
Small Forwarding Tables for Fast Routing Lookups

Mikael Degermark,2 Andrej Brodnik,3 Svante Carlsson,2 and Stephen Pink 2 4

micke@cdt.luth.se, Andrej.Brodnik@IMFM.Uni-Lj.SI, svante@sm.luth.se, steve@sics.se

Department of Computer Science and Electrical Engineering

Lule�a University of Technology

S-971 87 Lule�a, Sweden

Abstract

For some time, the networking community has assumed

that it is impossible to do IP routing lookups in soft-

ware fast enough to support gigabit speeds. IP routing

lookups must �nd the routing entry with the longest

matching pre�x, a task that has been thought to require

hardware support at lookup frequencies of millions per

second.

We present a forwarding table data structure de-

signed for quick routing lookups. Forwarding tables are

small enough to �t in the cache of a conventional general

purpose processor. With the table in cache, a 200 MHz

Pentium Pro or a 333 MHz Alpha 21164 can perform a

few million lookups per second. This means that it is

feasible to do a full routing lookup for each IP packet

at gigabit speeds without special hardware.

The forwarding tables are very small, a large routing

table with 40,000 routing entries can be compacted to a

forwarding table of 150{160 Kbytes. A lookup typically

requires less than 100 instructions on an Alpha, using

eight memory references accessing a total of 14 bytes.

1 Introduction

For some time, the networking community has assumed

that it is impossible to do full IP routing lookups in soft-

ware running on general purpose microprocessors fast

2With the Centre for Distance-spanning Technology (CDT),
Lule�a, Sweden.

3Also at the Department of Theoretical Computer Science, In-

stitute of Mathematics, Physics, and Mechanics, Jadranska 19,
1111 Ljubljana, Slovenia.

4Also at the Swedish Institute of Computer Science, PO box
1263, S-164 28 Kista, Sweden.

enough to support routing at gigabit speeds. In fact,

some believe that IP routing lookups cannot be done

quickly at low cost in hardware [23].

We present a forwarding table that allows fast IP

routing lookups in software. Pessimistic calculations

based on experimental data show that Pentium Pro and

Alpha 21164 processors can do at least two million full

IP routing lookups per second. No tra�c locality is

assumed.

IP routers do a routing lookup in a routing table to

determine where IP datagrams are to be forwarded. The

result of the operation is the next hop on the path to-

wards the destination. An entry in a routing table is

conceptually an arbitrary length pre�x with associated

next-hop information. Routing lookups must �nd the

routing entry with the longest matching pre�x.

The belief that IP routing lookups are inherently

slow and complex operations has lead to a prolifera-

tion of techniques to avoid doing them. Various link

layer switching technologies below IP, IP layer bypass

methods [15, 19, 20] and the development of alternative

network layers based on virtual circuit technologies such

as ATM, are, to some degree, results of a wish to avoid

IP routing lookups.

The use of switching link layers and ow or tag

switching architectures below the IP level adds complex-

ity and redundancy to the network. Link layer switching

and IP layer routing perform the same functions, so it

would be simpler to have only one of these in the net-

work.

Most current IP router designs use caching tech-

niques where the routing entries of the most recently

used destination addresses are kept in a cache. The

technique relies on there being enough locality in the

tra�c so that the cache hit rate is su�ciently high and

the cost of a routing lookup is amortized over several

packets. These caching methods have worked well in

the past. However, as the current rapid growth of the

Internet increases the required size of address caches,

hardware caches might become uneconomical.

Forwarding Engine

Forwarding Engine

Forwarding Engine

Switching
Fabric

Network
Processor

Interface

Interface

Interface

Figure 1: Router design with forwarding engines

Traditional implementations of routing tables use a

version of Patricia trees [13], a data structure invented

almost thirty years ago, with modi�cations for longest

pre�x matching. By applying modern results in algo-

rithm theory, routing lookup performance can be im-

proved by orders of magnitude compared to Patricia

trees.

A straightforward implementation of Patricia trees

for routing lookup purposes, for example in the NetBSD

1.2 implementation, uses 24 bytes for leaves and inter-

nal nodes. With 40,000 entries, the tree structure alone

is almost 2 megabytes, and in a perfectly balanced tree

15 or 16 nodes must be traversed to �nd a routing en-

try. In some cases, due to the longest matching pre-

�x rule, additional nodes need to be traversed to �nd

the proper routing information as it is not guaranteed

that the initial search will �nd the proper leaf. There

are optimizations that can reduce the size of a Patri-

cia tree and improve lookup speeds. Nevertheless, the

data structure is large and too many expensive memory

references are needed to search it. In short, Internet

routing tables were too large to �t into on-chip caches

and o�-chip memory references onto DRAMs are too

slow to support gigabit routing speeds.

In the rest of this paper we present a data struc-

ture that can represent large routing tables in a very

compact form and can be searched quickly using few

memory references. For the largest routing tables we

have found at key interconnection points in the Internet

[21, 22], the data structure is 150 { 160 Kbytes. That

is small enough to �t entirely in the secondary cache of

Pentium Pro processors, and to almost �t in the sec-

ondary cache of Alpha 21164 processors. A lookup with

an Alpha processor typically requires less than 100 in-

structions, uses eight memory references, and accesses a

total of 14 bytes. In the worst case, where the pre�x is

longer than 28 bits (very rare), an additional 50 instruc-

tions, four memory references, and 7 bytes are needed.

With the data structure in secondary cache, both Al-

pha and Pentium Pro processors can do more than two

Switching
Fabric

Network
Processor

Interface

Interface

Interface

Interface

Interface

Interface

Figure 2: Router design with processing power on interfaces

million routing lookups per second. With a packet size

of 1000 bits (125 bytes), that is equivalent to more than

2 Gbit/s.

2 Routing and forwarding tables

A router design is schematically shown in Figure 1. A

number of network interfaces, forwarding engines, and a

network processor are interconnected with a switching

fabric. Inbound interfaces send packet headers to the

forwarding engines through the switching fabric. The

forwarding engines in turn determine which outgoing

interface the packet should be sent to. This information

is sent back to the inbound interface, which forwards

the packet to the outbound interface. The only task of

a forwarding engine is to process packet headers. All

other tasks such as participating in routing protocols,

resource reservation, handling packets that need extra

attention, and other administrative duties, are handled

by the network processor. The BBN Multigigabit router

[17] is an example of this design.

Another router design is shown in Figure 2. Here,

processing elements in the inbound interface decide

to which outbound interface packets should be sent.

The GRF routers from Ascend communications, for in-

stance, use this design.

The forwarding engines in Figure 1 and the process-

ing elements in Figure 2 uses a local version of the rout-

ing table, a forwarding table, downloaded from the net-

work processor to make their routing decisions. It is

not necessary to download a new forwarding table for

each routing update. Routing updates can be frequent

but since routing protocols need time in the order of

minutes to converge, forwarding tables can grow a little

stale and need not change more than at most once per

second [6].

The network processor needs a dynamic routing table

designed for fast updates and fast generation of forward-

ing tables. The forwarding tables, on the other hand,

can be optimized for lookup speed and need not be dy-

namic.

3 Design goals and parameters

When designing the data structure used in the forward-

ing table, the primary goal was to minimize lookup time.

To reach that goal, we simultaneously minimize two pa-

rameters;

� the number of memory accesses required during

lookup, and

� the size of the data structure.

Reducing the number of memory accesses required dur-

ing a lookup is important because memory accesses are

relatively slow and usually the bottleneck of lookup

procedures. If the data structure can be made small

enough, it can �t entirely in the cache of a conventional

microprocessor. This means that memory accesses will

be orders of magnitude faster than if the data structure

needs to reside in memory consisting of relatively slow

DRAM, as is the case for Patricia trees.

If the forwarding table does not �t entirely in the

cache, it is still bene�cial if a large fraction of the table

can reside in cache. Locality in tra�c patterns will keep

the most frequently used pieces of the data structure in

cache, so that most lookups will be fast. Moreover, it

becomes feasible to use fast SRAM for the small amount

of needed external memory. SRAM is expensive, and

more expensive the faster it is. For a given cost, the

SRAM can be faster if less is needed.

As secondary design goals, the data structure should

� need few instructions during lookup, and

� keep the entities naturally aligned as much as pos-

sible to avoid expensive instructions and cumber-

some bit-extraction operations.

These goals have a second-order e�ect on the perfor-

mance of the data structure.

To determine quantitative design parameters for the

data structure, we have investigated a number of large

routing tables (see section 5). In these tables there

are fairly few distinct next-hops, less than 60 distinct

next-hops in tables consisting of up to 40,000 routing

entries. If next-hops are identical, the rest of the rout-

ing information is also the same, and thus all routing

entries specifying the same next-hop can share routing

information. The number of distinct next-hops in the

routing table of a router is limited by the number of

other routers or hosts that can be reached in one hop,

so it is not surprising that these numbers can be small

even for large backbone routers. However, if a router

is connected to, for instance, a large ATM network, the

number of next-hops can be much higher.

The forwarding table data structure is designed to ac-

commodate 214 or 16K di�erent next-hops. This should

be su�cient for most cases. If there are fewer than 256

distinct next-hops, so that an index into the next-hop

table can be stored in a single byte, the forwarding ta-

bles described here can be modi�ed to occupy consider-

ably less space.

4 The data structure

The forwarding table is essentially a tree with three lev-

els. Searching one level requires one to four memory ac-

cesses. Consequently, the maximumnumber of memory

accesses is twelve. However, with the routing tables we

have tried, the vast majority of lookups requires search-

ing one or two levels only, so the most likely number of

memory accesses is eight or less.

depth 32

2 leaves (IP addresses)32

Figure 3: Binary tree spanning the entire IP address space.

For the purpose of understanding the data structure,

imagine a binary tree that spans the entire IP address

space (Figure 3). Its height is 32, and the number of

leaves is 232, one for each possible IP address. The pre�x

of a routing table entry de�nes a path in the tree ending

in some node. All IP addresses (leaves) in the subtree

rooted at that node should be routed according to that

routing entry. In this manner each routing table entry

de�nes a range of IP addresses with identical routing

information.

If several routing entries cover the same IP address,

the rule of the longest match is applied; it states that for

a given IP address, the routing entry with the longest

matching pre�x should be used. This situation is illus-

trated in Figure 4; the routing entry e1 is hidden by e2

for addresses in the range r.

r

e2
e1

Figure 4: Routing entries de�ning ranges of IP addresses.

The forwarding table is a representation of the binary

tree spanned by all routing entries. This is called the

pre�x tree. We require that the pre�x tree is complete,

i.e., that each node in the tree has either two or no

children. Nodes with a single child must be expanded

to have two children; the children added in this way

are always leaves, and their next-hop information is the

same as the next-hop of the closest ancestor with next-

hop information, or the \unde�ned" next-hop if no such

ancestor exists.

Figure 5: Expanding the pre�x tree to be complete.

This procedure, illustrated in Figure 5, increases the

number of nodes in the pre�x tree, but allows building

a small forwarding table. Note that it is not needed

to actually build the pre�x tree to build the forwarding

table. We use the pre�x tree to simplify our explanation.

The forwarding table can be built during a single pass

over all routing entries.

A set of routing entries partitions the IP address

space into sets of IP addresses. The problem of �nding

the proper routing information is similar to the more

general interval set membership problem [12]. However,

in our case the intervals are de�ned by nodes in the com-

plete pre�x tree and, therefore, has properties that we

can use to obtain an even smaller data structure. For

instance, each range of IP addresses has a length that

is a power of two.

Level 1

Level 2

Level 3

16

24

Figure 6: The three levels of the data structure.

As shown in Figure 6, level one of the data structure

covers the pre�x tree down to depth 16, level two covers

depths 17 to 24, and level three depths 25 to 32. Wher-

ever a part of the pre�x tree extends below level 16, a

level two chunk describes that part of the tree. Simi-

larly, chunks at level three describe parts of the pre�x

tree that are deeper than 24. The result of searching

one level of the data structure is either an index into

the next-hop table or an index into an array of chunks

for the next level.

4.1 Core result

Our core result is that we can represent a complete bi-

nary tree of height h using only one bit per possible leaf

at depth h, plus one base index per 64 possible leafs,

plus the information stored in the leaves. For h > 6,

the size in bytes of a tree with l leaves holding informa-

tion of size d is

2h�3 + b� 2h�6 + l � d (1)

where b is the size of a base index. With two-byte base

indices, a tree of height 8 (a chunk) requires 40 bytes

plus leaf information, and a tree of height 16 requires

10 Kbytes plus leaf information.

To achieve these small sizes, an additional 5408 byte

table is needed. The table can be made smaller, 1352

bytes, but then typical processors will need more in-

structions when using it.

4.2 Level 1 of the data structure

The �rst level is essentially a tree node with 1 { 64K

children. It covers the pre�x tree down to depth 16.

Imagine a cut through the pre�x tree at depth 16.

The cut is represented by a bit-vector, with one bit

per possible node at depth 16. 216 bits = 64Kbits =

8 Kbytes are required for this. To �nd the bit corre-

sponding to the initial part of an IP address, the upper

16 bits of the address is used as an index into the bit-

vector.

Heads. When there is a node in the pre�x tree at

depth 16, the corresponding bit in the vector is set.

Also, when the tree has a leaf at a depth less than 16,

the lowest bit in the interval covered by that leaf is set.

All other bits are zero. A bit in the bit vector can thus

be

� a one representing that the pre�x tree continues

below the cut; a root head (bits 6, 12 and 13 in

Figure 7), or

� a one representing a leaf at depth 16 or less; a gen-

uine head (bits 0, 4, 7, 8, 14 and 15 in Figure 7),

or

� zero, which means that this value is a member of

a range covered by a leaf at a depth less than 16

(bits 1, 2, 3, 5, 9, 10 and 11 in Figure 7). Members

have the same next-hop as the largest head smaller

than the member.

The bit-vector is divided into bit-masks of length 16.

There are 212 = 4096 of those.

Head information. For genuine heads we need to

store an index into the next-hop table. Members will

use the same next-hop as the largest head smaller than

the member. For root heads, we need to store an index

1 0 0 00 0 0 01 1 1 1 1 1 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

depth 16

Figure 7: Part of cut with corresponding bit-vector

1000000010000000 10000000101010001011100010001010 1000000000000000

0 3 10 11 0

0 1 2 3 4

1000100010000000

0 13

Code word array:

Base index array:

r1 r2 r3 r4 r5

0 1

Figure 8: Bit-masks vs code words and base indices.

to the level two chunk that represents the corresponding

subtree.

The head information is encoded in 16-bit pointers

stored consecutively in an array. Two bits of each

pointer encode what kind of pointer it is, and the 14

remaining bits either form an index into the next-hop

table or an index into an array containing level two

chunks. Note that there are as many pointers associ-

ated with a bit-mask as its number of set bits.

Finding pointer groups. Figure 8 is an illustra-

tion of how the data structure for �nding pointers corre-

sponds to the bit-masks. The data structure consists of

an array of code words, as many as there are bit-masks,

plus an array of base indices, one per four code words.

The code words consists of a 10-bit value (r1; r2;: : :)

and a 6-bit o�set (0; 3; 10; 11;: : :).

The �rst bit-mask in Figure 8 has three set bits. The

second code word thus has an o�set of three because

three pointers must be skipped over to �nd the �rst

pointer associated with that bit-mask. The second bit-

mask has 7 set bits and consequently the o�set in the

third code word is 3 + 7 = 10.

After four code words, the o�set value might be too

large to represent with 6 bits. Therefore, a base index is

used together with the o�set to �nd a group of pointers.

There can be at most 64K pointers in level 1 of the data

structure, so the base indices need to be at most 16 bits

(216 = 64K). In Figure 8, the second base index is 13

because there are 13 set bits in the �rst four bit-masks.

This explains how a group of pointers is located. The

�rst 12 bits of the IP address are an index to the proper

code word, and the �rst 10 bits are an index to the array

of base indices.

Maptable. It remains to explain how to �nd the

correct pointer in the group of pointers. This is what

the 10-bit value is for (r1; r2;: : :in Figure 8). The value

is an index into a table that maps bit-numbers in the

IP address to pointer o�sets. Since the bit-masks are

16 bits long, one might think that the table needs 64K

entries. However, bit-masks are generated from a com-

plete pre�x tree, so not all combinations of the 16 bits

are possible.

A non-zero bit-mask of length 2n can be any combi-

nation of two bit-masks of length n or the bit-mask with

value 1. Let a(n) be the number of possible non-zero

bit-masks of length 2n. a(n) is de�ned by the recurrence

a(0) = 1; a(n) = 1 + a(n� 1)
2

(2)

The number of possible bit-masks with length 16 are

thus a(4) + 1 = 678, the additional one is because the

bit-mask can be zero. An index into a table with an

entry for each bit-mask thus only needs 10 bits.

We keep such a table, maptable, to map bit numbers

within a bit-mask to 4-bit o�sets. The o�set speci�es

how many pointers to skip over to �nd the wanted one,

so it is equal to the number of set bits smaller than the

bit index. These o�sets are the same for all forwarding

tables, regardless of what values the pointers happen to

have. Maptable is constant, it is generated once and for

all.

Searching. The steps in Figure 10 are required to

search the �rst level of the data structure; the array of

10 2 4 16
031

pix := ++ ; 0

codeword
code:

base:

675
maptable:0 21 154

six ten

. . .

ix

bix bit

IP address

Figure 9: Finding the pointer index.

code words is called code, and the array of base indices

is called base. Figure 9 illustrates the procedure. The

ix := high 12 bits of IP address

bix := high 10 bits of IP address

bit := low 4 of high 16 bits of IP address

codeword := code[ix]

ten := ten bits from codeword

six := six bits from codeword

pix := base[bix] + six + maptable[ten][bit]

pointer := level1_pointers[pix]

Figure 10: Steps to search the �rst level

index of the code word, ix, the index of the base index,

bix, and the bit number, bit, are �rst extracted from

the IP address. Then the code word is retrieved and its

two parts are extracted into ten and six. The pointer

index, pix, is then obtained by adding the base index,

the 6-bit o�set six, and the pointer o�set obtained by

retrieving column bit from row ten of maptable. After

the pointer is retrieved from the pointer array, it will be

examined to determine if the next-hop has been found

or if the search should continue on the next level.

The code is extremely simple. A few bit extractions,

array references, and additions is all that is needed. No

multiplication or division instructions are required ex-

cept for the implicit multiplications when indexing an

array.

A total of 7 bytes needs to be accessed to search the

�rst level: a two byte code word, a two byte base ad-

dress, one byte (4 bits, really) in maptable, and �nally

a two byte pointer. The size of the �rst level is 8K

bytes for the code word array, 2K bytes for the array of

base indices, plus a number of pointers. The 5.3 Kbytes

required by maptable are shared among all three levels.

4.2.1 Optimizations at level 1

When the bit-mask is zero or has a single bit set, the

pointer must be an index into the next-hop table. Such

pointers can be encoded directly into the code word and

thus maptable need not contain entries for bit-masks

one and zero. The number of maptable entries is thus

reduced to 676 (indices 0 through 675). When the ten

bits in the code word (ten above) are larger than 675,

the code word represents a direct index into the next-

hop table. The six bits from the code word are used as

the lowest 6 bits in the index, and (ten-676) are the

upper bits of the index. This encoding allows at most

(1024 � 676) � 26 = 22272 next-hop indices, which is

more than the 16K we are designing for. The optimiza-

tion eliminates three memory references when a routing

entry is located at depth 12 or higher, and reduces the

number of pointers in the pointer array considerably.

The cost is a comparison and a conditional branch.

4.3 Levels 2 and 3 of the data structure

Levels two and three of the data structure consist of

chunks. A chunk covers a subtree of height 8 and can

contain at most 28 = 256 heads. A root head in level

n� 1 points to a chunk in level n.

There are three varieties of chunks depending on how

many heads the imaginary bit-vector contains. When

there are

� 1{8 heads, the chunk is sparse and is represented

by an array of the 8-bit indices of the heads, plus

eight 16-bit pointers; a total of 24 bytes.

� 9{64 heads, the chunk is dense. It is represented

analogously with level 1, except for the number of

base indices. The di�erence is that only one base

index is needed for all 16 code words, because 6-bit

o�sets can cover all 64 pointers. A total of 34 bytes

are needed, plus 18 to 128 bytes for pointers.

� 65{256 heads, the chunk is very dense. It is repre-

sented analogously with level 1. 16 code words and

4 base indices give a total of 40 bytes. In addition

the 65 to 256 pointers require 130 to 512 bytes.

Dense and very dense chunks are searched analo-

gously with the �rst level. For sparse chunks, the 1

to 8 values are placed in decreasing order. To avoid a

bad worst-case when searching, the fourth value is ex-

amined to determine if the desired element is among

the �rst four or last four elements. After that, a linear

scan determines the index of the desired element, and

the pointer with that index can be extracted. The �rst

element less than or equal to the search key is the de-

sired element. At most 7 bytes need to be accessed to

search a sparse chunk.

4.3.1 Optimizations at levels two and three

Dense and very dense chunks are optimized analogously

with level 1 as described in section 4.2.1. In sparse

chunks, consecutive heads can be merged and repre-

sented by the smallest if their next-hops are identi-

cal. When deciding whether a chunk is sparse or dense,

this merging is taken into account so that the chunk is

deemed sparse when the number of merged heads is 8

or less. Many of the leaves that were added to make

the tree complete will occur in order and have identical

next-hops. Heads corresponding to such leaves will be

merged in sparse chunks.

This optimization shifts the chunk distribution from

the larger dense chunks towards the smaller sparse

chunks. For large tables, the size of the forwarding table

is typically decreased by 5 to 15 per cent.

4.4 Growth limitations in the current

design

The data structure can accommodate considerable

growth in the number of routing entries. There are three

limits in the current design.

1. The number of chunks of each kind is limited to

214 = 16384 per level.

Table 1 shows that this is about 16 times more than

is currently used. If the limit is ever exceeded, the

data structure can be modi�ed so that pointers are

encoded di�erently to give more room for indices,

or so that the pointer size is increased.

2. The number of pointers in levels two and three is

limited by the size of the base indices.

The current implementation uses 16-bit base in-

dices and can accommodate a growth factor of 3

to 5. If the limit is exceeded it is straightforward

to increase the size of base pointers to three bytes.

The chunk size is then increased by 3 per cent for

dense chunks and 10 per cent for very dense chunks.

Sparse chunks are not a�ected.

3. The number of distinct next-hops is limited to

214 = 16384.

If this limit is exceeded all next-hop indices cannot

be encoded directly into code words, as explained

in section 4.2.1. It is possible to avoid storing a

pointer when the bit-mask is zero. When the bit-

mask has one head, however, it is necessary that

a pointer is stored. Consequently the size of the

data structure will increase because there needs to

be one pointer per interval and pointers are larger.

To conclude, with small modi�cations the data struc-

ture can accommodate a large increase in the number

of routing entries.

5 Performance measurements

To investigate the performance of the forwarding tables,

a number of IP routing tables were collected. Internet

routing tables are currently available at the web site

for the Internet Performance Measurement and Analysis

(IPMA) project [22], and were previously made avail-

able by the now terminated Routing Arbiter project

[21]. The collected routing tables are daily snapshots

of the routing tables used at various large Internet in-

terconnection points. Some of the routing entries in

these tables contain multiple next-hops. In that case,

one of them was randomly selected as the next-hop to

use in the forwarding table.

5.1 Size of forwarding table

Table 1 shows data on forwarding tables constructed

from various routing tables. For each site, it shows

data and results for the routing table that generated the

largest forwarding table. Routing entries is the number

of routing entries in the routing table, and Next-hops

is the number of distinct next-hops found in the table.

Leaves is the number of leaves in the pre�x tree after

leaves have been added to make it complete.

Build time in Table 1 is the time required to gener-

ate the forwarding table from an in-memory binary tree

representation of the routing table. Times were mea-

sured on a 333 MHz Alpha 21164 running DEC OSF1.

Subsequent columns show the total number of sparse,

dense, and very dense chunks in the generated table fol-

lowed by the number of chunks in the lowest level of the

data structure.

It is clear from Table 1 that new forwarding tables

can be generated quickly. At a regeneration frequency

of one Hz, less than one tenth of the Alpha's capacity

is consumed. As discussed in section 2, higher regener-

ation frequencies than 1 Hz are not required.

The larger tables in Table 1 do not �t entirely in the

96 Kbyte secondary cache of the Alpha. It is feasible,

Routing next- Size Build sparse dense dense+ level 3

Site Date Year entries Leaves hops (Kb) time chunks chunks chunks chunks

Mae East Jan 9 '97 32732 58714 56 160 99 ms 1199 587 186 2

Mae East Oct 21 '96 38141 36607 50 148 91 ms 1060 593 149 4

Sprint Jan 1 '97 21797 43513 17 123 72 ms 988 483 98 3

PacBell Jan 28 '97 18308 33250 2 99 49 ms 873 357 67 0

Mae West Jan 1 '97 12049 28273 51 86 46 ms 775 312 42 3

AADS Jan 4 '97 1109 5670 12 28 11 ms 320 38 0 2

Table 1: Forwarding table generation data

Clock Primary Cache Secondary Cache Tertiary Cache

Processor cycle Size Latency Size Latency Size Latency

Alpha 21164 3 ns 8 Kbyte 6 ns 96 Kbyte 24 ns 2 Mbyte 72 ns

Pentium Pro 5 ns 8 Kbyte 10 ns 256 Kbyte 30 ns

Table 2: Processor and cache data

however, to have a small amount of very fast SRAM

in the third level cache for the pieces that do not �t

in the secondary cache, and thus reduce the cost of a

miss in the secondary cache. With locality in tra�c

patterns, most memory references would be to the sec-

ondary cache.

An interesting observation is that the size of these ta-

bles are comparable to what it would take to just store

all pre�xes in an array. For the larger tables, no more

than 5.6 bytes per pre�x is needed. More than half of

these bytes are consumed by pointers. In the Sprint ta-

ble there are 33469 pointers that require over 65 Kbytes

of storage. It is clear that further reductions of the for-

warding table size could be accomplished by reducing

the number of pointers.

5.2 Lookup performance

Our measurements of lookup speed are done on a C

function compiled with the GNU C-compiler gcc. Re-

ported times do not include the function call or the

memory access to the next-hop table. gcc generates

code that uses approximately 50 Alpha instructions to

search one level of the data structure in the worst case.

On a Pentium Pro, gcc generates code that uses 35 to

45 instructions per level in the worst case. It is conceiv-

able that better code can be obtained by hand-coding

the lookup routine in assembler; we have not tried this.

It is possible to read the current value of the clock

cycle counter on Alphas and Pentium Pros. We have

used this facility to measure lookup times with high

precision: one clock tick is 5 nanoseconds at 200 MHz

and 3 nanoseconds at 333 MHz.

Ideally, we would like to place the entire forward-

ing table in cache so lookups would be performed with

an undisturbed cache. That would emulate the cache

behavior of a dedicated forwarding engine. However,

we have access to conventional general-purpose work-

stations only and it is di�cult to control the cache con-

tents on such systems. The cache is disturbed whenever

I/O is performed, an interrupt occurs, or another pro-

cess gets to run. It is not even possible to print out

measurement data or read a new IP address from a �le

without disturbing the cache.

The best method we could devise is to perform each

lookup twice, measuring the lookup time for the sec-

ond lookup. In this way, the �rst lookup is done with

a disturbed cache and the second in a cache where all

necessary data has been forced into the primary cache

by the �rst lookup. After each pair of lookups measure-

ment data is printed out and a new address is fetched,

a procedure that again disturbs the cache.

The second lookup will perform better than lookups

in a forwarding engine because data and instructions

have moved into the primary cache closest to the pro-

cessor. To get an upper limit on the lookup time, the

additional time required for memory accesses to the sec-

ondary cache must be added to the measured times. To

test all paths through the forwarding table, lookup time

was measured for each entry in the routing table, includ-

ing the entries added by the expansion to a complete

tree.

Average lookup times can not be inferred from these

experiments because it is not likely that a realistic tra�c

mix would have a uniform probability for accessing each

routing entry. Moreover, locality in tra�c patterns will

10000

8000

6000

4000

2000

0
150100500

 clock cycles

Lookup time distribution

Figure 11: Lookup time distribution, Alpha 21164

15000

10000

5000

0
100806040200

 clock cycles

Lookup time distribution

Figure 12: Lookup time distribution, Pentium Pro

keep frequently accessed parts of the data structure in

the primary cache and, thus, reduce the average lookup

time. The performance �gures calculated below are con-

servative because it is assumed that all memory accesses

miss in the primary cache, and that the worst case ex-

ecution time will always occur. Realistic lookup speeds

would be higher.

Table 1 show that there are very few chunks in level

three of the data structure. That makes it likely that the

vast majority of lookups need to search no more than

two levels to �nd the next hop. Therefore, the addi-

tional time for memory accesses to the secondary cache

is calculated for eight instead of the worst-case twelve

memory accesses. If a signi�cant fraction of lookups

were to access those few chunks, they would migrate

into the primary cache and all twelve memory accesses

would become less expensive.

Lookup performance for Alpha 21164

The Alpha 21164 we experimented with has a clock fre-

quency of 333 MHz; one cycle takes 3 nanoseconds. Ac-

cesses to the 8 Kbyte primary data cache completes in

2 cycles and accesses to the secondary 96 Kbyte cache

requires 8 cycles. See Table 2.

Figure 11 shows the distribution of clock ticks elapsed

during the second lookup for the Alpha on the Sprint

routing table from January 1st. The fastest observed

lookups require 17 clock cycles. This is the case when

the code word in the �rst level directly encodes the in-

dex to the next-hop table. There are very few such

routing entries. However, as each such routing entry

covers many IP addresses, actual tra�c might contain

many such destination addresses. Some lookups take 22

cycles, which must be the same case as the previous.

Experiments have con�rmed that when the clock cycle

counter is read with two consecutive instructions, the

di�erence is sometimes 5 cycles instead of the expected

0.

The next spike in Figure 11 is at 41 clock cycles,

which is the case when the pointer found in the �rst

level is an index to the next-hop table. Traditional class

B addresses fall in this category. Spikes at 52{53, 57, 62,

67, and 72 ticks correspond to �nding the pointer after

examining one, two, three, four, or �ve values in a sparse

level 2 chunk. The huge spikes at 75 and 83 ticks are

because that many ticks are required to search a dense

and very dense chunk, respectively. A few observations

above 83 correspond to pointers found after searching a

sparse level 3 chunk, but we believe that most are due to

variations in execution time. Cache conicts in the sec-

ondary cache, or di�erences in the state of pipelines and

cache system before the lookup, can cause such varia-

tions. The tail of observations above 100 clock cycles

are either due to such variations or to cache misses. 300

nanoseconds should be su�cient for a lookup when all

data is in the primary cache.

The di�erence between a data access in the primary

cache and the secondary cache is 8�2 = 6 cycles. Thus,

searching two levels of the data structure in the worst

case requires 8�6 = 48 clock cycles more than indicated

by Figure 11. That means at most 100+48 = 148 cycles

or 444 nanoseconds for the worst case lookup when 2

levels are su�cient. The Alpha should thus be able to

do at least 2.2 million routing lookups per second with

the forwarding table in the secondary cache.

Lookup performance for Pentium Pro

The Pentium Pro we experimented with has a clock fre-

quency of 200 MHz; one cycle takes 5 nanoseconds. The

primary 8 Kbyte data cache has a latency of 2 cycles

and the secondary cache of 256 Kbytes has a latency of

6 cycles. See Table 2. The latency of the Pentium Pro

caches were measured using the tool lmbench [10, 11] as

we were unable to obtain this information otherwise.

Figure 12 shows the distribution of clock ticks elapsed

during the second lookup for the Pentium Pro with

the same forwarding table as in the previous section.

The sequence of instructions that fetches the clock cy-

cle counter takes 33 clock cycles. When two fetches

occur immediately after each other the counter values

di�er by 33. For this reason, all reported times have

been reduced by 33.

The fastest observed lookups are 11 clock cycles,

about the same speed as for the Alpha. The spike corre-

sponding to the case when the next-hop index is found

immediately after the �rst level occurs at 25 clock cy-

cles. The spikes corresponding to a sparse level 2 chunk

are grouped closely together in the range 36 to 40 clock

cycles. The di�erent caching structure of the Pentium

seems to deal better with linear scans than the caching

structure of the Alpha.

When the second level chunks are dense and very

dense, the lookup requires 48 and 50 cycles, respec-

tively. There are some additional irregular spikes up

to 69, above which there are very few observations. It

is clear that 69 cycles (345 nanoseconds) is su�cient to

do a lookup when all data is in the primary cache.

The di�erence in access time between the primary

and secondary cache is 20 nanoseconds (4 cycles). The

lookup time for on the Pentium Pro when two levels

need to be examined is then at worst 69 + 8 � 4 = 101

cycles or 505 nanoseconds. The Pentium Pro can do

at least 2.0 million routing lookups per second with the

forwarding table in secondary cache.

6 Scaling

The number of instructions used for lookup is indepen-

dent of the size of the forwarding table. Thus, the

number of routing entries does not a�ect lookup per-

formance as long as the forwarding table �ts in cache.

If it does not �t entirely in cache, some lookups will ac-

cess slower memory. Tra�c locality will then determine

how much average lookup performance decreases.

Forwarding table size

The table size is at least 15.3 Kbyte, because that is

what is needed for maptable and the �rst level (exclud-

ing pointers). The rest of the table size is at most linear

in the number of leaves in the pre�x tree.

The relation between the number of pre�xes and the

number of leaves in the pre�x tree is not simple. It

will depend on how pre�xes are spread out over the

address space. It is easy to construct a pre�x set that

maximizes the table size by maximizing the number of

sparse chunks. This is the worst case for the table size.

If such pre�x distributions were to become common,

however, it would be simple to introduce a new kind of

chunk that dealt better with this situation.

Because the address space is limited, it is not appro-

priate to use O()-notation to describe how forwarding

tables grow with the number of routing entries. O()-

notation is de�ned to capture the assymptotical growth.

However, when the number of pre�xes approaches the

number of possible addresses, the number of leaves in

the pre�x tree will approach the number of pre�xes as-

symptotically. Assymptotical growth is a bad indication

of how the table size increases with the number of rout-

ing entries for the table sizes we worry about.

Our experimental data indicate that, for larger ta-

bles, the table size is around 4-5 bytes per pre�x plus

the �xed cost of 15.3 Kbytes. However, the forwarding

table includes the table of next-hop information, which

increases linearly with the number of distinct next-hops.

The cost per pre�x will grow signi�cantly if most rout-

ing entries have distinct next-hops.

Table building time

The reported table building times (Table 1) are for

building the forwarding table from an in-memory pre�x

tree. We have devised a way to build the table that is

linear in the number of routing entries and in the size of

the resulting forwarding table. The table is built during

a single pass over all routing entries.

Larger addresses

With the coming of IPv6 [4, 8] it is desirable to do fast

lookups for 128-bit IPv6 addresses as well. With such

large addresses, there is a danger of inating the table

size if the address space is sparsely utilized everywhere.

However, there are techniques to adapt depths of chunks

to the density and sparsity of the pre�x tree so that a

small size can be guaranteed. To tune the data struc-

ture to the actual properties of the IPv6 address space,

a number of representative IPv6 routing tables would

have to be examined, but such tables do not yet ex-

ist. We strongly believe that small forwarding tables

and fast routing lookups are possible for IPv6 as well as

IPv4.

7 Related work

We are not aware of any substantial improvements in

the performance of software for full IP routing lookups

in recent years. However, [5] shows how to extend Pa-

tricia trees to deal better with longest matching pre�x

searches, insertions and deletions. The resulting data

structure is called dynamic pre�x tries. There are at

least as many nodes in a dynamic pre�x trie as in the

corresponding Patricia tree. Nodes contain �ve point-

ers, a bit-index, and a pre�x, so the resulting data struc-

ture is fairly large. Consequently, the lookup time is re-

ported to be between 6 and 13 microseconds when the

data structure holds 40 000 entries. However, the inser-

tion and deletion operations appear e�cient, so dynamic

pre�x tries might be a good candidate for the routing

table maintained by the network processor.

An early work on improving IP routing performance

by avoiding full routing lookups [7] found that a small

destination address cache can improve routing lookup

performance by at least 65 per cent. Less than 10 slots

was needed to get a hit rate over 90 per cent. Much

larger destination address caches are needed with the

larger tra�c intensities and number of hosts in today's

Internet; several thousand slots are necessary.

ATM avoids doing routing lookups by having a sig-

naling protocol that passes addresses to the network

during connection setup. Forwarding state, accessed by

a virtual circuit identi�er (VCI), is installed in switches

along the path of the connection during setup. ATM

cells are labeled with the VCI which can then be used

as a direct index into a table with forwarding state or

as the key to a hash function. The routing decision is

simpler for ATM. However, when packet sizes are larger

than 48 bytes, more ATM routing decisions need to be

made. When packets are large, it can be more e�cient

to make a few IP routing lookups instead of a large

number of ATM VCI lookups. If network tra�c con-

sists mostly of large packets in the future, IP will be

more e�cient.

Tag switching and ow switching [15] are two IP by-

pass methods that were originally meant to be operated

over ATM. The general idea is to let IP control link-

level ATM hardware that performs actual data forward-

ing. Special purpose protocols [14] are needed between

routers to agree on what ATM virtual circuit identi�ers

to use and which packet should use which VCI. If IP

processing was fast enough, that extra machinery would

not be needed.

Another approach with the same goal of avoiding IP

processing is taken in the IP/ATM architecture [19, 20],

where an ATM backplane connects a number of line

cards and routing cards. IP processing elements located

in the routing cards process IP headers. When a packet

stream arrives, only the �rst IP header is examined and

the later packets are routed the same way as the �rst

one. The main purpose of these shortcuts seems to be

to amortize the cost of IP processing over many packets.

Again, that would not be necessary if IP processing was

fast enough.

IP router designs can use special-purpose hardware

to do IP processing, as in the IBM router [1]. This can

be an inexible solution. Any changes in the IP format

or protocol could invalidate such designs. The exibility

of software and the rapid performance increase of gen-

eral purpose processors makes such solutions preferable.

Another hardware approach is to use CAMs to do rout-

ing lookups [9]. This is a fast but expensive solution.

BBN is currently building a pair of multi-gigabit

routers that use general purpose processors as forward-

ing engines [17]. Little information has been published

so far. The idea, however, seems to be to use Alpha pro-

cessors as forwarding engines and do all IP processing in

software. [18] shows that it is possible to do IP process-

ing in no more than 200 instructions, assuming a hit in

a route cache. Less than 100 instructions are necessary

according to [17]. The secondary cache of the Alpha

is used as a large LRU cache of destination addresses.

The scheme presumes locality in tra�c patterns. With

low locality the cache hit rate could become too low and

performance would su�er.

8 Discussion and further work

A processor in a router or forwarding engine would pre-

sumably do other IP processing than routing lookups.

However, assuming that other IP processing requires

100 instructions in the common path, Pentium Pros and

Alphas are still powerful enough to process a million IP

packets per second.

Our analysis of the performance of forwarding table

lookups is conservative. The longest observed lookup

time was used and it was assumed that memory ac-

cesses always missed in the primary cache. Even if the

access probability for routing entries was uniformly dis-

tributed, there would be several hits in the primary

cache. With locality, many accesses would be to the

primary cache and performance would increase even fur-

ther. A natural way to continue this work is to study

cache behavior using realistic packet traces. Signi�-

cantly lower average lookup times are expected.

Increased routing lookup speeds will make caching

of destination addresses less sensitive to low locality

in tra�c patterns. Designs using route caching will

be sound for much lower cache hit rates when routing

lookups are fast.

The current forwarding table sizes of around 150{160

Kbytes for the largest routing tables are still not small

enough to �t entirely in the second level cache of Alpha

21164s. The current small size and fast lookups has been

realized by applying recent work in algorithm theory

[2, 3, 16] and by careful tuning of the data structure.

There is reason to believe that this �eld of algorithm

theory will develop even further. Moreover, a number

of techniques to reduce the table size even further are

still untried. There is still hope of making forwarding

tables small enough to �t entirely in the secondary 96

Kbyte cache of Alpha 21164 processors.

This paper is focused on performing routing lookups

with general-purpose processors. It is also possible to

do routing lookups with special-purpose hardware. It

should be straightforward to implement the lookup al-

gorithm presented here in hardware. The small memory

consumption is bene�cial for hardware implementations

as well as software implementations. It is easy to see

that two of the memory accesses in Figure 7 can be

done in parallel. With pipelining, the lookup time can

be reduced to what it takes to search one level of the

data structure.

9 Conclusion

We have shown the feasibility of doing full IP routing

lookups per packet at gigabit speeds. The technique in-

volves generating a compact forwarding table that can

be searched quickly to �nd the longest matching pre�x.

No special hardware is required. Pessimistic calcula-

tions based on experimental data show that general pur-

pose processors are capable of performing several mil-

lion full IP routing lookups per second. With locality

in tra�c, lookup speeds will be even higher.

These forwarding tables can scale to accommodate

arbitrary growth in the size of routing tables. With

small modi�cations, there is practically no limit. The

solution is general. Similar techniques can be applied

to the larger addresses of IPv6.

References

[1] Abhaya Asthana, Catherine Delph, H. V. Jagadish, and
Paul Krzyzanowski. Towards a gigabit IP router. Jour-

nal of High Speed Networks, 1(4):281{288, 1993.

[2] A. Brodnik and J.I. Munro. Membership in a constant

time and a minimum space. In Proceedings 2ndEuropean

Symposium on Algorithms, volume 855 of Lecture Notes
in Computer Science, pages 72{81. Springer-Verlag,

1994.

[3] A. Brodnik and J.I. Munro. Neighbours on a grid. In

Proceedings 5thScandinavian Workshop on Algorithm

Theory, volume 1097 of Lecture Notes in Computer Sci-
ence, pages 307{320. Springer-Verlag, 1996.

[4] S. Deering and R. Hinden. Internet Protocol, Version 6
(IPv6) Speci�cation. Request for Comments (Proposed

Standard) RFC 1883, Internet Engineering Task Force,

January 1996.

[5] Willibald Doeringer, G�unter Karjoth, and Mehdi

Nassehi. Routing on longest-matching pre�xes.

IEEE/ACM Transactions on Networking, 4(1):86{97,
February 1996.

[6] Stanford University Workshop on Fast Routing and

Switching, December 1996.
http://tiny-tera.stanford.edu/Workshop Dec96/ .

[7] David C. Feldmeier. Improving gateway performance

with a routing-table cache. In Proceedings of the Con-

ference on Computer Communications (IEEE Infocom),

New Orleans, Louisiana, March 1988. IEEE.

[8] Robert Hinden. IP Next Generation Home Page.

http://playground.sun.com/pub/ipng/html/

ipng-main.html .

[9] A. J. McAuley and P. Francis. Fast routing table

lookup using CAMs. In Proceedings of the Confer-
ence on Computer Communications (IEEE Infocom),

volume 3, pages 1382{1391, San Francisco, 1993.

[10] Larry McVoy. lmbench home page.
http://reality.sgi.com/lm/lmbench/lmbench.html

.

[11] Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In USENIX Winter Confer-

ence, January 1996. Available at
http://reality.sgi.com/lm/lmbench/

lmbench-usenix.ps .

[12] K. Mehlhorn, S. N�aher, and H. Alt. A lower bound

on the complexity of the union-split-�nd problem.

SIAM Journal on Computing, 17(1):1093{1102, Decem-
ber 1988.

[13] Donald R. Morrison. PATRICIA | Practical Algo-
rithm to Retreive Information Coded In Alfanumeric.

Journal of the ACM, 15(4):514{534, October 1968.

[14] P. Newman, W. L. Edwards, R. Hinden, E. Ho�man,

F. Ching Liaw, T. Lyon, and G. Minshall. Ipsilon Flow

Management Protocol Speci�cation for IPv4, Version
1.0. Request For Comment RFC 1953, Internet Engi-

neering Task Force, May 1996.

[15] Peter Newman, Tom Lyon, and Greg Minshall. Flow

labeled IP: a connectionless approach to ATM. In Pro-

ceedings of the Conference on Computer Communica-
tions (IEEE Infocom), San Francisco, California, March

1996.

[16] S. Nilsson. Radix Sorting & Searching. PhD thesis, De-

partment of Computer Science, Lund University, 1996.

[17] C. Partridge, P. Carvey, E. Burgess, I. Castineyra,

T. Clarke, L. Graham, M. Hathaway, P. Herman,
A. King, S. Kohlami, T. Ma, T. Mendez, W. Mil-

liken, R. Osterlind, R. Pettyjohn, J. Rokosz, J. Seeger,

M. Sollins, S. Storch, B. Tober, G. Troxel, D. Waitz-
man, and S. Winterble. A �fty gigabit per second ip

router. IEEE/ACM Transactions on Networking, To

Appear.

[18] Craig Partridge. Gigabit networking. Addison-Wesley,

Reading, Massachusetts, 1993.

[19] Guru Parulkar, Douglas C. Schmidt, and Jonathan

Turner. IP/ATM: A strategy for integrating IP with
ATM. Computer Communication Review, 25(4):49{58,

October 1995. Proceedings ACM SIGCOMM '95 Con-

ference.

[20] Gurudatta Parulkar, Douglas C. Schmidt, and
Jonathan S. Turner. GIPR: a gigabit IP router. In

Proc. of Gigabit Networking Workshop, Boston, Mas-

sachusetts, April 1995.

[21] The Routing Arbiter Project. Internet routing and net-

work statistics.
http://www.ra.net/statistics/ .

[22] Michigan University and Merit Network. Internet Per-
formance Management and Analysis (IPMA) Project.

Details available at

http://nic.merit.edu/~ipma/ .

[23] Washington University Workshop on Integration of IP

and ATM, November 1996. Proceedings from session 5.
Available at

http://www.arl.wustl.edu/arl/workshops/atmip/ .

