Small gaps between primes

James Maynard

Magdalen College, Oxford

Barcelona Mathematical Days, Barcelona
November 2014

Introduction

The main problem in prime number theory is to understand the distribution of the primes.

Today we want to understand the gaps between primes.

Introduction

The main problem in prime number theory is to understand the distribution of the primes.

Today we want to understand the gaps between primes.

Theorem (prime number theorem)

$$
\#\{\text { primes } \leq x\} \approx \frac{x}{\log x}
$$

This means that for $p_{n} \leq x$, the average gap $p_{n+1}-p_{n} \approx \log x$, so the primes get sparser.

Introduction

The main problem in prime number theory is to understand the distribution of the primes.

Today we want to understand the gaps between primes.

Theorem (prime number theorem)

$$
\#\{\text { primes } \leq x\} \approx \frac{x}{\log x}
$$

This means that for $p_{n} \leq x$, the average gap $p_{n+1}-p_{n} \approx \log x$, so the primes get sparser.

Question

Are prime gaps always this big?

Introduction II

Question

Are prime gaps always this big?

- $(2,3)$ is the only pair of primes which differ by 1 . (One of n and $n+1$ is a multiple of 2 for every integer n).
- There are lots of pairs of primes which differ by 2 :
$(3,5),(5,7),(11,13), \ldots,(1031,1033), \ldots$,
(1000037, 1000039), ..., (1000000007, 1000000009), ...

Introduction II

Question

Are prime gaps always this big?

- $(2,3)$ is the only pair of primes which differ by 1 . (One of n and $n+1$ is a multiple of 2 for every integer n).
- There are lots of pairs of primes which differ by 2 :
$(3,5),(5,7),(11,13), \ldots,(1031,1033), \ldots$, (1000037, 1000039), ..., (1000000007, 1000000009), ...

Conjecture (Twin prime conjecture)

There are infinitely many pairs of primes $\left(p, p^{\prime}\right)$ which differ by 2.
As we all know, this is one of the oldest problems in mathematics, and is very much open!

Introduction III

More generally, we can look for triples (or more) of primes.

- $(2,3,5),(2,3,7),(2,5,7),(3,5,7)$ are the only triples contained in an interval of length 5 .
(At least one of $n, n+2, n+4$ is a multiple of 3 .)
- There are lots of triples of primes in an interval of length 6. $(5,7,11),(11,13,17), \ldots,(1091,1093,1097), \ldots$, (1000033, 1000037, 1000039), ...

Introduction III

More generally, we can look for triples (or more) of primes.

- $(2,3,5),(2,3,7),(2,5,7),(3,5,7)$ are the only triples contained in an interval of length 5 .
(At least one of $n, n+2, n+4$ is a multiple of 3 .)
- There are lots of triples of primes in an interval of length 6. $(5,7,11),(11,13,17), \ldots,(1091,1093,1097), \ldots$, (1000033, 1000037, 1000039), ...
- All such triples are of the form ($n, n+2, n+6$) or ($n, n+4, n+6$), and we find lots of both types.
- In fact, we find lots of triples $\left(n, n+h_{1}, n+h_{2}\right)$ if one of the triple doesn't have to be a multiple of 2 or 3.

It is natural to generalize to look for patterns $n+h_{1}, \ldots, n+h_{k}$ of primes.

Introduction IV

It is natural to generalize to look for patterns $n+h_{1}, \ldots, n+h_{k}$ of primes.

Definition (admissibility)

$\left\{h_{1}, \ldots, h_{k}\right\}$ is admissible if $\Pi\left(n+h_{i}\right)$ has no fixed prime divisor.

Conjecture (prime k-tuples conjecture)
Let $\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Then there are infinitely many integers n such that all of $n+h_{1}, \ldots, n+h_{k}$ are primes.

Introduction V

© This conjecture tells us a huge amount about the 'small scale' structure of the primes.
(3) These questions are difficult because they ask additive questions about multiplicative objects.

Corollary

Assume the prime k-tuples conjecture. Then

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right)=2
$$

$$
\lim \inf _{n}\left(p_{n+m}-p_{n}\right) \leq(1+o(1)) m \log m .
$$

Therefore we believe that occasionally primes come clumped closely together. (Despite becoming sparser on average.)

Example

(1) In the RSA algorithm one wants to choose $N=p q$ which is hard to factor.
(2) If $p-1$ has only small prime factors, then there is a way to factor N easily (Bad).
(3) It had been suggested that one could choose p, q such that $(p-1) / 2$ and $(q-1) / 2$ are prime (although this is not recommended).
(4) If there are only 10 (say) 1024 -bit primes p such that $(p-1) / 2$ is prime, then this is a VERY bad idea!

A slight generalization of the prime k-tuples conjecture predicts there are many such primes, so perhaps you are only wasting CPU cycles.

Small gaps between primes

Goldston, Pintz and Yıldırım developed the 'GPY method’ for studying small gaps between primes unconditionally.

Theorem (Zhang)

$\lim \inf _{n}\left(p_{n+1}-p_{n}\right) \leq 70000000$.

Theorem (M./Tao)

(1) $\liminf \operatorname{in}_{n}\left(p_{n+m}-p_{n}\right) \leq m^{3} e^{4 m+8}$ for all $m \in \mathbb{N}$.
(2) $\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 600$.

Theorem (Polymath 8b)

(1) $\liminf \operatorname{in}_{n}\left(p_{n+m}-p_{n}\right) \leq C e^{3.83 m}$ for all $m \in \mathbb{N}$ (some constant C).
(2) $\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 246$.

Weak k-tuples

These results rely on proving a weak form of the prime k-tuples conjecture.

Conjecture (DHL (k, m))

Let $\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Then there are infinitely many integers n such that \mathbf{m} of $n+h_{1}, \ldots, n+h_{k}$ are primes.

Weak k-tuples

These results rely on proving a weak form of the prime k-tuples conjecture.

Conjecture (DHL (k, m))

Let $\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Then there are infinitely many integers n such that \mathbf{m} of $n+h_{1}, \ldots, n+h_{k}$ are primes.

Theorem (Zhang)

DHL (k, m) holds for $m=2$ and $k \geq 3500000$.

Theorem (M.)

$D H L(k, m)$ holds for $k \geq m^{2} e^{4 m+6}$, and for $k \geq 105$ if $m=2$.

Overview

Figure : Outline of steps to prove small gaps between primes

Sieve methods

One way to view sieve methods is the study of 'almost-primes'.

- Almost-primes have similar properties to the primes (no small prime factors, distribution in APs)
- The primes have positive density in the almost-primes (Gives upper bounds worse than expected by a constant)
- We can solve additive problems for almost-primes if we know solutions in aritmetic progressions
(1) Look at almost-prime values of $\left(n+h_{i}\right)_{i=1}^{k}$
(2) We can calculate the density of solutions when $n+h_{1}$ is prime
(3) If this density is bigger than $1 / k$ for each $n+h_{i}$, then more than 1 of the components are prime on average.
(4) By pidgeonhole principle we deduce that at least $m+1$ of the components are prime infinitely often if the density greater than m / k.

The GPY sieve

(1) Look at almost-prime values of $\left(n+h_{i}\right)_{i=1}^{k}$
(2) We can calculate the density of solutions when $n+h_{1}$ is prime
(If this density is bigger than $1 / k$ for each $n+h_{i}$, then more than 1 of the components are prime on average.

- By pidgeonhole principle we deduce that at least $m+1$ of the components are prime infinitely often if the density greater than m / k.
This argument depends on the precise definition of 'almost-prime'.
If we have better knowledge of primes in arithmetic progressions, then we can produce better almost-prime solutions.

Question

How do we choose the weights w_{n} which define almost-primes?

Question

How do we choose the weights w_{n} which define almost-primes?
We choose w_{n} to mimic 'Selberg sieve' weights.
(1) Standard choice: Gives density $\approx 1 / 2 k$. Fails to prove bounded gaps.

The GPY sieve II

Question

How do we choose the weights w_{n} which define almost-primes?
We choose w_{n} to mimic 'Selberg sieve' weights.
(1) Standard choice: Gives density $\approx 1 / 2 k$. Fails to prove bounded gaps.
(2) GPY choice: Gives density $\approx 1 / k$. Just fails to prove bounded gaps.

The GPY sieve II

Question

How do we choose the weights w_{n} which define almost-primes?
We choose w_{n} to mimic 'Selberg sieve' weights.
(1) Standard choice: Gives density $\approx 1 / 2 k$. Fails to prove bounded gaps.
(2) GPY choice: Gives density $\approx 1 / k$. Just fails to prove bounded gaps.
Zhang's equidistribution results give a density slightly bigger than $1 / k$ with this method: bounded gaps!

The GPY sieve II

Question

How do we choose the weights w_{n} which define almost-primes?
We choose w_{n} to mimic 'Selberg sieve' weights.
(1) Standard choice: Gives density $\approx 1 / 2 k$. Fails to prove bounded gaps.
(2) GPY choice: Gives density $\approx 1 / k$. Just fails to prove bounded gaps.
Zhang's equidistribution results give a density slightly bigger than $1 / k$ with this method: bounded gaps!
(3) New choice: Gives density as the ratio of two integrals of an auxiliary function F.

Reduce to smooth optimization

The sieve calculation gives:

Proposition

Let $\left\{h_{1}, \ldots, h_{k}\right\}$ be admissible. Let

$$
M_{k}=\sup _{F} \frac{J_{k}(F)}{I_{k}(F)} .
$$

If $M_{k}>4 m$ then $D H L(k, m+1)$ holds.
(i.e. there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes).

This has reduced our arithmetic problem (difficult) to a smooth optimization (easier).

Lower bounds for M_{k}

To show small gaps we need a good lower bound for M_{k}.

Lower bounds for M_{k}

To show small gaps we need a good lower bound for M_{k}.

Large k :

- Approach problem from functional analysis viewpoint.
- Use dimensionality to construct good choice of F.
- This choice is essentially optimal when k is large.

Lower bounds for M_{k}

To show small gaps we need a good lower bound for M_{k}.

Large k :

- Approach problem from functional analysis viewpoint.
- Use dimensionality to construct good choice of F.
- This choice is essentially optimal when k is large.

Small k :

- Approach problem from numerical analysis viewpoint.
- Reduce optimization to a feasible numerical calculation.
- Gives essentially optimal bounds when k is small.

Lower bounds for M_{k}

To show small gaps we need a good lower bound for M_{k}.

Large k :

- Approach problem from functional analysis viewpoint.
- Use dimensionality to construct good choice of F.
- This choice is essentially optimal when k is large.

Small k :

- Approach problem from numerical analysis viewpoint.
- Reduce optimization to a feasible numerical calculation.
- Gives essentially optimal bounds when k is small.

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) $M_{105}>4$.

Putting it all together: large k

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>4 m$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Putting it all together: large k

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>4 m$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Finally
Lemma
There is an admissible set of size k contained in $[0,2 k \log k]$.

Putting it all together: large k

Proposition

(1) $M_{k}>\log k-2 \log \log k-2$ if k is large enough.
(2) If $M_{k}>4 m$ then there are infinitely many integers n such that at least $m+1$ of the $n+h_{i}$ are primes.

Finally
Lemma
There is an admissible set of size k contained in $[0,2 k \log k]$.
These give

Theorem

$\liminf f_{n}\left(p_{n+m}-p_{n}\right) \leq C m^{3} e^{4 m}$.

Putting it together: small k

Proposition

(1) $M_{105}>4$.
(2) If $M_{k}>4$ then there are infinitely many integers n such that at least 2 of the $n+h_{i}$ are primes.

Putting it together: small k

Proposition

(1) $M_{105}>4$.
(2) If $M_{k}>4$ then there are infinitely many integers n such that at least 2 of the $n+h_{i}$ are primes.

Lemma (Engelsma)

There is an admissible set of size 105 contained in [0,600].

Putting it together: small k

Proposition

(1) $M_{105}>4$.
(2) If $M_{k}>4$ then there are infinitely many integers n such that at least 2 of the $n+h_{i}$ are primes.

Lemma (Engelsma)

There is an admissible set of size 105 contained in [0, 600].

Theorem $\lim \inf _{n}\left(p_{n+1}-p_{n}\right) \leq 600$.

Other applications

Observation

Since $M_{k} \rightarrow \infty$, this method doesn't depend too heavily on the strength of equidistribution results.

This make the method very flexible.
There is hope that this can have applications in many other contexts.

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.
- There are unusually large gaps between primes.

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.
- There are unusually large gaps between primes.
- Bounded gaps between many primes restricted to lie in short interval, an arithmetic progression, or be represented by a quadratic form.

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.
- There are unusually large gaps between primes.
- Bounded gaps between many primes restricted to lie in short interval, an arithmetic progression, or be represented by a quadratic form.
- There are intervals $\left[x, x+(\log x)^{\epsilon}\right]$ containing $\gg \log \log x$ primes (many more than average).

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.
- There are unusually large gaps between primes.
- Bounded gaps between many primes restricted to lie in short interval, an arithmetic progression, or be represented by a quadratic form.
- There are intervals $\left[x, x+(\log x)^{\epsilon}\right]$ containing $\gg \log \log x$ primes (many more than average).
- We have quantitative estimates which fit well with Cramér's random model for the primes.

Other applications II (Freiberg, Granville, Thorner,...)

- The prime k-tuples conjecture is true for a positive proportion of admissible sets.
- There are unusually large gaps between primes.
- Bounded gaps between many primes restricted to lie in short interval, an arithmetic progression, or be represented by a quadratic form.
- There are intervals $\left[x, x+(\log x)^{\epsilon}\right]$ containing $\gg \log \log x$ primes (many more than average).
- We have quantitative estimates which fit well with Cramér's random model for the primes.
- There are arbitrarily large sets of primes, with any pair differing in at most 2 decimal places.

Questions

Thank you for listening.

Conditional results

If we assume stronger results about primes in arithmetic progressions, then we obtain stronger results.

Theorem

Assume the Bombieri-Vinogradov Theorem an be extended to $q<x^{1-\epsilon}$. Then

$$
\begin{array}{ll}
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 16 & \text { (Goldston-Pintz-Yıldırim) } \\
\lim \inf _{n}\left(p_{n+1}-p_{n}\right) \leq 12 . & (M .) \tag{M.}
\end{array}
$$

Theorem (Polymath 8b)

Assume 'GEH'. Then we have,

$$
\liminf _{n}\left(p_{n+1}-p_{n}\right) \leq 6
$$

There is a barrier to obtaining the twin prime conjecture with this method.

Conditional results II

This has the amusing consequence:

Theorem (Polymath 8b)

Assume 'GEH'. Then at least one of the following is true.
(1) There are infinitely many twin primes.
(2) Every large even number is within 2 of a number which is the sum of two primes.

Of course we expect both to be true!

Questions

Thank you for listening.

