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ABSTRACT

The Tiny Tera is an all-CMOS 320 Gbps, input-queued ATM switch suitable for non-
ATM applications such as the core of an Internet router. The Tiny Tera efficiently supports
both unicast and multicast traffic. Instead of using optical switching technology, we
achieve a high switching-bandwidth by using less expensive and proven CMOS technol-
ogy. Because of limitations in memory and interconnectionbandwidths, we believe that to
achieve such a high-bandwidth switch requires an innovative architecture. By using Vir-
tual Output Queueing (VOQ) and novel scheduling algorithms, the Tiny Tera will achieve
a maximum throughput close to 100% without the need for internal speedup.

Keywords — ATM switch, packet switch, scheduling algorithms, input-queueing, VOQ.

1 . INTRODUCTION

The demand for network bandwidth is growing at a phenomenal rate; the Internet con-
tinues to grow in both the number of users and per-user traffic with no apparent end in
sight. Due to the growing demand, high-speed networks such as ATM have gained much

attention.

In an attempt to provide industry with novel switching techniques, we are developing
and building the Tiny Tera: a small, high-bandwidth switch. The Tiny Tera switch has 32
ports, each operating at the OC-192 rate of approximately 10 Gbps andswitches ATM
cells or fixed-size packets with a length equal to any multiple of 64 bytes. The switch dis-
tinguishes four classes of traffic, and includes efficient support for multicast. We aim to
demonstrate that it is possible to build a compact switch with an aggregate bandwidth of
320 Gbps built entirely from currently available CMOS ASIC technology, using a central
core no larger than a can of soda.
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Increasingly, memory and interconnection bandwidths are becoming bottlenecks in
high-bandwidth switches. However, our aim here is not to rely on more advance technol-
ogy than is currently available, but to make efficient use of the bandwidths.

Input-queueing and parallelism provide the key to such a high-bandwidth switch.
Input-queueing reduces the memory bandwidth requirements; when cells are queued at the
input, the buffer memories need run no faster than the line rate, i.e., there is no need for the
speedup required in output-queued switches. However, the long-standing view has been
that cells in an input-queued switch suffer poor performance due to head of line (HOL)
blocking [2]. We have developed novel scheduling algorithms to reduce the effects of
HOL blocking for both unicast and multicast traffic. For unicast traffic, we use a well-
known buffering scheme called Virtual Output Queueing (VOQ) [1] in which each input
maintains a separate queue for each output. Motivated by DEC's PIM algorithm [1], we
use a novel fast, fair and efficient scheduling algorithm called iSLIP, that achieves a
throughput close to 100% [6] [7], yet is able to make a scheduling decision in just 4Ons.
For multicast traffic, we are developing algorithms based on the ideas of fanout-splitting
and residue concentration [3].

The rest of this paper is arranged as follows. In Section 2 we describe the Tiny Tera
switch architecture, with an emphasis on the main switch datapath, the bit-sliced crossbar
and the architecture of the ports. In Section 3 we outline the queueing policies and sched-
uling algorithms used for unicast and multicast traffic.

2. SWITCH ARCHITECTURE

The switch consists of three main parts: 32 ports, a parallel bit-slice switching fabric
and a scheduler as shown in Figure 1(a). The cylindrical-shaped switching fabric is situ-
ated at the center of the switch allowing all ports to be attached radially. The central sched-
uler is located below the switching fabric. Cells are buffered upon arrival at the input
ports, which then generate requests to the scheduler. Based on the requests, the scheduler
selects a configuration for the switching fabric, creating a set of conflict-free connections
between input and output ports.

2.1. Port architecture

In order to operate at 10 Gbps line rate, the Tiny Tera port is divided into two parts, as
shown in Figure 2: an ATM-independent datapath consisting of data slices and SRAMs,
and an ATM-dependent port processor. The primary function of the datapath portion is to
perform simple but high bandwidth tasks such as buffering, forwarding and receiving
cells. More complex ATM-specific tasks such as VCI lookup, traffic and queue manage-
ment, which do not involve a high bandwidth data transfer, are handled by the port proces-
sor. In addition, the data rate and cell size of the Tiny Tera port are both designed to be
scalable so that the switch can easily support non-ATM applications. The basic switching
unit is 64-bytes — all cells must be the same length which can be any multiple of 64 bytes.

Shown in Figure 2, cells arrive from the external interface in parallel over eight high-
speed serial links [8], each operating at a nominal rate of 1.5 Gbps. This external interface
is a higher-speed version of the ATM-Forum UTOPIA interface [10]. A 64-bit portion of
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a) The switch consists of a central, vertical hub. Each port interface card
connects radially into the hub. This example shows a 4-port switch. Each
port interface card may be connected to multiple external lines.

high speed
serial link

b) The central switching core is corn-
prised ofa number ofidentical bit-slices.
This example shows a 4-slice core.

Figure 1 Architecture and detail of the Tiny Tera bit-slice, parallel switch.

the cell — an ATM cell plus some additional switch-specific control bits— is buffered by
each of data slice chips. We call this 64-bit unit a chunk. Each data slice sends the header
portion of the arriving chunk to the port processor. After VCI, VPI, and output port look-
ups from the header of the arriving cell, the port processor sends the data slices a new
header and a memory address to which the cell to be written into the SRAMs. The SRAMs
are dynamically partitioned into FIFO queues as shown in Figure 3. The port processor
maintains the head and tail pointers of every queue.

Through another serial link, every port processor communicates with the scheduler,
informing it of newly arriving cells. Once the scheduler has decided which output an input
can forward a cell to, i.e., which queue to transmit from, it informs the port processor of
the decision. The port processor then issues a read request to the data slices, indicating
which cell is to be dequeued from the memory. The cell is then forwarded over eight serial
links to the switching fabric where it is routed to the destination output port.

SPIE Vol. 2917/389

Centralized schedic/

c) Each bit-slice contains a single switch bit-
slice chip. This example shows a single 4x4
bit chip.
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Figure 3 Input-queueing structure at each port interface.

Figure 2 Architecture of port interface card. The data slice components are application-independent,and
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Cells emerging from the switching fabric are once again buffered by the data slices.
Under the control of the port processor, the cells are stored into output queues which share
the same SRAMs as the input queues. Cells removed from the output queues leave the
system over the external parallel interface.

2.2. Parallel bit slice switching fabric

Similar to the port architecture, the 32 x 32 non-blocking switching fabric achieves a
10 Gbps rate using several bit-slices of crossbars in parallel, each running at the line rate
of 1 .5 Gbps. As shown in Figure 1(b), the switching hub comprises a stack of identical bit-
slices. Plan and side elevations of each bit-slice are shown in detail in Figure 1(c). Each
bit-slice is a simple printed circuit board containing a 1-bit 32 x 32 switching chip; Figure
1(c) shows a simplified example of a 4 x 4 switch. The bit-slices are connected to each
port interface card using high-speed chip-to-chip communication links [8] operating at
approximately 1.5 Gbps.

Every cell-time, each port sends the switching fabric a five-bit reverse-path routing
tag. The tag tells an output which input it is connected to. Note that if a forward-path rout-
ing was used, a 32-bit routing tag would be needed for multicast cells.

The advantages of this switching fabric are:

. The bit-slice is extremely simple. No leads need to cross, reducing crosstalk
and allowing the slice to be constructed from a simple printed circuit board.

. The lead lengths connecting each port to the central switch are all of identical
and minimum length. This reduces skew and the effect of reflections, enabling
high data rates to be achieved. It also means that each bit-slice can be very
small. The Tiny Tera slices will be just 2 inches in diameter.

. Extremely high aggregate bandwidths are achievable by switching multiple bits
in parallel. As a result, the switch can be easily scaled for different throughput
requirements by simply selecting the number of bit-slices.

In addition, the crossbar switch is capable of routing multicast cells by simply con-
necting a single input to multiple outputs. The Tiny Tera takes advantage of this built-in
capability in order to achieve a high throughput for multicast traffic.

3. SCHEDULING CELLS

A non-blocking switching fabric, e.g., a crossbar switch, requires a scheduling algo-
rithm to select a set of per-cell-time conflict-free connections. The Tiny Tera maintains
two separate scheduling algorithms: one for unicast traffic and one for multicast traffic.

3. 1 . Scheduling unicast traffic

Input-queueing has been widely believed to suffer from low throughput because of
HOL blocking, yet HOL blocking can be entirely eliminated by a simple buffering scheme
called Virtual Output Queueing (VOQ). With VOQ, each input maintains a separate FIFO
queue for each output, instead of a single FIFO for all outputs. Although slightly more
complex (for unicast traffic, an N x N switch now maintains N2 input FIFOs), note that no
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additional memory bandwidth is required; at most one cell can arrive and depart from each
input in a cell time.

When VOQ is used, the switch requires a scheduling algorithm [6] that examines the
contents of the N2 input-queues at the beginning of each cell time, deciding which ones
will be served. A good scheduling algorithm must be fast, simple, fair, and efficient. (e.g.
if the input-lines operate at 10 0bps, take an ATM cell as the worst case, the scheduling
algorithm must make its decision within 42ns).

In previous work, we have shown that the maximum size bipartite matching algorithm
and the maximum weight bipartite matching algorithms (the longest queue first (LQF) and
the oldest cell first (OCF)) can achieve 100% throughput [7]. Unfortunately, these algo-
rithms are known to be impractical for implementation in fast and simple hardware and
require a running time of complexity O(N3logN) [9].

However, we have developed practical, heuristic scheduling algorithms: iSLIP, iLQF,
and iOCF. The iSLIP is an iterative algorithm that provides high efficiency for best-effort
traffic and yet is simple to implement in hardware. iSLIP achieves fairness using indepen-
dent round-robin arbiters at each input and output. Simple round-robin arbiters [1] experi-

Input 1
L(1,1) = 1

L(1,2)=4

Input 3
L(3,2)=2
L(3,4) = 1

Input 4
L(4,4) =3

a) Step 1: Request. Each input makes a request to each output for which it has a cell.

Step 2: Grant. Each output selects the next requesting input at or after the pointer in the round-robin
schedule. Arbiters are shown here for outputs 2 and 4. Inputs 1 and 3 both requested output 2. Since

g2 = 1 output 2 grants to input 1. g is successful in Step 3 and is updated to favor the input after

the one that is granted.

b) Step 3: Accept. Each input selects at
most one output. The arbiter for input 1 is
shown. Since a1 = 1 input 1 accepts output
1. a1 is updated to point to output 2.

. .

c) When the arbitration has completed, a match-
ing of size two has been found. Note that this is
less than the maximum sized matching of three.
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Figure 4 Example of one iteration of the iSLIP algorithm.
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Figure 5 Performance of iSLIP for 1,2 and 4 iterations compared with FIFO and output queueing for independent
arrivals with destinations uniformly distributed over all outputs. Results obtained using simulation for a
16x16 switch. The graph shows the average delay per cell, measured in time slots, between arriving at the
input buffers and departing from the switch

ence output contention, which limits a throughput [5] to just (i — !) 63 % . With a

simple modification, iSLIP overcomes this problem by causing the arbiters to slip with
respect to each other — a match in one cell time leads to a larger and faster match in the
next cell time. This leads to a maximum throughput of 100% for uniform and independent
arrivals withjust a single iteration. A delay-throughput performance comparison of iSLIP
with different numbers of iterations is shown in Figure 5.

The algorithm additionally provides fair access among contending flows and can
reduce the burstiness of traffic as it transits the switch. Yet despite these features, a central-
ized scheduler for a 32 x 32 switch can be implemented in a single chip. Exploratory
design-work suggests that iSLIP, implemented in current CMOS technology, can make a
decision in less than 2Ons.
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Figure 7 Average cell latency as a function of offered load, with uncorrelated input traffic with out
destinations uniformly distributed over all outputs, and average fanout of four.

concentration, we define a term called an output-cell. A multicast cell at the input of the
switch is a collection of output-cells each with an identical payload but different destina-
tion. A cell is said to be completely serviced, thus leaves its queue, when all of its output-
cells are forwarded. Work-conservation requires that an input has to forward output-cells
whenever the corresponding outputs are free, i.e., allow fanout-splitting.

Because of fanout-splitting, it is possible that some output-cells are left behind to be
delivered in later slots. These output-cells are called the residue. For a given set of multi-
cast cells, all work-conserving algorithms leave the same residue. It is up to a scheduling
algorithm to decide on a residue placement, which uniquely defines the algorithm, i.e.,
deciding where to place the residue is equivalent to determining the transmission sched-
ule.

A residue-concentrating algorithm is an algorithm which concentrates the residue on
the smallest number of inputs. Concentrating the residue on the smallest number of inputs
allows more HOL cells to be completely served, thus brings more new cells forward to the
head of the line, i.e., brings more work forward. For the case of a 2xN switch, it is proved
in [3], subject to a natural fairness constraint, that a residue-concentrating algorithm is
optimal. We have found using simulation that a residue-concentrating algorithm will gen-
erally maximize throughput [3] for an M x N switch.

Unfortunately, the optimal residue-concentrating algorithm is too complex to be prac-
ticable. Moreover, a residue-concentrating algorithm can lead to starvation for cells that
have a large number of destinations. The Tiny Tera will therefore employ one of two prac-
tical scheduling algorithms that we are developing. The first is called TATRA which uses
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the fact that the M x N scheduling problem can be mapped onto a Tetris-like game. The
second is called WBA (Weight Based Algorithm) which is designed to use similar hard-
ware to the iSLIP unicast scheduling algorithm. Both algorithms attempt to be fair, yet
achieve a high throughput [3]. We are currently developing practical implementations of
both algorithms.

4. CONCLUSION

Using only off-the-shelf CMOS technology, the Tiny Tera, an all-CMOS, input-
queued, 32 x 32 port, ATM switch, will have an aggregate bandwidth of 320 Gbps. It will
support a wide range of applications such as a high-performance ATM switch or the core
of an IP router. In anticipation of increased multicast traffic, the Tiny Tera has dedicated
support for both unicast and multicast traffic.

The Tiny Tera achieves a high aggregate bandwidth using an innovative architecture. It
makes efficient use of memory bandwidth by employing input-queueing. It obtains high-
bandwidth switching by having several crossbar bit-slices in parallel. With high-speed
serial links, we have illustrated that the parallel bit-sliced switching core can be made no
larger than a can of soda; yet is fast and simple. In order to make a cell forwarding deci-
sion at high speed, the Tiny Tera scheduling algorithms are simple, yet fair and efficient.
Furthermore, they are implemented in hardware.

For unicast traffic, we eliminate HOL blocking entirely by employing Virtual Output
Queueing (VOQ). We have demonstrated that, by using VOQ with a suitable scheduling
algorithm, we can achieve close to 100% throughput. For multicast traffic, although not
able to eliminate HOL blocking, we exploit the ideas of fanout splitting and residue-con-
centration to achieve a high throughput.
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