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Introduction

The main problem in prime number theory is to understand the
distribution of the primes.

Today we want to understand the gaps between primes.

Theorem (prime number theorem)

#{primes ≤ x} ≈
x

log x
.

This means that for pn ≤ x, the average gap pn+1 − pn ≈ log x, so
the primes get sparser.

Question
Are prime gaps always this big?
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Introduction II

Question
Are prime gaps always this big?

(2, 3) is the only pair of primes which differ by 1.
(One of n and n + 1 is a multiple of 2 for every integer n).

There are lots of pairs of primes which differ by 2:
(3, 5), (5, 7), (11, 13), . . . , (1031, 1033), . . . ,
(1000037, 1000039), . . . , (1000000007, 1000000009), . . .

Conjecture (Twin prime conjecture)

There are infinitely many pairs of primes (p, p′) which differ by 2.

As we all know, this is one of the oldest problems in mathematics,
and is very much open!
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Introduction III

More generally, we can look for triples (or more) of primes.

(2, 3, 5), (2, 3, 7), (2, 5, 7), (3, 5, 7) are the only triples
contained in an interval of length 5.
(At least one of n, n + 2, n + 4 is a multiple of 3.)

There are lots of triples of primes in an interval of length 6.
(5, 7, 11), (11, 13, 17), . . . , (1091, 1093, 1097), . . . ,
(1000033, 1000037, 1000039), . . .

All such triples are of the form (n, n + 2, n + 6) or
(n, n + 4, n + 6), and we find lots of both types.

In fact, we find lots of triples (n, n + h1, n + h2) if one of the
triple doesn’t have to be a multiple of 2 or 3.

It is natural to generalize to look for patterns n + h1, . . . , n + hk of
primes.
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Introduction IV

It is natural to generalize to look for patterns n + h1, . . . , n + hk of
primes.

Definition (admissibility)

{h1, . . . , hk } is admissible if
∏
(n + hi) has no fixed prime divisor.

Conjecture (prime k-tuples conjecture)

Let {h1, . . . , hk } be admissible. Then there are infinitely many
integers n such that all of n + h1, . . . , n + hk are primes.
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Introduction V

1 This conjecture tells us a huge amount about the ‘small scale’
structure of the primes.

2 These questions are difficult because they ask additive
questions about multiplicative objects.

Corollary

Assume the prime k-tuples conjecture. Then

lim infn(pn+1 − pn) = 2.

lim infn(pn+m − pn) ≤ (1 + o(1))m log m.

Therefore we believe that occasionally primes come clumped
closely together. (Despite becoming sparser on average.)
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Example

1 In the RSA algorithm one wants to choose N = pq which is
hard to factor.

2 If p − 1 has only small prime factors, then there is a way to
factor N easily (Bad).

3 It had been suggested that one could choose p, q such that
(p − 1)/2 and (q − 1)/2 are prime (although this is not
recommended).

4 If there are only 10 (say) 1024-bit primes p such that (p − 1)/2
is prime, then this is a VERY bad idea!

A slight generalization of the prime k -tuples conjecture predicts
there are many such primes, so perhaps you are only wasting CPU
cycles.
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Small gaps between primes

Goldston, Pintz and Yıldırım developed the ‘GPY method’ for
studying small gaps between primes unconditionally.

Theorem (Zhang)

lim infn(pn+1 − pn) ≤ 70 000 000.

Theorem (M./Tao)
1 lim infn(pn+m − pn) ≤ m3e4m+8 for all m ∈ N.
2 lim infn(pn+1 − pn) ≤ 600.

Theorem (Polymath 8b)
1 lim infn(pn+m − pn) ≤ Ce3.83m for all m ∈ N (some constant C).
2 lim infn(pn+1 − pn) ≤ 246.
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Weak k-tuples

These results rely on proving a weak form of the prime k -tuples
conjecture.

Conjecture (DHL(k ,m))

Let {h1, . . . , hk } be admissible. Then there are infinitely many
integers n such that m of n + h1, . . . , n + hk are primes.

Theorem (Zhang)

DHL(k,m) holds for m = 2 and k ≥ 3 500 000.

Theorem (M.)

DHL(k,m) holds for k ≥ m2e4m+6, and for k ≥ 105 if m = 2.
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Overview

Sieve Method
Modified GPY sieve

Primes in A.P.s
Bombieri-

Vinogradov theorem

Optimization problem

Choice of

smooth weight

Combinatorial
problem

Dense admissible sets

Small gaps
between primes

Figure : Outline of steps to prove small gaps between primes
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Sieve methods

One way to view sieve methods is the study of ‘almost-primes’.

‘Almost Primes’
(Weighted Integers)

Moderate

Integers
Easy

Primes
Difficult

⊇⊇

Almost-primes have similar properties to the primes
(no small prime factors, distribution in APs)

The primes have positive density in the almost-primes
(Gives upper bounds worse than expected by a constant)

We can solve additive problems for almost-primes if we
know solutions in aritmetic progressions
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The GPY sieve

1 Look at almost-prime values of (n + hi)
k
i=1

2 We can calculate the density of solutions when n + h1 is
prime

3 If this density is bigger than 1/k for each n + hi , then more
than 1 of the components are prime on average.

4 By pidgeonhole principle we deduce that at least m + 1 of
the components are prime infinitely often if the density greater
than m/k .

This argument depends on the precise definition of ‘almost-prime’.

If we have better knowledge of primes in arithmetic progressions,
then we can produce better almost-prime solutions.
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The GPY sieve II

Question
How do we choose the weights wn which define almost-primes?

We choose wn to mimic ‘Selberg sieve’ weights.
1 Standard choice: Gives density ≈ 1/2k . Fails to prove

bounded gaps.
2 GPY choice: Gives density ≈ 1/k . Just fails to prove bounded

gaps.
Zhang’s equidistribution results give a density slightly bigger
than 1/k with this method: bounded gaps!

3 New choice: Gives density as the ratio of two integrals of an
auxiliary function F .
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Reduce to smooth optimization

The sieve calculation gives:

Proposition

Let {h1, . . . , hk } be admissible. Let

Mk = sup
F

Jk (F)
Ik (F)

.

If Mk > 4m then DHL(k,m+1) holds.
(i.e. there are infinitely many integers n such that at least m + 1 of
the n + hi are primes).

This has reduced our arithmetic problem (difficult) to a
smooth optimization (easier).
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Lower bounds for Mk

To show small gaps we need a good lower bound for Mk .

Large k :

Approach problem from functional analysis viewpoint.

Use dimensionality to construct good choice of F .

This choice is essentially optimal when k is large.

Small k :

Approach problem from numerical analysis viewpoint.

Reduce optimization to a feasible numerical calculation.

Gives essentially optimal bounds when k is small.

Proposition
1 Mk > log k − 2 log log k − 2 if k is large enough.
2 M105 > 4.
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Putting it all together: large k

Proposition
1 Mk > log k − 2 log log k − 2 if k is large enough.
2 If Mk > 4m then there are infinitely many integers n such that

at least m + 1 of the n + hi are primes.

Finally

Lemma

There is an admissible set of size k contained in [0, 2k log k ].

These give

Theorem

lim infn(pn+m − pn) ≤ Cm3e4m.
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Putting it together: small k

Proposition
1 M105 > 4.
2 If Mk > 4 then there are infinitely many integers n such that at

least 2 of the n + hi are primes.

Lemma (Engelsma)

There is an admissible set of size 105 contained in [0, 600].

Theorem

lim infn(pn+1 − pn) ≤ 600.
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Other applications

Observation
Since Mk → ∞, this method doesn’t depend too heavily on the
strength of equidistribution results.

This make the method very flexible.

There is hope that this can have applications in many other
contexts.
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Other applications II (Freiberg, Granville, Thorner,...)

The prime k -tuples conjecture is true for a positive proportion
of admissible sets.

There are unusually large gaps between primes.

Bounded gaps between many primes restricted to lie in short
interval, an arithmetic progression, or be represented by a
quadratic form.

There are intervals [x, x + (log x)ε ] containing� log log x
primes (many more than average).

We have quantitative estimates which fit well with Cramér’s
random model for the primes.

There are arbitrarily large sets of primes, with any pair
differing in at most 2 decimal places.
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Questions

Thank you for listening.
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Conditional results

If we assume stronger results about primes in arithmetic
progressions, then we obtain stronger results.

Theorem
Assume the Bombieri-Vinogradov Theorem an be extended to
q < x1−ε . Then

lim infn(pn+1 − pn) ≤ 16 (Goldston-Pintz-Yıldırim)

lim infn(pn+1 − pn) ≤ 12. (M.)

Theorem (Polymath 8b)

Assume ‘GEH’. Then we have,

lim infn(pn+1 − pn) ≤ 6.

There is a barrier to obtaining the twin prime conjecture with this
method.
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Conditional results II

This has the amusing consequence:

Theorem (Polymath 8b)

Assume ‘GEH’. Then at least one of the following is true.
1 There are infinitely many twin primes.
2 Every large even number is within 2 of a number which is the

sum of two primes.

Of course we expect both to be true!
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