proposed

framework outperforms the standard HMM based system on both

clean and noisy conditions. We further demonstrate that a Deep

KWS model trained with only the KW data yields better search per-

formance over the baseline HMM KWS system trained with both

KW and VS data. The Deep KWS system also leads to a simpler

implementation removing the need for a decoder, reduced runtime

computation, and a smaller model, and thus is favored for our em-

bedded application.
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