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Abstract

The present paper continues the work begun by Anstee, Griggs and Sali on
small forbidden configurations. In the notation of (0,1)-matrices, we consider a
(0,1)-matrix F (the forbidden configuration), an m × n (0,1)-matrix A with no
repeated columns which has no submatrix which is a row and column permutation
of F , and seek bounds on n in terms of m and F . We give new exact bounds for some
2× l forbidden configurations and some asymptotically exact bounds for some other
2× l forbidden configurations. We frequently employ graph theory and in one case
develop a new vertex ordering for directed graphs that generalizes Rédei’s Theorem
for Tournaments. One can now imagine that exact bounds could be available for
all 2 × l forbidden configurations. Some progress is reported for 3 × l forbidden
configurations. These bounds are improvements of the general bounds obtained by
Sauer, Perles and Shelah, Vapnik and Chervonenkis.
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1 Introduction

This paper continues investigations of Anstee, Griggs, Sali [4] into extremal set problems
arising from forbidding a single configuration. The reader might consider the analogy
with the celebrated results of Erdős and Stone [5] who determined asymptotic bounds
on the number of edges (in terms of the number of vertices) in a graph avoiding a single
given subgraph (based on the chromatic number of the forbidden subgraph). Our results
provide bounds that are remarkably accurate for small forbidden configurations but we
still have some small forbidden configurations for which we do not know the asymptotic
bounds. The results are examples of a general pattern as yet not fully understood to the
same extent as the Erdős-Stone results.

A natural notation for these problems is (0,1)-matrices. Forbidden configurations have
been studied by various authors for a long time, because a great number of combinatorial
objects can be encoded as (0, 1)-matrices with forbidden substructures. We will use the
term configuration (the combinatorial equivalent of submatrix) as follows. For a matrix
F , we say a matrix A has no configuration F if A has no submatrix which is a row and
column permutation of F . Let F be a k × l (0, 1)-matrix and let A be an m × n (0, 1)-
matrix with no repeated columns (such matrix is called simple). The maximum number
of columns of a simple matrix A of m rows with no configuration F will be denoted by
forb(m,F ). Obviously forb(m,F ) ≤ 2m but more can be done.

This paper is noteworthy in establishing a number of best possible bounds and some
asymptotically best possible bounds for various 2× l forbidden configurations F . Careful
counting arguments are used and then reused in searching for examples close to the
bounds. We are getting close to providing exact bounds for any 2 × l configuration F ,
which before seemed hopeless. Section 2 focuses on 2×l F yielding linear bounds. Section
3 focuses on 2 × l F yielding quadratic bounds. The final section provides a new result
for general F , (multiple copies of the identity matrix) which in particular shows that for

F =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


that forb(m,F ) = O(m7/3). We would tend to believe that forb(m,F ) = Θ(m2), and
must leave this as an open problem.

We extensively use graph theory for 2 × l forbidden configurations F . Lemma 2.1,
which generalizes Rédei’s result for hamiltonian paths in tournaments, provides an in-
teresting new vertex ordering for directed graphs. The applications suggest that maybe
there is a hypergraph generalization to aid in obtaining bounds for general forbidden
configurations.

The following result of Füredi is a general asymptotic bound.

Theorem 1.1 ([9]) Let F be a k × l (0, 1)-matrix. Then

forb(m,F ) = O(mk).
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This is best possible for F being the k×2 matrix of ones. To obtain a proof one can use
the following fundamental result of Sauer, Perles and Shelah, Vapnik and Chervonenkis.
Let Kk denote the k × 2k submatrix of all possible columns of size k.

Theorem 1.2 ([10, 12, 13])

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ . . .

(
m

0

)
.

It is easy to see that the bound of Theorem 1.2 is sharp: take A to be the matrix
of all columns with k − 1 or fewer 1’s. To obtain the asymptotic estimate for arbitrary
forbidden configurations F one can do the following. Given a matrix A with at least

(2k)(l − 1)

(
m

k

)
+

(
m

k − 1

)
+

(
m

k − 2

)
+ . . .

(
m

0

)
+ 1

columns, we take any
(
m
k−1

)
+
(
m
k−2

)
+ . . .

(
m
0

)
+ 1 = forb(m,Kk) + 1 columns which then

contain the configurationKk in 2k columns. Permute the columns so that these 2k columns
are the first ones. Repeat on the remaining columns until one has (l − 1)

(
m
k

)
+ 1 such

Kk’s and hence by the Pidgeonhole Principle, at least l in the same k subset of rows and
hence a copy of F .

One can obtain best possible or at least more accurate bounds (see [3]). For example,
we have for F being the k × 2 matrix of ones

forb(m,F ) =

(
m

k

)
+

(
m

k − 1

)
+ . . .

(
m

0

)
= Θ(mk).

Also if F has no repeated columns, then

forb(m,F ) ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ . . .

(
m

0

)
= Θ(mk−1),

but the bound need not be best-possible. For other results or generalizations see [1, 2, 6, 7].

2 Linear Bounds

Careful structural analysis has resulted in bounds that are new and surprisingly exact.
The following graph theory argument is the key to the exact bound in the Theorem 2.2 that
follows. One can envision this as a generalization of Rédei’s result [11] that a tournament
has a hamiltonian path. While this result is for directed graphs, it is interesting to
contemplate whether there are k-uniform hypergraph analogues useful for k× l F and in
particular to use in Theorem 4.1.
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Lemma 2.1 Let D = (N,A) be a directed graph. There is an ordering of the vertices
N as 1, 2, . . .m where m = |N | and a subset T ⊆ A consisting of a collection of vertex
disjoint indirected trees T with the following property. Let Di denote the subgraph of D
induced by the vertices {i, i+ 1, . . .m}. For each pair i, j, 1 ≤ i < j ≤ m either there is a
directed path in Di from i to j or there is a k with i ≤ k ≤ m so that there is a directed
path from i to k in Di and there is no edge in D from k to j.

Proof: We proceed by constructing a forest of indirected trees T from D and a vertex
ordering in the following way. As vertices are deleted, they enter the vertex ordering;
namely the kth vertex deleted is labelled k. We start with T = ∅. At the jth stage we
form a directed path Pj from Pj−1 by extending it. Let Pj = ij,1→ij,2→ . . .→ij,lj . It
will have what we call the two-maximal property that for a vertex k /∈ Pj (and not yet
deleted) there is no edge k→ ij,1, there is no pair of edges ij,t→k, k→ij,t+1 for all t with
1 ≤ t ≤ lj − 1 and there is no edge ij,lj→k. We initially start with P0 = ∅.

At the n + 1st step we look at Pn. In the case Pn = ∅, we simply choose Pn+1 as
a two-maximal path in the remaining graph (Pn+1 could consist of a single vertex). For
Pn = in,1→ in,2→ . . .→ in,ln, we find the smallest index kn such that there is an edge
j→in,kn for a vertex j (not in Pn and not already deleted). If there is no vertex kn, then
set Pn+1 = ∅ while deleting the vertices in,1, in,2, . . . in,ln in turn. Otherwise add the edges
in,1→in,2, in,2→in,3,. . . in,kn−1→in,kn to T and delete the vertices in,1, in,2, . . . in,kn in turn
(note that by the two maximal property for Pn that kn > 1).

Extend Pn to a two-maximal path in+1,1→. . .→in+1,en+1→in,kn→. . .→in,ln. This we
relabel as our new path Pn+1 in+1,1→in+1,2→. . .→in+1,ln+1.

This process continues until there are no vertices left. Does the resulting ordering
and set T have the desired property? Note that each path Pn has all its edges eventually
enter T and the vertex ordering respects the vertex ordering in the path. Choose any
s satisfying 1 ≤ s ≤ kn − 1. Using the two-maximal property, we verify that for every
vertex j not in Pn and yet still undeleted we note that either there is a vertex in,t in Pn
(with s ≤ t ≤ ln) where there is no edge (of D) joining j, in,t or we get a contradiction.
This follows since by the choice of kn, we have in,s→j and using two-maximality we get
that in,s+1→j, in,s+2→j, . . . , in,ln→j and the final arc contradicts the two-maximality of
Pn.

We obtain a new exact result.

Theorem 2.2 For F =[ 0
0

p︷ ︸︸ ︷
0 0 . . . 0
1 1 . . . 1

p︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0 ] and F1 =[

p︷ ︸︸ ︷
0 0 . . . 0
1 1 . . . 1

p︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0 ] and m ≥ p ≥ 1

forb(m,F ) = forb(m,F1) = (m− 1)p+ 2.

Proof: We first show that forb(m,F ) ≤ (m−1)p+ 2. Let A be a simple matrix of m rows
not containing F . We construct a directed graph D using row numbers of A as vertices
and adding the edges i→j for each i and j such that the number of

�
0
1

�
connections between
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row i and row j is less than p. As a result of forbidding F , we see that if i, j are not
joined in D then row i over row j lacks the column

�
0
0

�
.

We use Lemma 2.1 to obtain a vertex ordering for D and a forest of indirected trees
T consisting of at most m − 1 edges. Rearrange the rows of A in accordance with the

ordering. The number of columns of A with an entry

[
0
1

]
in row i over row j for some

edge i→j in our forest T is at most (m− 1)(p− 1), using the definition of i→j .
There are at most m + 1 columns which for each edge i→j of T , do not have an

entry
�
0
1

�
in row i over row j. To see this note that apart from the column of 1’s, each

such column must have a highest row i with a 0, namely 1’s in rows 1, 2, . . . , i − 1 and
a 0 in row i. Applying the lemma we consider any row j with i < j ≤ m. If there is a
directed path from i to j then all the entries in the rows corresponding to the vertices
of the path are forced to be 0’s. If there is a directed path from i to k and there is no
edge in D from k to j then the entry in row k is forced to be 0 and then the entry in
row j is forced to be 1 (by the lack of an edge from j to k in D). Thus there are at most
(m− 1)(p− 1) + (m+ 1) = (m− 1)p+ 2 columns in A.

We complete our proof by showing forb(m,F1) ≥ (m − 1)p + 2 using a construction.
We form (m − 1)(p− 1) columns Cij for 1 ≤ i ≤ p− 1 and 1 ≤ j < i and i + 1 < j ≤ p
with Cij having 1’s in rows 1, 2, . . . , i − 1, 0 in row i, 1 in row i + 1, and 0’s in rows

i+ 1, i+ 3, . . . ,m. We then add the m+ 1 columns containing no submatrix
�
0
1

�
to obtain

a simple m× ((m− 1)p+ 2) matrix with no configuration F1.
Some of the proof for the bounds for forbidden configurations proceed by what we call

the standard argument, made in reference to a particular row of a simple m × n matrix.
We first bring this row to the top of the matrix and then rearrange the columns to produce
a matrix in the following form:[

11 . . . 1 11 . . . 1 00 . . . 0 00 . . . 0
B1 B2 B2 B3

]
where B1, B2 and B3 are each matrices with m−1 rows, but B1 and B3 have no identical
columns. The matrix [

B1B2B3

]
is a simple matrix. This process may be extended for multiple rows to obtain new results
and simplified proofs of old results as in the following result for which a weaker linear
bound (of (2p− 2)m) is given as Theorem 2.2 in [4].

Theorem 2.3 For F =[ 0
0

p︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0

0 1
1 1 ], forb(m,F ) ≤ (p− 1

2
)m+ 1.

Proof: Let A be an m × n simple matrix with no configuration F . If a pair of rows has

the configuration K2, then that pair of rows has no configuration F ′ = [
p︷ ︸︸ ︷

0 0 . . . 0
1 1 . . . 1 ] .
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Let C be a maximal set of rows so that for every pair i, j ∈ C, the rows i, j do not have
the configuration F ′. We may assume |C| > 1 since if there are no pair of rows avoiding
F ′ then A avoids K2 and so n ≤ m+ 1 by Theorem 1.2.

We may reorder the rows of A so that the k rows of C are first and then decompose
A as

A =

[
0′s B 1′s
D E G

]
(1)

where every column in the k × l matrix B contains the configuration
�
0
1

�
and so in fact

contains at least k− 1
�
0
1

�
’s. Now B has no configuration F ′ and so we deduce (k− 1)l ≤

2(p− 1)
(
k
2

)
since there are at most 2(p− 1) configurations

�
0
1

�
. This yields l ≤ (p− 1)k.

We find that at most one column can be in common to both D and G since if there
were two columns α, γ in both D and G then in some row t there is the configuration [0 1]
in both D and G. But then for every i ∈ C, there is a K2 on rows i, t and hence no F ′ on
rows i, t, which contradicts that C is a maximal set.

Thus we can delete from A the k rows of C and at most (p−1)k+1 columns to obtain
a simple matrix A′. Thus

forb(m,F ) ≤ forb(m− k, F ) + (p− 1)k + 1.

For k ≥ 2 we have (p−1)k+1
k

≤ p− 1
2

and so we obtain the bound.

The following constructions provide lower bounds on forb(m,F ) for F as above.

Proposition 2.4 For F =[ 0
0

p︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0 ] or [ 0

1

p︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0 ] and p odd and p ≥ 9

forb(m,F ) ≥
(
p

2
+

3

2
+

2

p+ 1

)
m+ O(1),

while for p even and p ≥ 12

forb(m,F ) ≥
(
p

2
+

4

3
+

2(1− (p (mod 6))

p

)
m+ O(1).

Proof: For each p, the construction below determines a number l and a simple l-rowed
matrix K. Inductively we expand a simple m-rowed matrix Am avoiding F to an m+ l-
rowed matrix Am+l avoiding F as follows:

Am+l =

[
Am 1’s
1’s K

]
.

The new matrix has |Am|+ |K| columns.

The matrix Kl =
[
K0
l , K

1
l , K

2
l , K

l−2
l , K l−1

l

]
contains l2 + l + 1 columns and 2l − 2

�
0
1

�
’s
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and 2l − 2
�
1
0

�
’s in each pair of rows.

For p odd, we choose l = (p + 1)/2 and K = Kl. This matrix contains (p2 + 4p + 7)/4

columns and has exactly p − 1
�
0
1

�
’s and

�
1
0

�
’s in each pair of rows. This gives a growth

rate of

(
p2 + 4p+ 7

4

)
/

(
p+ 1

2

)
=

(
p

2
+

3

2
+

2

p+ 1

)
per added row.

When p is even, we choose l = p/2. Kl now has p − 2
�
0
1

�
’s and

�
1
0

�
’s in each pair of

rows. We produce K by augmenting Kl with
⌊
p
6

⌋
columns from K3

p/2 so that we add no

more that an extra 1 to each row of the p/2 rows; thus, we still have fewer than p−1
�
0
1

�
’s

and
�
1
0

�
’s in each pair of rows of K.

K has
p2

4
+

2p

3
+1−(p (mod 6)) columns giving a growth rate of

p

2
+

4

3
+

2(1− (p (mod 6)))

p
columns per added row.

The following result includes Theorem 2.5 of [4].

Corollary 2.5 For any submatrix Fs of F =

[
1 1 1 0 0
1 0 0 1 0

]
containing either the

configuration

[
1 1 0
0 0 1

]
or
[

0 0 0
]

or
[

1 1 1
]

,

forb(m,Fs) =

⌊
3

2
m

⌋
+ 1.

Proof: The bound forb(m,F ) ≤ b3
2
mc+ 1 follows from Theorem 2.3. Since forb(m,Fs) ≤

forb(m,F ), we have only to prove forb(m,Fs) ≥ b3
2
mc + 1 . Note that the matrices Am

constructed in Proposition 2.4 do not contain the configuration
�

1 1 0
0 0 1

�
. This gives the

first case. For the second case, we construct the m× (b3
2
mc+ 1) matrices Cm inductively

starting with C1 =
[

0 1
]

and C2 =

�
0 1 0 1
0 0 1 1

�
as before. Cm is constructed by adding

a row of 1’s under the matrix Cm−1 and the m × 1 column

2
66666664

1
1
.
..
1
1
0

3
77777775

for m odd, the m × 2

matrix

2
66666664

1 1
1 1
.
..

.

..
1 1
1 0
0 0

3
77777775

for m even. These matrices do not contain the configuration
[

0 0 0
]
.

The complementary construction works for
[

1 1 1
]
.

The following theorem gives a new exact bound using a similar method.
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Theorem 2.6 For F =

[
0 1 1 1 0 1
0 0 0 0 1 1

]
and m ≥ 3,

forb(m,F ) =

⌊
7

3
m

⌋
+ 1.

Proof: We construct the matrices Am inductively as follows. A3 = K3. A4 and A5 have
the constant columns along with those with only one 0 or 1. For m ≥ 6 we obtain Am
from Am−3 by adding 7 columns in the following way:

Am =


Am−3 1’s

0’s
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
None of these simple matrices contains the configuration F , and each has

⌊
7
3
m
⌋

+ 1
columns, establishing the quantity on the right as a lower bound.

We now show that the upper bound using the proof ideas of Theorem 2.3. We use
induction on m. If we can find a C as in Theorem 2.3 with |C| = k ≥ 3 then (p−1)k+1

k
≤ 7

3

(using p = 3). Hence we would have forb(m,F ) ≤ forb(m− k, F ) + 7
3
k and so we obtain

our bound. Hence we may assume that the largest C that can be found is of size 2 and
that the 2 × l matrix B in (1) has l = 4 since for l ≤ 3 we could delete 2 rows and at
most 4 columns yielding the desired bound by induction. This forces B to be the matrix�
0011
1100

�
apart from column order. We may rearrange A to obtain

A =

0 . . . 0
0 . . . 0
B1

∣∣∣∣∣∣
0 . . . 0
0 . . . 0
B2

∣∣∣∣∣∣
1 1 0 0
0 0 1 1
E

∣∣∣∣∣∣
1 . . . 1
1 . . . 1
B2

∣∣∣∣∣∣
1 . . . 1
1 . . . 1
B3


where [B1B2] = D and [B2B3] = G and B2 are the columns in common. We find that
B2 has exactly one column. Our argument in Theorem 2.3 showed that there is at most
one column and if there is no column then we could delete the first two rows and the 4
columns (containing E) and obtain a simple matrix so forb(m,F ) ≤ forb(m − 2, F ) + 4
which yields the bound.

We find a row such that the first 2 entries in E are different and rearrange A so the
first three rows give: . . . 0 1 1 0 0 1 . . .

. . . 0 0 0 1 1 1 . . .

. . . a 0 1 b c a . . .


Because of the symmetry, we may assume the entry a to be 0. For b and c there are 3
cases to consider.
Case 1: b = c = 0. Rows 2 and 3 have the configuration

�
0 1 1 1 0
0 0 0 0 1

�
and therefore must

not contain a configuration
�
1
1

�
. This forces all of the entries on the right for these 3 rows
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to be

2
41

1
0

3
5’s. If there are 2 or more of these, then rows 1 and 3 contain

�
0 1 1 1 1
0 0 0 0 1

�
. To

avoid F on rows 1 and 3, there are at most two 1’s in row 3 under the
�
0
0

�
’s. Now we could

delete the first 3 rows of A and at most 7 columns ( the 4 columns of E, the common
column B2, and the columns with 1’s in row 3) to get a simple matrix and so

forb(m,F ) ≤ forb(m− 3, F ) + 7

and so the bound is proven.
Case 2: Assume b = c = 1. But now the pairs of rows 1,3 and 2,3 both contain K2 and
this contradicts the choice of C.
Case 3: Assume b = 0, c = 1. In the first three rows we have1 1 0 0

0 0 1 1
0 1 0 1

 .
and so the pairs of rows 1,3 and 2,3 both contain K2, contradicting the choice of C.

Corollary 2.7 For any submatrix of Fs of F =

[
0 1 1 1 0 1
0 0 0 0 1 1

]
containing either

F1 =

[
0 1 1 1
0 0 0 0

]
or F2 =

[
0 1 1 1
1 0 0 0

]
and m ≥ 3

forb(m,Fs) =

⌊
7

3
m

⌋
+ 1.

Proof: The matrices Am constructed above do not contain the configuration F2. We
modify this construction slightly, setting A′3 = A3, A′4 = A4, A′5 = A5 and

A′m =


A′m−3 1’s

1’s
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
These matrices do not contain F1.

The following exact bound uses graph theory to aid the analysis.

Theorem 2.8 For F =

[
1 1 0 0 0
0 0 1 1 1

]
and m ≥ 3,

forb(m,F ) =

⌊
8

3
m

⌋
.
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Proof: We provide a construction for Am, a simple matrix m ×
⌊

8
3
m
⌋

which avoids the
configuration F . We take A1 = K1, A3 = K3 and

A5 =


A3

0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

0′s
1 0 1 0 1
0 1 0 1 1


For m 6= 1, 2, 3, 5, we can construct Am inductively using

Am =


Am−3

0 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
0 1 1 1 1 1 1 1

0’s
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


.

Hence, for m ≥ 3, we have forb(m,F ) ≥
⌊

8
3
m
⌋
. We now show the reverse inequality.

Assume the theorem true where the number of rows is strictly between 2 and m. Let
A be a simple matrix of dimensions m × forb(m,F ) with m > 3. We construct a graph

considering rows as vertices and having directed edges i→j if the number of
�
0
1

�
’s in

�
Ri
Rj

�

< 2 and edges i ····· j if the numbers of
�
0
1

�
’s and

�
1
0

�
’s in

�
Ri
Rj

�
are each < 3. We then have

the following properties.

(i) Each pair of rows is connected by at least one edge. This is clear.

(ii) The graph on the directed edges is transitive and contains no cycles.
If i→ j and j → k, then we have the three possibilities

(a) i
↗
.....

j
↓
k
, (b) i

↗
↖

j
↓
k
, and (c) i

↗
↘

j
↓
k
.

For cases (a) and (b) we look at the possible entries for these three rows. The entries
above the braces indicate the number of possible columns of these types.

i
j
k

≤1︷ ︸︸ ︷
0 · · ·0 0 · · ·0
1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1

≤1︷ ︸︸ ︷
1 · · ·1 0 · · ·0
0 · · ·0 0 · · ·0
0 · · ·0 1 · · ·1

≤2︷ ︸︸ ︷
1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0

0 · · ·0 1 · · · 1
1 · · ·1 1 · · · 1
0 · · ·0 1 · · · 1

.

We can eliminate rows i and j and at most 4 columns to produce a simple matrix Am−2.
Using the second construction we produce an m rowed simple matrix which does not
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contain F but has more columns that A.
For A to be maximal we can have (c) only - the graph must be transitive and, as well,
there are no cycles.

(iii) Induction holds if ····· edges occur other than in cliques.

If there are edges i
↗
.....

j
·
·.·
·

k

then the possible entries for these rows are

i
j
k

≤1︷ ︸︸ ︷
0 · · ·0 0 · · · 0
1 · · ·1 1 · · · 1
0 · · ·0 1 · · · 1

≤2︷ ︸︸ ︷
1 · · ·1 0 · · ·0
0 · · ·0 0 · · ·0
0 · · ·0 1 · · ·1

≤2︷ ︸︸ ︷
1 · · ·1 1 · · ·1
0 · · ·0 1 · · ·1
0 · · ·0 0 · · ·0

0 · · ·0 1 · · · 1
0 · · ·0 1 · · · 1
0 · · · 0 ; 1 · · ·1

.

We eliminate rows j and k and at most 5 columns to produce a simple matrix Am−2. But
then

|A| ≤ |Am−2|+ 5 ≤
⌊

8

3
(m− 2)

⌋
+ 5 ≤

⌊
8

3
m

⌋
.

(iv) The theorem is true if the ····· edges occur only in cliques.
Consider a clique with k vertices. We wish to discover how many columns are possible
which are not constant on these k rows.
For k = 1 there are no columns which are non-constant on this clique.
For k > 1, the presence of the ····· edges means we avoid the configuration

�
0 0 0
1 1 1

�
in the

clique. If a column has both 0 and 1 entries on these k rows, it has at least k − 1 of the�
0
1

�
configurations in these k rows. More that 2k of such columns would give more than

2k(k − 1) of the
�
0
1

�
configurations in k(k − 1)/2 pairs of rows from this clique. One pair

would then contain more than 4 and hence the configuration
�
0 0 0
1 1 1

�
. Thus there can be

no more than 2k columns which are not constant on these k rows. Let ck be the number
of cliques which have k vertices. The maximum number of columns of A which are not
constant on cliques is then 2(m− c1).

There is an ordering on the cliques by defining C1 < C2 if there is a directed edge i→j for
i ∈ C1 and j ∈ C2. By properties (i) and (ii) this ordering is strictly linear. Reorder the
rows of A to respect this linear order. The columns of A which are constant on cliques
avoid the submatrix

�
0 0
1 1

�
. If the number of cliques is m′, then this is equivalent to

avoiding this submatrix in an m′ rowed matrix. There are a maximum of m′ − 1 distinct
columns possible which contain a

�
0
1

�
and a maximum of m′ + 1 columns with no

�
0
1

�
.

Thus, A has a maximum of 2(m− c1) + 2m′ columns, but where there are cliques of size
2, we have overcounted. This is because on clique Ct of size two, say on rows i, i + 1,
we can distinguish only 2 nonconstant columns. To achieve the count of 4 we must have�
0 0 1 1
1 1 0 0

�
in rows i, i + 1. Two of these columns could have 1’s above and 0’s below.

The remaining two columns must either have 0’s on a clique above Ct and then a 1 in
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Ct or a 1’s on a clique following Ct and a 0 in Ct. The count of m′ − 1 distinct columns
possible which contain a

�
0
1

�
must be reduced by at least 1 for every clique of size 2 (the

two columns can both contribute a
�
0
1

�
to the same clique pair).

We then have

|A| ≤ 2(m− c1) + 2m′ − c2 = 2c1 + 5c2 +
∑
k>2

(2k + 2)ck

≤
⌊

8

3
(c1 + 2c2 + 3c3 + . . .)

⌋
=

⌊
8

3
m

⌋
.

3 Quadratic Bounds

In [4], we classified which 2×l F give rise to quadratic bounds. We are able to substantially
strengthen the bounds obtaining some exact bounds or bounds with correct quadratic
terms. Graph theory is remarkably useful.
In the following, we investigate forb(m,F ) for

F = [
r︷ ︸︸ ︷

0 . . . 0
0 . . . 0

p︷ ︸︸ ︷
1 . . . 1
0 . . . 0

p︷ ︸︸ ︷
0 . . . 0
1 . . . 1

s︷ ︸︸ ︷
1 . . . 1
1 . . . 1 ] (2)

By symmetry we may assume r ≥ s ≥ 1. From [4], forb(m,F ) is quadratic if r ≥ 2 or
r = s = 1 and p ≥ 2. Certain general cases are known ‘exactly’.

Theorem 3.1 ([3]) Let 02,r denote the 2×r matrix of 0’s. For F as above with r ≥ 2, p, s
or any submatrix Fs of F containing 02,r, then forb(m,F ) = forb(m,Fs) = forb(m, 02,r) =
r+1

6
m2 +O(m).

In what follows we will often consider cases with p > r. We will assume p ≥ 2. In [4]

it is shown that F0 =
�
0 1 1 0 0 1
0 0 0 1 1 1

�
, forb(m,F0) ≥ bm2

4
c + m + 1. Let A be a simple m × n

matrix which does not have the configuration F of (2). Let Ri refer to the ith row of A.
We consider the rows as vertices in a graph with the following edges:

(a) The directed edge i→ j if the number of
�
0
1

�
’s in

[
Ri
Rj

]
is less than p.

(b) i ··0·· j if the number of
�
0
0

�
’s in

[
Ri
Rj

]
is less than r.

(c) i ··1·· j if the number of
�
1
1

�
’s in

[
Ri
Rj

]
is less than s.

We then have the following:

Lemma 3.2 If we are given forb(m − 1, F ) ≤ a(m − 1)2 + b(m − 1) + c (for a, b > 0
and a ≤ b), then either forb(m,F ) ≤ am2 + bm + c or we may assume that for m ≥
3
2a

max{p, r, s} that each pair of rows of A is connected by exactly one edge and, in the
graph arising from A, the following 8 triangles do not occur:
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∆1 = i
↗
↖

j
↓
k

∆2 = i
↗
..0..

j
↓
k

∆3 = i
↗
..1..

j
↓
k

∆4 = i
..

0.
.

..0..

j
·
·
1·
·

k

∆5 = i .
.1
..

..1..

j
·
·
0·
·

k

∆6 = i .
.1
..

..0..

j
↓
k

∆7 = i .
.1
..

↘

j
↓
k

∆8 = i
↙
..0..

j
↓
k

Proof: We compute am2 + bm+ c− (a(m− 1)2 + b(m− 1) + c) = a(2m− 1) + b ≥ 2am.
Thus we need only show that one of the cases of the Lemma yield

forb(m,F ) ≤ forb(m− 1, F ) + 2am

(or forb(m,F ) ≤ forb(m−2, F )+2am. Our choice of m ensures that 3 max{p, r, s} ≤ 2am
and this can be used to show the above inequality in what follows. In trying to prove
forb(m,F ) ≤ am2 + bm + c by induction, the base cases can be handled with large b
and/or c. Since the results are not usually exact, this is reasonable.

For A not to have the configuration F , each pair of rows must be connected by an
edge. Since a directed edge may go either way there are

(
4
2

)
= 6 possible combinations

for rows i and j to be connected by two edges.
If, for example, we have the edges i→ j and i ··0·· j, then A has the configuration

Ri

Rj
...

≤p−1︷ ︸︸ ︷
0 . . . 0
1 . . . 1
. . . . .

≤r−1︷ ︸︸ ︷
0 . . . 0
0 . . . 0
. . . . .

1 . . . 1
0 . . . 0
. . . . .

1 . . . 1
1 . . . 1
. . . . .

.

Eliminating the first ≤ p+ r − 2 columns and Ri leaves a simple matrix, giving that

forb(m,F ) ≤ forb(m− 1, F ) + p+ r − 2.

Using p+ r−2 < 2am would enable us to prove forb(m,F ) ≤ am2 + bm+ c by induction.
The proofs for the other 5 cases are similar.

For ∆1, we deduce

Ri

Rj

Rk
...

≤p−1︷ ︸︸ ︷
0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1
. . . . . . . . . . . .

≤p−1︷ ︸︸ ︷
0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1
. . . . . . . . . . . .

≤p−1︷ ︸︸ ︷
1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0
. . . . . . . . . . . .

0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1
. . . . . . . . . . . .

Eliminating the first ≤ 3p− 3 columns, Ri leaves a simple matrix, so that forb(m,F ) ≤
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forb(m− 1, F ) + 3p− 3. For ∆2 we get

Ri

Rj

Rk
...

≤p+r−2︷ ︸︸ ︷
0 . . . 0 0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
. . . . . . . . . . . . . . . . . .

≤p−1︷ ︸︸ ︷
0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1
. . . . . . . . . . . .

1 . . . 1 1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0 0 . . . 0 1 . . . 1
. . . . . . . . . . . . . . . . . .

Eliminating the first ≤ 2p+r−3 columns and Ri leaves a simple matrix, so forb(m,F ) ≤
forb(m−1, F )+2p+r−3. Symmetrically we get forb(m,F ) ≤ forb(m−1, F )+2p+s−3
with the triangle ∆3. For ∆4 we have

Ri

Rj

Rk
...

≤2r−2︷ ︸︸ ︷
0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0 1 . . . 1
. . . . . . . . . . . . . . . . . .

≤s−1︷ ︸︸ ︷
0 . . . 0 1 . . . 1
1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1
. . . . . . . . . . . .

1 . . . 1 1 . . . 1 1 . . . 1
0 . . . 0 0 . . . 0 1 . . . 1
1 . . . 1 1 . . . 1 1 . . . 1
. . . . . . . . . . . . . . . . . .

.

Eliminating row i and the first set of ≤ 2r + s − 3 columns leaves a simple matrix,
so that forb(m,F ) ≤ forb(m − 1, F ) + 2r + s − 3 Symmetrically we get forb(m,F ) ≤
forb(m− 1, F ) + 2s+ r − 3. with the triangle ∆5. For ∆6 we have

Ri

Rj

Rk
...

≤s−1︷ ︸︸ ︷
1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1
. . . . . . . . . . . .

≤r−1︷ ︸︸ ︷
0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0
. . . . . . . . . . . .

≤p−1︷ ︸︸ ︷
0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0
1 . . . 1 1 . . . 1
. . . . . . . . . . . .

0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0
1 . . . 1 0 . . . 0
. . . . . . . . . . . .

Eliminating the first ≤ p + r + s − 3 columns and Rj leaves a simple matrix, so that
forb(m,F ) ≤ forb(m− 1, F ) + p+ r + s− 3. For ∆7 we have

Ri

Rj

Rk
...

≤s−1︷ ︸︸ ︷
1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1
0 . . . 0 1 . . . 1
. . . . . . . . . . . .

≤2p−2︷ ︸︸ ︷
0 . . . 0 0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1 0 . . . 0
1 . . . 1 1 . . . 1 1 . . . 1
. . . . . . . . . . . . . . . . . .

0 . . . 0 1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0 1 . . . 1
0 . . . 0 0 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .

Eliminating the first ≤ p + r + s − 3 columns and Rk leaves a simple matrix, so that
forb(m,F ) ≤ forb(m− 1, F ) + 2p+ s− 3. Symmetrically we get forb(m,F ) ≤ forb(m −
1, F ) + 2p+ r − 3 with the triangle ∆8.

Theorem 3.3 For F =[ 0
0

p︷ ︸︸ ︷
0 0 · · · 0
1 1 · · · 1

p︷ ︸︸ ︷
1 1 · · · 1
0 0 · · · 0

1
1 ], there exists a c, so

m2

4
+ (p− 1

1

2
−
√
p− 1)m+O(p) ≤ forb(m,F ) ≤ m2

4
+ (p− 1)(m− 2) + c
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where the lower bound holds for p ≥ 4 and m > 4(p− 1)3/2.
In addition, there exists an m0 so that for m > m0 we may take c = 0 in the upper

bound.

Proof: Let A be an m rowed matrix with no configuration F . Form a graph on the
rows of A as above (r = s = 1) with edges i→j, i ··0·· j, i ··1·· j. To prove the upper bound
we use induction on m with m ≥ 6p. We can choose c large enough (26p will do) so

that forb(m − 1, F ) ≤ (m−1)2

4
+ (p − 1)((m − 1) − 2) + c. Applying Lemma 3.2, (using

6p ≥ 3
2a

max{p, r, s}) we may assume A has no doubled edges nor the forbidden triangles.
Property 1: If we have i→j and j→ k, then i → k (transitivity). This follows from the
three forbidden triangles ∆1,∆2,∆3.
Property 2: If i→ k and j → k and yet i, j are not joined by a directed edge then there
is an edge i ··0·· j. This follows from the forbidden triangle ∆7.
Property 3: If i → j and i → k and yet j, k are not joined then there is an edge j ··1·· k.
This follows from the forbidden triangle ∆8.
Property 4: If i→ j and j ··0·· k then i ··0·· k. We need the forbidden triangles ∆2,∆6,∆8.
Property 5: Symmetrically if i→ j and i ··1··k then j ··1··k. We need the forbidden triangles
∆3,∆6,∆7.

We decompose the rows into two sets M1,M2 as follows. Identify a maximal clique C1

of at least two rows such that every pair i, j ∈ C1 are joined i ··0·· j. Such a clique exists
since otherwise our matrix A is avoiding the configuration F ′ obtained from F by deleting
the column of 0’s but that yields a linear bound of (p− 1)m+ 2. In addition assume C1

has the property that there is no clique C ′ below C1, namely no clique C ′ of (at least
two) rows such that every pair i, j ∈ C ′ are joined i ··0·· j and for every k ∈ C there is a
l ∈ C ′ so that there is a directed walk from k to l. Let M1 be the rows i for which there
exists a k ∈ C with a directed path from i to k. We deduce by properties 1,2,4,5 that
there are no edges i ··1·· j for i, j ∈ M1. Use the techniques of Lemma 2.1 with the edges
··0·· being considered non edges, to find a forest of indirected trees T1 on the rows M1 and
a row ordering. Alternatively, we can obtain an acyclic ordering of M1 since there are
no directed cycles (because of the transitivity and lack of 2-cycles by Lemma 3.2). Then
delete the edges implied by transitivity to obtain T1, a forest of indirected trees whose
roots are C1.

Let M2 be the remaining rows of A. We assert that for no edges k ··0·· l for k, l ∈ M2.
Assume the contrary that k ··0·· l exists. Then by the definition of M1, there are no edges
from k or l to any i ∈ C1. Let D ⊆ C1 be the i ∈ C1 for which there is either an edge
i→k or i→l. Let E ⊆ C1 be the i ∈ C1 for which there is either an edge i ··0·· k and i ··0·· l.
If D∪E = C1 then this would contradict the choice of C1 with C ′ = E∪{k, l} as a clique
below C1. Thus for some i ∈ C1, we have i ··1·· k and i ··1·· l but then this is a forbidden
triangle ∆8 or we have i ··1·· k and i ··0·· l (or vice versa) but then this is a forbidden triangle
∆7 . We conclude that there are no edges k ··0·· l for k, l ∈M2. As above, use Lemma 2.1
with ··1·· edges being considered non edges to form a forest of outdirected trees T2 on the
rows M2.

Let |M1| = m1, |M2| = m2. Using the methods of Theorem 2.2, there are at most
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m1 + 1 columns on rows M1, which do not have a
�
0
1

�
on an edge of T1. Similarly, there

are at most m2 + 1 colums on rows M2 which do not have
�
0
1

�
on an edge of T2. Hence

at most (m1 + 1)(m2 + 1) columns in A do not have a
�
0
1

�
on an edge of T1 ∪ T2. All

other columns of A have a
�
0
1

�
on an edge of T1 or T2 and so by the standard pidgeonhole

argument there are at most (p− 1)(m− 2) such columns. We may maximize this bound
(m1 + 1)(m2 + 1) + (p − 1)(m − 2) by taking m1 = bm/2c,m2 = dm/2e and we get the
bound.

To reduce c to 0 for large m, consider A = A0 as an m × n simple matrix with no
configuration F . If A0 has no triangle or doubled edge then our above argument gives the
bound with c = 0. Assume, A0 has a triangle or doubled edge. Using the arguments of
Lemma 3.2 we may delete one row and some columns to obtain an (m − 1)× n1 simple
matrix A1 with no configuration F and n1 > n − 3p. Now if A1 has no triangle or

doubled edge, then n1 ≤ (m−1)2

4
+ (p − 1)((m − 1) − 2) and then, for m ≥ 6p we have

n ≤ m2

4
+ (p − 1)(m − 2). If A1 has a triangle or a doubled edge, then we can delete

one row and some columns to obtain a simple (m − 2) × n2 matrix A2, and we repeat
as for A1. Either we will have shown the bound for m with c = 0 or we will obtain
an (m − k) × nk simple matrix Ak with no configuration F and nk > n − 3kp. Assume

n > m2

4
+(p−1)(m−2). We have for Ak that n−3kp < nk ≤ (m−k)2

4
+(p−1)((m−k)−2)+c

by induction. We combine to get

m < 2(2p+ 1 +
c

k
+
k

4
).

Taking k = 2
√
c we get m < 2(

√
c + 2p + 1) = m0. Hence we can assume c = 0 for

m ≥ m0.
We construct a simple m-rowed matrix avoiding F as follows. Let m1 =

⌊
m
2

⌋
,m2 =

m − m1, l1 =
⌊√

p− 1
⌋
, l2 =

⌊
p−1
l1

⌋
. The graph on the upper m1 rows of A where we

eliminate directed edges implied by transitivity will consist of disjoint paths of length l1
(and one of r1) and on the lower m2 rows, disjoint paths of length l2 (and one of r2).
Define the l × l matrices

K1,l =


0

0 1’s

0’s . . .

0

 and K2,l =


1

1 1’s

0’s . . .

1

.
There are no

�
0
1

�
submatrices in K1,l and K2,l. There are no → edges between upper

and lower rows of these matrices. We use these blocks to obtain the m1 × (m1 + 1) and
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m2 × (m2 + 1) matrices

Ku =


K1,l1 1

K1,l1 1’s 1
. . .

...
1’s K1,l1 1

K1,r1 1

 , Kd =


K2,l2 0

K2,l2 0’s 0
. . .

...
0’s K2,l2 0

K2,r2 0

,

where r1 and r2 are the integer remainders in dividing m1 and m2 by l1 and l2 respectively.
Note that Ku has no

�
0
0

�
and Ku has no

�
1
1

�

In the product
A1 = Ku ⊗Kd

we have → trees of length l1 on top and trees of length l2. The bottom rows of the K1,l

blocks on top and the top rows of the K2,l blocks on the bottom become the roots of

paths. The maximum number of
�
0
1

�
’s in a pair of rows

�
Ri
Rj

�
is l1l2 < p− 1 occurring when

both i and j are roots of paths. When i and j are not roots the maximum number is
max{(l1 − 1)l2, l1(l2 − 1)} ≤ p− 3 when p > 4.

Between two rows i < j in the same path in the top (or in the bottom) there are no�
0
1

�
’s in

�
Ri
Rj

�
. For each edge i→(i + 1) in these

⌈
m1

l1

⌉
+
⌈
m2

l2

⌉
trees, we add p− 1 columns

to our matrix to produce the matrix A so that

|A| = (m1 + 1)(m2 + 1) + (p− 1)

(
m−

⌈
m1

l1

⌉
−
⌈
m2

l2

⌉)
≥ m2

4
+ (p− 1−

√
p− 1− 1

2
)m+O(p),

since

(p− 1)

(⌈
m1

l1

⌉
+

⌈
m2

l2

⌉)
≤ p− 1

l1
m1 +

p− 1

l2
m2 + 2(p− 1)

≤ (l1 + 2)m1 + (
√
p− 1)m2 + 2(p− 1)

≤ (
√
p− 1 + 1)m+ 2(p− 1).

Let U1, U2 be m1 rowed matrices consisting of columns with a single O. U1 includes the

m1 −
⌈
m1

l1

⌉
columns not in Ku. U2 consists of p − 1 such columns chosen from Ku (here

we need m > 4(p− 1)3/2). Similarly let D1, D2 be the corresponding m2 rowed matrices
of columns with a single 1 with D1 being from those not in Kd and D2 being p− 1 chosen
from Kd. We then have

A = [A,U1 ⊗D2, U2 ⊗D1] .

With p > 4 and m > 4(p − 1)3/2,
⌈
m2

l2

⌉
> m

2(
√
p−1+2)

≥ p − 1, so that we obtain enough

columns from Ku and Kd. We add no more that two
�
0
1

�
’s to each

�
Ri
Rj

�
, where i, j are
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rows from the top and bottom, respectively, without both being roots. The count never
exceeds p− 3 + 2 = p− 1.

An exact bound is possible for p = 2, improving on a result in [4].

Theorem 3.4 For F =[ 0 0 0 1 1 1
0 1 1 0 0 1 ]

forb(m,F ) = bm
2

4
c+m+ 1

Proof: The construction can be found as Configuration 5 in [4]. We can tighten the
proof found there by seeking copies of K2. Let A be an m× (bm2

4
c+m+ 2) simple matrix

with no F . Since forb(m,K2) = m+ 1, on the first m+ 2 columns we can find a copy of

K2, say on rows i, j, and deduce that either i
j

�
0
1

�
or i

j

�
1
0

�
occurs just once in A in rows i, j.

Set aside the column of A that that has the single occurence and repeat on the remaining
columns which can be done if there are at least m+ 2 columns left. Note that we can no
longer find K2 on rows i, j after the deletion. We will have set aside bm2

4
c + 1 columns.

Form a graph G on the rows by joining i, j if we selected a K2 on those rows. Thus G has
bm2

4
c+ 1 edges. Following the proof in [4] we can verify that the graph has no triangles.

By Turán’s bound, the number of edges is at most bm2

4
c and this contradiction proves the

bound.

The following result shows some promise for obtaining exact bounds for all 2× l F .

Theorem 3.5 Let

Fpq =[
r︷ ︸︸ ︷

0 · · · 0
0 · · · 0

p︷ ︸︸ ︷
0 0 · · · 0
1 1 · · · 1

q︷ ︸︸ ︷
1 1 · · · 1
0 0 · · · 0

s︷ ︸︸ ︷
1 1 · · ·1
1 1 · · ·1 ]

with p < q. If forb(m,Fpp) ≤ am2 + bm + c for 0 < a, b, then for m > q/a + a/2, there
exists a c′ ≥ c so that

forb(m,Fpq) ≤ am2 + bm+ c′.

There exists an m0 so that for m > m0 we can replace c′ by c.

Proof: Following in the spirit of Lemma 3.2 we show that forb(m,Fpq) ≤ am2 +bm+c′

by induction on m. We establish the base cases for m ≤ q/a + a/2 by choosing c′ large
enough. If A is a simple m × am2 + bm + c′ + 1 matrix with no Fpq, then A contains
a configuration Fpp say on rows 1,2. We deduce that A has at most 2(q − 1) columns

with the configuration

[
0
1

]
in rows 1,2 and so we could delete row 1 and at most 2(q− 1)

columns to obtain a simple matrix A′ with no Fpq. Applying induction and the fact that
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am2 + bm+ c′− (a(m− 1)2 + b(m− 1) + c′ > 2(q− 1) for m > q/a+ a/2, we deduce that
A′ has Fpq, a contradiction. Thus for all m

forb(m,Fpq) ≤ am2 + bm+ c′.

To establish c′ = c form large, we assume c′ > c and let A be an m×am2+bm+c+1 simple
matrix with no Fpq. Thus A contains Fpp, say on rows 1,2. As above, we can delete row 1
and at most 2(q−1) columns to obtain a simple matrix A′. But, am2+bm+c+1−2(q−1) >
a(m− 1)2 + b(m− 1) + c′ for m > (2q− 3 + a2 + c′− c− b)/2a = m0. Hence for m > m0,
A′ has Fpq, a contradiction. Hence we may choose c′ = c for m > m0.

Theorem 3.6 Let

F = [
r︷ ︸︸ ︷

0 . . . 0
0 . . . 0

p︷ ︸︸ ︷
1 . . . 1
0 . . . 0

p︷ ︸︸ ︷
0 . . . 0
1 . . . 1

s︷ ︸︸ ︷
1 . . . 1
1 . . . 1 ] with r, p, s ≥ 2, r ≥ s

then forb(m,F ) ≤ (r − 1)m2/2 + O(m). Moreover for m > p and r, s ≥ 3, we have
limp→∞ forb(m,F )/m2 = (r − 1)/2.

Proof: We use induction on r. We first consider the case r = 2 and follow the proof
technique for Theorem 3.3. Let A be a matrix with no configuration F . Obtain the
decomposition M1 and M2 as well as forests T1 and T2. As before, with |M1| = m1,

|M2| = m2, we find that there are at most (m1 + 1)(m2 + 1) columns with no i
j

�
0
1

�
on an

edge i→j of T1 or T2, or
�
0
0

�
on an edge i ··0·· j with i, j ∈M1 or

�
1
1

�
on an edge i ··1·· j with

i, j ∈M2. There are at most (p−1)(m1−1+m2−1)+
(
m1

2

)
+
(
m2

2

)
other columns before we

violate the definition of our edges. Note that (m1 +1)(m2 +1)+
(
m1

2

)
+
(
m2

2

)
= m2

2
+O(m)

using m1 +m2 = m. The result now follows.
For general r > 3, consider the smaller matrix

F ′ = [
r−1︷ ︸︸ ︷

0 . . . 0
0 . . . 0

p︷ ︸︸ ︷
1 . . . 1
0 . . . 0

p︷ ︸︸ ︷
0 . . . 0
1 . . . 1

r−1︷ ︸︸ ︷
1 . . . 1
1 . . . 1 ].

In the first forb(m,F ′) columns we can find a copy of F ′, say in rows i, j. Then there are

either at most r − 1
�
0
0

�
’s or at most r − 1

�
1
1

�
’s in rows i, j. In the former case, remove

a column with
�
0
0

�
in rows i, j and in the latter case a column with

�
1
1

�
. Now rows i, j do

not contain F ′. Thus after
(
m
2

)
deletions we must stop. Hence

forb(m,F ) ≤ forb(m,F ′) +

(
m

2

)
.

The result follows by induction.
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A construction of an m-rowed matrix proves the second conclusion. We start with a
division of the matrix into a set of m1 rows on top and a disjoint set of m2 rows on the
bottom. We start with [Km1

m1
, Km1−1

m1
]⊗[K0

m2
, K1

m2
] and then add the columns Km1−2

m1
⊗K0

m2

and Km1
m1
⊗Km2−2

m2
for a total of

(m1 + 1)(m2 + 1) +

(
m1

2

)
+

(
m2

2

)
=
m2 +m+ 2

2

distinct columns. The trees at the top and bottom will consist of single vertices. At this
stage there is a single

�
0
1

�
in each pair of rows

�
Ri
Rj

�
where Ri is a row at the top, R2 is

a row at the bottom. We now add more columns containing r − 2 copies of Km1−2
m1

at
the top but with entries at the bottom chosen from Im2 so the columns are distinct and

we get no more than p − 1
�
0
1

�
’s in each pair of rows one from the top and one from the

bottom. This gives r − 1
�
0
0

�
’s in each pair of rows from the top and hence avoids F .

For a column with 0’s in the top rows i and j (in the top m1 rows) in the kth additional
copy of Km1−2

m1
we choose the bottom 0’s apart from a 1 in the i+j+(k−1)m1(modm2)-th

entry. With m2 =
⌈

(r−2)m
p−2

⌉
and m1 < m, this ensures that we do not get more than p− 2

additional
�
0
1

�
’s between a row at the top and a row at the bottom.

We now add columns which have 1’s in the top rows and different entries chosen from
K3
m2

so that we add the maximum number of columns without obtaining more than s− 1�
1
1

�
’s in each pair of rows from the bottom. This is a design problem; the number of extra

columns of this form is approximately s−2
3

(
m2

2

)
.

The number of columns in this matrix is then approximately

m2 +m+ 2

2
+ (r − 2)

(
m1

2

)
+
s− 2

3

(
m2

2

)
.

As p increases, m1 = m −m2 = b (p−r)m
p−2
c approaches m, so that the coefficient of m2 in

this expression approaches (r − 1)m2/2.

4 A new bound for copies of the identity

For an m × n matrix A, let t · A denote the m × tn matrix obtained from t copies of A
(this notation is ambiguous but in this paper we will not be multiplying a matrix by a
constant). Let Ik denote the k×k identity matrix. Before this we only had forb(m, p · Ik)
to be O(mk) by Theorem 1.1.

Theorem 4.1 We have forb(m, p · Ik) = O(mk−1+ 1
k ) and forb(m, p · Ik) = Ω(mk−1).

Proof: We use induction on p noting that Theorem 1.2 gives forb(m, Ik) = O(mk−1).
LetA be anm×n simple matrix with no configuration p·Ik. Assume n > forb(m, (p−1)·Ik)
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so that A has (p − 1) · Ik on rows {i1, i2, . . . , ik}. Since A doesn’t have p · Ik, there is
some column of Ik occurring exactly p− 1 times in A. Without loss of generality we may
assume that the column has 0’s in rows i1, i2, . . . , ik−1 and a 1 in row ik. We call the set
of p− 1 columns of A with 0’s in rows i1, i2, . . . , ik−1 and a 1 in row ik to be a special set
of columns on {i1, i2, . . . , ik}.

If we assume
n > forb(m, (p− 1) · Ik) + (p− 1)mk−1+ 1

k

we can choose mk−1+ 1
k disjoint special sets of p− 1 columns by removing them one set at

a time. Use the notation
(
X
t

)
to be all subsets of X of size t. Let [m] = {1, 2, . . . ,m}. For

S = {i1, i2, . . . ik−1} ⊆
(

[m]
k−1

)
, let aS denote the number of disjoint special sets of columns

on rows i1, i2, . . . , ik−1, j for any j i.e. special sets with 0’s in rows of S. Thus∑
S∈( [m]

k−1)

aS ≥ mk−1+ 1
k

Given aS column disjoint special sets on rows i1, i2, . . . , ik−1, j, for j ∈ {j1, j2, . . . , jaS},
then the columns will have 0’s in all rows j ∈ {j1, j2, . . . , jaS} apart from one row, because
the special sets are disjoint. Thus we get

(
aS
k

)
copies of (p− 1) · Ik inside those (p− 1)aS

columns and aS rows {j1, j2, . . . , jaS} and so we get
(
aS
k

)
new special sets columns contained

in the (p− 1)aS columns. Thus∑
S∈( [m]

k−1)

(
aS +

(
aS
k

))
≤
(
m

k

)
.

This yields a contradiction since the sum
∑

S∈( [m]
k−1)
(
aS +

(
aS
k

))
will ba minimized (by

convexity) with aS = mk−1+ 1
k /
(
m
k

)
and so

(
aS
k

)
> m. Now

∑
S∈( [m]

k−1)
(
aS
k

)
> m

(
m
k−1

)
>
(
m
k

)
.

This is a contradiction and so n ≤ forb(m, (p − 1) · Ik) + (p − 1)mk−1+ 1
k . Use induction

on p to get forb(m, p · Ik) = O(mk−1+ 1
k ).

A construction to show forb(m, p · Ik) = Ω(mk−1) is due to Füredi and Quinn [8].

We believe the truth is forb(m,F ) = Θ(mk−1).
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5 Appendix: Some Basic Linear Bounds

This appendix contains some new basic bounds for completeness. Careful counting is
employed.

Theorem 5.1 Let F = [
p︷ ︸︸ ︷

0 0 . . . 0 ]. Then for m ≥ p− 1 ≥ 1,

forb(m,F ) = 1 +
⌊pm

2

⌋
.

Proof: The proof uses a counting argument. We use, successively, the columns with the
smallest numbers of 0’s. The m row matrix containing the column of 1’s together with the
m columns containing a single 0 has a single 0 in each row. Adding k columns containg
two 0’s each adds an average of 2k

m
0’s in each row. We must have

1 +
2k

m
≤ p− 1,

or,

k ≤ (p− 2)m

2
,
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for the matrix not to contain F . The number of columns is

1 +m+ k ≤ 1 +
⌊pm

2

⌋
.

With m ≥ p − 1 there are a sufficient number of distinct columns with only two 0’s to
give a simple m× (1 +

⌊
pm
2

⌋
) with no configuration F.

Corollary 5.2 Let F be as above and F1 = [
p︷ ︸︸ ︷

0 0 . . . 0

q︷ ︸︸ ︷
1 1 . . . 1 ] with q ≤ p. Then

for m ≥ p− 1 ≥ 1,

forb(m,F1) = forb(m,F ) = 1 +
⌊pm

2

⌋
.

Proof: Let A be a simple m×n matrix with no configuration F1. Each row of A has either
fewer than p 0’s or fewer than q 1’s. If we take the (0,1)-complements of the rows which
have fewer than q 1’s, we obtain a simple matrix which has fewer than p 0’s in every row.
Thus

forb(m,F1) ≤ forb(m,F ).

The reverse inequality is clear.

We use a counting argument as well to establish the following theorem.

Theorem 5.3 Let F = [
p︷ ︸︸ ︷

0 0 . . . 0
1 1 . . . 1 ] . Then, for m ≥

⌈
p+ 1

2

⌉
and p ≥ 3,

2 +

⌊
(p+ 1)m

2

⌋
≤ forb(m,F ) ≤ 2 +

⌊
(p+ 1)m

2
+
p− 3

2
+
p− 3

m− 2

⌋
.

Proof: We construct a matrix of m rows starting first with the 0’s column, the 1’s col-
umn, the identity and the reverse of the identity. With these we have the configuration�

0 0 1 1
1 1 0 0

�
in each pair of rows, with the other entries either

�
0
0

�
’s or

�
1
1

�
’s. We can

add the configuration F ′ =

[
p−3︷ ︸︸ ︷

0 . . . 0
1 . . . 1

p−3︷ ︸︸ ︷
1 . . . 1
0 . . . 0 ] to each pair of rows without obtaining the configuration F . Each

of the columns containing either exactly two 0’s or exactly two 1’s will contribute 2(m−2)�
0
1

�
configurations to the

(
m
2

)
pairs of rows, with columns containing more that two 1’s

and more than two 0’s contributing more. If we add k additional distinct columns without
obtaining F , we must therefore have

2(m− 2)k ≤ 2(p− 3)

(
m
2

)
.
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The number of columns in our matrix is then

2 + 2m+ k ≤ 2 + 2m+

(
p− 3

m− 2

)(
m(m− 1)

2

)
= 2 +

(p+ 1)m

2
+
p− 3

2
+
p− 3

m− 2
,

giving the inequality on the right.

To prove the first inequality, we construct a matrix as before, starting with the 0’s column,
the 1’s column, the identity and the reverse of the identity.
Case 1 (m ≥ p− 2): We add b(p− 3)m/2c distinct columns with exactly two 0’s without
adding more than p− 3 zeros to each row and hence no more than the allowed matrix F ′.
Thus

2 + 2m+

⌊
(p− 3)

2

⌋
= 2 +

⌊
(p+ 1)

2

⌋
≤ forb(m,F ).

Case 2 ((p + 1)/2 ≤ m < p− 2): We first add all of the
(
m
2

)
distinct columns containing

two 0’s. These add m − 2
�
0 1
1 0

�
configurations to each pair of rows. We can then add

b(p−m− 1)m/2c columns with two 1’s without adding more than (p− 3− (m− 2)) 1’s
to each row. These (p−m− 1)m/2 +m(m− 1)/2 = (p− 2)m/2 added columns will not
have the configuration F ′. Thus, for this case,

2 + 2m+

⌊
(p− 2)

2

⌋
= 2 +

⌊
(p+ 2)

2

⌋
≤ forb(m,F ),

which is actually a better lower bound.

Corollary 5.4 For F as above and m = p − 1 or m = (p + 1)/2 with p odd the upper
bound is achieved.

Proof: In the first case the columns which contain exactly two 0’s have precisely the
configuration F ′ with other entries being

�
0
0

�
’s or

�
1
1

�
’s in each pair of rows. In the second

case, the columns containing exactly two 0’s along with their complements have the same
composition for each pair of rows.
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